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Abstract We present a first implementation of collinear
electroweak radiation in the Vincia parton shower. Due to
the chiral nature of the electroweak theory, explicit spin
dependence in the shower algorithm is required. We thus use
the spinor-helicity formalism to compute helicity-dependent
branching kernels, taking special care to deal with the gauge
relics that may appear in computation that involve longitudi-
nal polarizations of the massive electroweak vector bosons.
These kernels are used to construct a shower algorithm that
includes all possible collinear final-state electroweak branch-
ings, including those induced by the Yang–Mills triple vec-
tor boson coupling and all Higgs couplings, as well as vector
boson emissions from the initial state. We incorporate a treat-
ment of features particular to the electroweak theory, such
as the effects of bosonic interference and recoiler effects, as
well as a preliminary description of the overlap between elec-
troweak branchings and resonance decays. Some qualifying
results on electroweak branching spectra at high energies, as
well as effects on LHC physics are presented. Possible future
improvements are discussed, including treatment of soft and
spin effects, as well as issues unique to the electroweak sec-
tor.

1 Introduction

Beyond the discovery of the Higgs boson [1,2], signs of
new physics have yet to appear at the LHC and the Stan-
dard Model has so far survived all forms of scrutiny. It has
therefore become more likely that the Standard Model con-
tinues to describe nature accurately up to very high energy
scales. At these very high energies heavy particles like elec-
troweak gauge bosons, Higgs bosons and top quarks can start
to appear as constituents of jets [3,4] or otherwise contribute
to radiative corrections. Virtual corrections have been shown
to become sizeable even at LHC energies in exclusive observ-
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ables [5–18]. For instance, corrections to transverse momen-
tum at LHC energies can already reach about 10% for exclu-
sive dijet production [14,15], and about 20% for single vector
boson production [16–18], and they can be expected to grow
even larger at future collider energies [19,20].

Work such as [21,22] has instead focussed on the incor-
poration of electroweak logarithms in the resummation of
inclusive observables at high energies. However, many prac-
tical observables are not fully exclusive or fully inclusive. In
most cases, the only practical solution is to instead include
EW effects in a systematic way in parton shower algorithms
as part of a general-purpose event generator such as Pythia
[23], Sherpa [24] or Herwig [25]. These produce fully dif-
ferential final states, and can be set up to include specific
phenomena exclusive to the EW sector such the effects of
symmetry breaking and gauge boson decay. Furthermore, the
inclusion of EW effects in parton shower algorithms enables
automatic interleaving with the QCD shower, as well as the
interfacing with the models of nonperturbative aspects of
the event generation process, such as multi-parton interac-
tions and hadronization. As an example, ATLAS has reported
on measurements that are sensitive to the collinear enhance-
ments associated with W radiation in jets [26], and compared
them to event generators that incorporate these effects. There,
it is also pointed out that these types of effects will play a sig-
nificant role for several measurements at high energy scales,
which will become more abundant as the LHC gathers more
data.

Electroweak corrections have been incorporated in parton
showers in the past. An implementation [27,28] is available
in Pythia event generator [23] which only includes the radi-
ation of electroweak gauge bosons and does not retain any
spin information. The radiation of electroweak gauge bosons
was similarly included in the Sherpa event generator [24]
to study W emissions in jets [29]. Another approach [30]
was employed in ALPGEN [31] where fixed-order matrix
element calculations are combined with analytic Sudakov
factors to achieve results similar to those of an electroweak
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parton shower. A more recent work [32] has implemented a
final-state electroweak shower in the Pythia 1 → 2 trans-
verse momentum ordered shower formalism that retains spin
information and includes all branchings present in the elec-
troweak sector.

In this paper, extend the antenna-based Vincia parton
shower [33–35] to include all possible final-state collinear
EW branchings, including those associated with Yang–
Mills triple vector boson and Higgs couplings. Furthermore,
collinear vector boson emissions off the initial state are also
included. Vincia is a plugin to the Pythia event generator and
already allows for QCD evolution with partons of definite
helicity states [36,37]. This feature is especially important
in the electroweak theory due to its chiral nature. The elec-
troweak shower described in this paper will thus be responsi-
ble for the electroweak component of the shower evolution,
and is interleaved with the default Vincia QCD shower.

The formalism descibed in this paper makes use of the
spinor-helicity formalism to compute the large number of
spin-dependent branching kernels associated with the elec-
troweak shower. Helicity-dependent QCD antenna functions
have previously been computed with comparable methods
[38,39]. We start with a brief overview of the spinor-helicity
formalism and the conventions used in the calculation of
the branching kernels. In Sect. 3, the spinor-helicity formal-
ism is used to compute branching kernels for all branching
processes in the electroweak sector. Section 4 discusses the
collinear limits of those branching kernels given in terms of
Altarelli–Parisi splitting functions [40]. The results in that
section are found to be in agreement with [32]. Section 5
details the implementation of an electroweak shower in the
Vincia framework and treats a number of peculiarities exclu-
sive to the electroweak sector such as the presence of bosonic
interference and the matching to resonance decays. To show
the significance of an electroweak shower, its effects are
investigated in Sect. 6 for highly energetic particles, but also
at LHC energies. We finally conclude in Sect. 7, discussing
a number of missing features that are required to bring the
modelling of EW radiation further in line with current QCD
showers.

2 The spinor-helicity formalism

Due to the chiral nature of the electroweak theory, it is impor-
tant to calculate electroweak branching kernels for individual
spin states. We choose to perform these calculations using
the spinor-helicity formalism using conventions similar to
those described in [41]. The branching kernels computed here
describe the correct soft and collinear factorization proper-
ties of branchings in the electroweak sector, while remaining
Lorentz-invariant and independent of a particular represen-
tation of the Dirac algebra or explicit forms for fermionic

spinors. Furthermore, their analytic nature will be useful in
dealing with issues that appear due to gauge dependence for
longitudinal polarizations of gauge bosons. We first briefly
summarize our conventions and techniques.

2.1 Spinors

Helicity spinors for massive fermions may be defined as

uλ(p) = 1√
2p·k (/p + m)u−λ(k) and

vλ(p) = 1√
2p·k (/p − m)uλ(k), (1)

where λ is the fermion helicity and k is a lightlike refer-
ence vector that defines the meaning of the helicity of the
fermion. Due to its massive nature, helicity is not a Lorentz-
invariant quantity and does not coincide with the chirality
of the fermion. The spin vector associated with the spinors
defined in Eq. (1) is

sμ
λ = λ

m

(
pμ − m2

p·k k
μ

)
. (2)

We therefore choose the reference vector

k = (1,−�e), (3)

where �e is a unit vector pointing in the direction of �p. With
this choice, the massive helicity spinors retain the usual
meaning of helicity as the projection of spin along the direc-
tion of motion.

2.2 Polarization vectors

The polarization vectors for a massive vector boson with
momentum p are defined as

ε
μ
±(p) = ± 1√

2

1

2p·k ū∓(k)/pγ μu±(k) and

ε
μ
0 (p) = 1

m

(
pμ − 2

m2

2p·k k
μ

)
, (4)

where k is again a massless reference vector. Here, εμ
±(p) are

the transverse polarizations and ε
μ
0 (p) is the purely longitudi-

nal polarization which only exists for massive vector bosons.
By again choosing Eq. (3), it is immediately clear that ε

μ
±(p)

are purely transverse and ε
μ
0 (p) is purely longitudinal.

2.3 Spinor products and amplitude evaluation

Having expressed all massive spinors and polarization vec-
tors in terms of massless spinors, amplitudes for particles
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with definite helicities can now be calculated very efficiently.
We first define the spinor product

Sλ(ka, kb) ≡ ūλ(ka)u−λ(kb) (5)

for lightlike (reference) vectors ka and kb, which obey

|Sλ(ka, kb)|2 = 2ka ·kb. (6)

Spinor products are not uniquely defined, but one possible
representation is given by

Sλ(ka, kb) = (λk2
a + ik3

a)

√
k0
b − k1

b

k0
a − k1

a

− (λk2
b + ik3

b)

√
k0
a − k1

a

k0
b − k1

b

. (7)

Using the spinors and polarization vectors of the previous
section, all amplitudes can be expressed in terms of these
spinor products. Structures like

Sλ(ka, pi , p j , . . . , kb) ≡ ūλ(ka)/pi /p j . . . u±λ(kb), (8)

may still appear, where pi , p j , . . . may be massive. Such
structures may be expressed in terms of the spinor products
Eq. (5) by defining

p̂i = pi − p2
i

2pi ·ki ki , (9)

which is explicitly massless. Eq. (8) may then be written as

Sλ(ka, pi , p j , . . . , kb) = Sλ(ka, p̂i ) S−λ( p̂i , p j , . . . , kb).

(10)

This procedure is then repeated, the next time making p j

massless by subtracting (p2
j/2 p̂i ·p j ) p̂i , until only spinor

products remain.

3 Electroweak branching amplitudes

We now use the spinor-helicity formalism to compute branch-
ing amplitudes for the electroweak sector. We first recount the
phase space regions where radiative amplitudes factorize into
a non-radiative amplitude and a radiative correction. For the
moment, we restrict ourselves to splittings in the final state,
where we denote the splitting momenta as pi j → pi + p j .
The parent momentum pi j may be considered to be off-shell
by an amount that vanishes in the singular limits.

We first consider the quasi-collinear limit [42–44], which
may be defined using the Sudakov decomposition

pi = zpi j + αi n + q⊥
p j = (1 − z)pi j + α j n − q⊥ (11)

where n is a lightlike reference vector usually taken to be the
anti-collinear direction, and q⊥ is the spacelike transverse
momentum with respect to pi j and n. These momenta satisfy
q⊥·pi j = 0 and q⊥·n = 0. The variable z is the collinear
momentum fraction, and the parameters αi and α j are fixed
by the conditions p2

i = m2
i and p2

j = m2
j . The off-shellness

Q2 is then given by

Q2 = (pi + p j )
2 − m2

i j

= p2⊥
z(1 − z)

+ m2
i

z
+ m2

j

1 − z
− m2

i j , (12)

where p2⊥ = −q2⊥. The singular factorization of the radia-
tive amplitude occurs when this off-shellness becomes small
with respect to the energy scale of the process. In the mass-
less case, the collinear region is thus defined by p⊥ → 0.
This limit then generalizes to the quasi-collinear limit in the
massive case, defined by

p⊥,mi ,m j → 0 with fixed ratios
mi

p⊥
,
m j

p⊥
. (13)

In this limit, matrix elements symbolically factorize as

|Mn+1|2 col.= 1

Q2 P(λi j , λi , λ j , z)|Mn|2, (14)

where P(λi j , λi , λ j , z) is the helicity-dependent Altarelli–
Parisi splitting kernel [40,45–48].

The second singular limit is the soft limit, where

E j → m j and Ei � E j (15)

or equivalent with pi and p j switched, with the soft parti-
cle being a gauge boson. The amplitude exhibits the usual
eikonal factorization

Mn+1
soft= Mn × c

2pi ·ελ j

Q2 δλi jλi , (16)

where c is some spin-dependent coupling.
Using the spinor-helicity formalism, we compute 1 → 2

electroweak branchings kernels that capture these soft and
quasi-collinear factorization properties. To that end, we com-
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pute a branching amplitude

(17)

for every possible 1 → 2 branching in the electroweak sector.
The branching kernel is then given by

Bλi j ,λi ,λ j (pi j , pi , p j ) = 1

Q4 |M {i j}→i j (λi j , λi , λ j )|2. (18)

A comprehensive list of the branching amplitudes is given
in Appendix B, which also includes vector boson emission
from initial state fermions. Here, we highlight one of these
calculations to discuss the treatment of artifacts that may
appear for longitudinal polarizations.

We consider vector boson emission from a fermion. The
branching amplitudes are straightforwardly found to be

M f → f ′V (λi j , λi , λ j )

= ūλi (pi )(v + aγ 5)/ελ j
(p j )(/pi j + mi j )u−λi j (ki j ), (19)

where v and a are the vector and axial couplings of the
fermion and vector boson at hand as defined in Appendix
A. Note that this amplitude is applicable to all types of elec-
troweak vector boson emission off fermion branching pro-
cesses, including the cases where the fermion changes flavour
due to a W -emission, or where the vector boson is massless
and the axial coupling drops out in case of a photon. For mas-
sive vector bosons, inserting the corresponding polarization
vector leads to the appearance of terms proportional with

1

m j
/pi /p j /pi j = 1

m j

(
(Q2 + m2

i j )/pi − m2
i /pi j

)
. (20)

The term proportional to Q2 cancels the propagator, leaving
a contribution that is not singular in the quasi-collinear or soft
limit. We note that similar situations may appear in equivalent
calculations of QCD branchings kernels. Nonsingular gauge-
dependent terms may appear that do not contribute to the
logarithmic accuracy of a parton shower [49,50] and may
be used as parameters for uncertainty estimation [34]. In the
case of emission of electroweak gauge bosons, the situation
is however not the same. Due to the O(E/m) scaling of the
longitudinal polarization, the leftover contributions lead to
unphysical unitarity-violation at large energies.

Such problematic terms originate from the scalar compo-
nent of the longitudinal polarization of the electroweak gauge
bosons, which originate from their corresponding Goldstone
bosons. In the above example, this Goldstone boson cou-
ples to the fermion through its Yukawa, which in this case

appears as its kinematic off-shell mass. Due to the analytic
nature of the spinor-helicity formalism, the offending terms
are straightforwardly identified and corrected. Equivalently,
the unitarity-violating term of Eq. (20) cannot survive if all
other Feynman diagrams of a complete branching process are
included, while all other terms are associated with a propa-
gator factor 1/Q2 which cannot be cancelled elsewhere. In
Eq. (19) the unitarity-violating terms may thus be removed
by the replacement

/pi /p j /pi j → m2
i j /pi − m2

i /pi j . (21)

The replacements required for all other branching amplitudes
are described in Appendix B.

In leading-colour QCD showers, soft gluon interference
may be approximately incorporated by angular ordering [51],
or by 2 → 3 dipole-like functions [52–54] or antennae func-
tions [34,35,55]. In the EW sector, no leading-colour approx-
imation exists and many eikonal terms may contribute to the
soft limit of an EW gauge boson emission. An algorithm that
includes the full multipole structure of QED radiation in the
Vincia shower was described in [56,57]. The inclusion of
the all soft interference effects is accomplished by defining
a n → n + 1 branching kernel and sectorizing the phase
space into multiple regions to regulate the intricate soft and
collinear singular structure. An extension of this algorithm
requires the computation of an equivalent spin-dependent
n → n + 1 branching kernel for soft-enhanced EW gauge
boson radiation, as well as an implementation that involves a
similar sectorization of phase space. This is beyond the scope
of this paper and is left for future work.

4 Collinear limits of the branchings amplitudes

In this section we discuss the behaviour of the branching
amplitudes in the quasi-collinear limit described by Eq. (13).
In this limit, the reference vectors simplify to

ki
col.= k j

col.= ki j ≡ k. (22)

The branching amplitudes can be expressed in terms of the
energy sharing variable z by replacing

pi → z pi j and p j → (1 − z) pi j . (23)

The only two remaining spinor products in the branching
amplitudes are related by

S−λ(k, p j , pi , k) = −S−λ(k, pi , p j , k). (24)

Up to a phase factor, they are

S−λ(k, pi , p j , k) ∝ 2
√
pi ·ki p j ·k j
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Table 1 Branching amplitudes for vector boson emission off a fermion.
For the antifermion, the interchange (v − λa) ↔ (v + λa) is applied

λi j λi λ j f → f ′V and f̄ → f̄ ′V

λ λ λ
√

2λ(v − λa)

√
Q̃2 1√

1−z

λ λ −λ
√

2λ(v − λa)

√
Q̃2 z√

1−z

λ −λ λ
√

2λ

[
mi j (v − λa)

√
z − mi (v + λa) 1√

z

]

λ −λ −λ 0

λ λ 0
(v − λa)

[m2
i j

m j

√
z − m2

i

m j

1√
z

− 2m j

√
z

1 − z

]

+ (v + λa)
mimi j

m j

1 − z√
z

λ −λ 0
√
Q̃2

√
1 − z

[
mi
m j

(v − λa) − mi j
m j

(v + λa)

]

×
√
Q2 + m2

i j − m2
i
pi j ·ki j
pi ·ki − m2

j
pi j ·ki j
p j ·k j

col.=2pi j ·k
√
z(1 − z)

√
Q̃2 (25)

where

Q̃2 = Q2 + m2
i j − m2

j

1 − z
− m2

i

z
. (26)

Tables 1, 2, 3, 4, 5, 6 and 7 contain the collinear limits of all
electroweak branching amplitudes. These limits are related
to the Altarelli–Parisi splitting kernels by

P(λi j , λi , λ j , z) = |M(λi j , λi , λ j )|2 (27)

where M is the branching amplitude. Note that we used the
replacement of Eq. (25) for the sake of notation, leading to a
missing phase factor that is irrelevant for the computation of
the splitting kernels. The splitting functions found here agree
with the results of [32].

The quasi-collinear limits of the branching amplitudes
listed in Tables 1, 2, 3, 4, 5, 6 and 7 show a rich land-
scape of splitting modes that are the result of several physical
effects. For instance, in the case of vector boson emission off
a fermion, listed in Table 1, we find that the splitting func-
tions for a transverse emission without a spin flip correspond
with the familliar spin-summed form

Pf → f ′V ∝ 1 + z2

1 − z
, (28)

in correspondence with the QCD equivalent of gluon emis-
sion off a quark. The presence of fermion and vector boson
masses induces a shift of 1/Q2 → Q̃2/Q4 in the propagator
structure. The fermionic mass corrections in Q̃2 also appear

Table 2 Branching amplitudes for vector boson splitting to fermions

λI λi λ j V → f f̄ ′

λ λ −λ
√

2λ(v − λa)

√
Q̃2 z

λ −λ λ
√

2λ(v + λa)

√
Q̃2 (1 − z)

λ λ λ
√

2λ

[
mi (v + λa)

√
1−z
z + m j (v − λa)

√
z

1−z

]

λ −λ −λ 0

0 λ λ

√
Q̃2

[
mi
mi j

(v + λa) + m j
mi j

(v − λa)

]

0 λ −λ

(v − λa)

[
2mi j

√
z(1 − z) − m2

i

mi j

√
1 − z

z

− m2
j

mi j

√
z

1 − z

]
+ (v + λa)

mim j

mi j

1√
z(1 − z)

Table 3 Branching amplitudes for vector boson emission off a vector
boson

λI λi λ j V → V ′V ′′ × gV

λ λ λ
√

2λ

√
Q̃2

√
1

z(1−z)

λ λ −λ
√

2λ

√
Q̃2z

√
z

1−z

λ −λ λ
√

2λ

√
Q̃2(1 − z)

√
1−z
z

λ −λ −λ 0

0 λ λ 0

0 λ −λ mi j (2z − 1) + m2
j

mi j
− m2

i
mi j

λ 0 λ mi

(
1 + 2 1−z

z

)
+ m2

j
mi

− m2
i j

mi

λ 0 −λ 0

λ λ 0 m j

(
1 + 2 z

1−z

)
+ m2

i
m j

− m2
i j

m j

λ −λ 0 0

λ 0 0 λ√
2

m2
i +m2

j−m2
i j

mim j

√
Q̃2

√
z(1 − z)

0 λ 0 λ√
2

m2
i j+m2

j−m2
i

mi j m j

√
Q̃2

√
1−z
z

0 0 λ λ√
2

m2
i j+m2

i −m2
j

mi j mi

√
Q̃2

√
z

1−z

0 0 0

1

2

m3
i j

mim j
(2z − 1) − m3

i

mi jm j

(
1

2
+ 1 − z

z

)

+ m3
j

mi jmi

(
1

2
+ z

1 − z

)
+ mim j

mi j

(
1 − z

z
− z

1 − z

)

+ mi jmi

m j
(1 − z)

(
2 + 1 − z

z

)
− mi jm j

mi
z

(
2 + z

1 − z

)

Table 4 Branching amplitudes for Higgs emission off (anti)fermions

λI λi ( f → f h and f̄ → f̄ h) × e
2sw

m f
mw

λ λ m f

[√
z + 1√

z

]

λ −λ
√

1 − z
√
Q̃2
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Table 5 Branching amplitudes for Higgs splitting to fermions

λi λ j h → f f̄ × e
2sw

m f
mw

λ λ

√
Q̃2

λ −λ m f

[√
1−z
z −

√
z

1−z

]

Table 6 Branching amplitudes for Higgs emission off a vector boson

λI λi V → Vh × gh

λ λ −1

λ −λ 0

0 λ 1
mi j

λ√
2

√
Q̃2

√
z(1 − z)

λ 0 1
mi

λ√
2

√
Q̃2

√
1−z
z

0 0 1
2
m2

j

m2
i

+ 1−z
z + z

Table 7 Branching amplitudes for Higgs splitting to vector bosons

λi λi h → VV × gV

λ λ 0

λ −λ −1

0 λ 1
mi

λ√
2

√
Q̃2

√
1−z
z

λ 0 1
m j

λ√
2

√
Q̃2

√
z

1−z

0 0 1
2
m2
i j

m2
i

− 1 − 1−z
z − z

1−z

for gluon emission and reproduce the mass contributions to
the eikonal factor in the soft limit. For W and Z emission,
a vector boson mass correction is also present. In case of a
transverse emission with a spin flip, the splitting functions
are suppressed with a relative factor m2/Q2, where m may
the the vector boson mass or either of the fermion masses.
Again, similar mass corrections appear in QCD [58], and
cause such modes to be suppressed at off-shellness Q2 much
larger than the electroweak scale.

The splitting function for longitudinal vector boson emis-
sion with a spin flip behaves like the scalar splitting
function

Pf → f ϕ ∝ (1 − z). (29)

In the unbroken Standard Model, this splitting mode indeed
corresponds with the emission of a Goldstone boson, and the
proportionality constant is given by the Yukawa coupling to
the Goldstone. The spin flip mode is in this case not mass
suppressed, reflecting the behaviour of scalar emissions in
the unbroken phase. On the other hand, the mode without
spin flip is mass suppressed, and terms that scale as 1/m j

appear, originating from the scalar piece of the longitudinal
polarization, as well as terms that scale as m j , corresponding
with the vector piece.

5 The electroweak shower implementation

We use the branching kernels computed in the previous sec-
tion to implement an electroweak shower in the Vincia frame-
work, which was set out in [33–37,59–61]. Here we first pro-
vide a brief summary before continuing with a description of
some details specific to the electroweak shower.

Parton showers are constructed as a Markov chain of emis-
sions that are distributed according to an approximation to
the radiative matrix element and an associated Sudakov factor
[62]. In most modern showers, these branchings are kinemat-
ically modelled as 2 → 3 processes while the dynamics vary
according to the shower model. If both branching partons are
in the final state, momenta are labelled as I, K → i, j, k, and
the Vincia shower approximation to the matrix element may
be written as

|Mn+1|2dΦn+1 = |Mn|2dΦn × a(si j , s jk) dΦant, (30)

where

dΦFF
ant = 1

16π2 m
2
I Kλ− 1

2 (m2
I K ,m2

I ,m
2
K )dsi j ds jk

dϕ

2π
, (31)

where si j = 2pi ·p j and λ is the Källén function. Equa-
tion (31) represents an exact factorization of the radia-
tive phase space. An associated kinematic map is defined
between the pre-branching and post-branching momenta that
conserves total momentum and is soft- and collinear-safe
[59]. The branching kernels are so-called antenna functions
a(si j , s jk) that capture the leading collinear and soft singular-
ities associated with QCD emissions. The equivalent expres-
sions to Eq. (30) for radiation from the initial state, as well as
the definition of the kinematic maps, may be found in [60]. In
the electroweak sector, we instead use the branching kernels
computed in Sect. 3. These kernels contain the correct sin-
gular behaviour in the soft-collinear and collinear limits, and
are simultaneously usable for the treatment of bosonic inter-
ference effects and recoiler selection to be discussed below.

Vincia supports QCD evolution of partons with defi-
nite helicity [36,37], making for a natural framework for
the inclusion of an electroweak shower. Interference effects
between intermediate spin configurations have previously
been incorporated in parton showers, such as in the Herwig
[25,63] parton shower [58] and in Deductor [64,65]. The
Vincia parton shower currently makes no attempt to incor-
porate such interferences, and correspondingly the same is
true for the electroweak sector.
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5.1 Ordering and resonance showers

The electroweak shower includes a number of branchings that
would normally be associated with the decay of resonances
by Pythia [66], for which Vincia is a plugin. In particular, the
Standard Model particles that have such decay-like branch-
ings are Z , W±, Higgs and top quark. With the inclusion of
an electroweak shower, the decay modes of the resonances
are now also all present as shower branchings. The shower
enables highly-energetic resonances to branch and disappear
at scales much higher than their width, where they should
indeed be treated as any other non-resonant particle. At scales
close to the resonance width, the Breit–Wigner character of
the resonance decay should instead dominate the distribution.

Here, we set up a method of matching the parton shower
distribution to a Breit–Wigner smoothly. However, a full-
fledged incorporation of resonance decays at high scales
in the Pythia event generator framework is a much more
involved issue. In the absence of EW shower branchings,
Pythia always associates the scale of a resonance decay with
the width of the resonance. As the widths of all SM reso-
nances are close to ΛQCD, the approach of Pythia is to fac-
torize the QCD shower of the hard scattering from showers
in resonance decay systems. When resonances are instead
able to decay at much larger scales, this approximation is no
longer valid and a more general solution is required.

Most generally, resonances should be allowed to decay at
any scale during the shower evolution of the hard scattering.
Once a decay occurs, a factorized shower in the resonance
system may be performed using Vincia’s resonance shower
described in [61]. Afterwards, the showered decay products
may be joined with the rest of the hard system and the evo-
lution can be continued. As these modifications require sub-
stantal restructuring of both the Pythia and Vincia framework,
they will be treated separately in [67].

Here, we do however proceed to set out the matching of
the EW shower to the Breit–Wigner shape through a simple
sampling procedure. To that end, we must first choose a suit-
able ordering scale. An issue specific to resonance branch-
ings is that there are regions of phase space where the off-
shellness Q2 is negative. As more negative values of off-
shellness should correspond with shorter-lived resonances,
we are led to define an ordering scale

|Q2| = |si j + m2
i + m2

j − m2
i j |, (32)

and equivalent for initial state branchings. For branchings
that are not of the resonant decay type, Q2 is strictly positive
and the ordering scale corresponds to off-shellness ordering,
which indeed regulates the soft-collinear and collinear sin-
gularities.

Note that, even without the presence of EW masses, the
choice of ordering scale is by no means unique and many

shower algorithm employ different functional forms. The
inclusion of EW scale masses leads to further ambiguities,
since the virtuality or transverse momentum of the branch-
ing is not the only scale considered to be small in the quasi-
collinear limit. In [27] the effects of shifting the ordering
scale to account for the presence of gauge boson masses
were found to lead to essentially identical results, motivating
Eq. (32) as it leads to simpler matching to the Breit–Wigner
shape.

For most types of non-resonant electroweak branchings
the phase space is naturally cut off due to the masses of
the post-branching momenta. Beyond resonance branchings,
photon emission is the only remaining branching that is not
cut off naturally. They are instead cut off at the same scale
as the QCD shower approximately equal to ΛQCD, and QED
radiation at lower scales is included as is described in [57].

We set up the Breit–Wigner distribution by making the
replacement

1

Q4 → 1

Q4 + m2Γ 2 , (33)

in the relevant branching kernels computed in Sect. 3, where
Γ is the width of the resonance. These kernels are then nor-
malized to represent a probability distribution from which
off-shellness scales, kinematics and post-branching spin
states may be sampled. Because the ordering scale of the
shower is given by Eq. (32), it is straightforward to define
a matching scale |Q2

Match| where the shower is matched to
the Breit–Wigner. However, while it may be possible to pick
the matching scale to ensure the distribution is continuous,
it will in general not be smooth. Furthermore, the shape of
the shower distribution at scales close to the resonance width
depends on the starting scale and the antenna mass, so such a
choice would in any case not always be continuous. We thus
ensure the distribution is smooth by sampling the value of
the matching scale for every resonance from the distribution

P(|Q2
Match|) ∝ m2Γ 2|Q2

Match|
(Q4

Match + m2Γ 2)2
. (34)

The shower contribution to the off-shellness spectrum is then
effectively multiplied by a factor

∫ |Q2|

0
d|Q2

Match|P(|Q2
Match|) = Q4

Q4 + m2Γ 2 , (35)

which ensures a smooth suppression of the shower kernel.
In this treatment, the total distribution is dominated by the
shower at hight scales, while the Breit–Wigner dominates at
low scales.

The implementation within the parton shower framework
is relatively straightforward. When a shower of a resonance is

123



980 Page 8 of 23 Eur. Phys. J. C (2020) 80 :980

initiated, a matching scale |Q2
Match| is sampled from Eq. (34),

serving as a local cutoff scale. If during showering the branch-
ing scale drops below the matching scale, a new off-shellness
scale is instead drawn from the Breit–Wigner distribution.
We emphasize that this solution serves as an approximate
means of matching the shower to a Breit–Wigner, and a more
sophisticated method that closely matches that of Pythia will
be developed in [67].

5.2 Recoiler selection

While in the QCD portion of the Vincia shower the colour
structure dictates the pairings of branching partons I and K ,
no such guidance exists in the electroweak sector. Further-
more, the branching kernels only describe the soft-collinear
and collinear singularities associated with the branching of
particle I . The choice of recoiler K does not contribute to
the accuracy of the shower in these limits. It may however
be chosen probabilistically to minimize the physical conse-
quences of the recoil on previously generated branchings.
For the branching of particle i , the probability to select a
spectator j from a pool of N available ones is

Pi j =
∣∣Mx→i j

∣∣2

∑N
j ′=1

∣∣Mx→i j ′
∣∣2 . (36)

That is, all candidate spectators j have a probability to be
assigned as a recoiler for particle i if the pair i, j may have
been produced by an electroweak branching. All of the con-
tributions in the denominator of Eq. (36) thus correspond
with possible shower histories that contribute to the current
state. The selection of a spectator is then more likely if the
shower history where the current brancher and that spectator
were created by a previous branching.

We clarify the choice of Eq. (36) through an example,
which may be expressed in terms of diagrams as

(37)

The spectator for the splitting of the vector boson is chosen
to be either of the other external legs based on the proba-
bilities that the vector boson was emitted by either of those
legs. When the vector boson splits, it is brought off its mass
shell by transferring some momentum of the spectator to

the vector boson. Because the vector boson momentum is
modified, the emission kernel that it was produced with is
no longer correct. In the strong-ordering phase space region
where Q2

emit � Q2
split this type of mismodelling is absent.

However, the shower covers all of phase space, including
regions where the scales Q2

emit > Q2
split are of comparable

size. Recoil effects of previous brancings may be especially
relevant for branchings that involve masses of the order of
the electroweak scale.

The Vincia 2 → 3 kinematic map conserves the invariant
mass of the original two-particle system. This means that the
probability of Eq. (36) ensures the propagator structure of
the emitter and vector boson pair that was most important
in the emission process is most often conserved. Note that a
similar procedure has in the past been used to select a recoiler
for gluon splitting [55,59], which also features only collinear
singularities. In [32] this effect is referred to as ‘kinematic
back-reactions‘ and is accounted for as a multiplicative factor
of the branching kernels.

5.3 Bosonic interference

A unique type of interference effect appears in the elec-
troweak sector due to the existence of multiple neutrally
charged bosons [68]. It is possible to treat such interfer-
ence effects comprehensively by evolving density matrices
that contain mixed states of neutral bosons [32], but such
procedures quickly become computationally prohibitive. We
instead opt for a simpler approach that incorporates the most
imporant physical effects while preventing the shower to
become a bottleneck in the Monte Carlo event generation
chain [69].

Interference between neutral bosons occurs when the elec-
troweak shower produces a neutral boson, and it subsequently
disappears by splitting. The heavy neutral bosons will always
split due to the matching to a Breit–Wigner distribution
described in Sect. 5.1, but photons may survive the show-
ering procedure. As such, interference effects are corrected
for by applying an event weight

wBI =
∑
x

|Mx→x ′b1 Mb1→i j + Mx→x ′b2 Mb2→i j |2
|Mx→x ′b1 Mb1→i j |2 + |Mx→x ′b2 Mb2→i j |2 (38)

after the splitting, where we have dropped the helicity indices
for readability. Equation (38) corrects the branching kernels
for the interference between two bosons b1 and b2. These
bosons may be either a photon and a transversely polarized
Z boson, or a Higgs boson and a longitudinally polarized
Z boson. Interference between spin states is not taken into
account in correspondence with the rest of the shower algo-
rithm. The weight of Eq. (38) then sums over all possible
emitters x of the bosons b1 and b2, accounting for all possible
shower histories. This includes the different spin states of the
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same particle, but note that these contributions are summed
over incoherently. The weight has the property 0 ≤ wBI ≤ 2,
and since the overal rate of electroweak boson emissions is
moderate even at high energies, there is little danger of wildly
fluctuating weights leading to inefficiencies.

5.4 Overestimate determination

The implementation of electroweak radiation in the shower
formalism through the Sudakov veto algorithm [70–72]
requires finding overestimates of the associated branching
kernels. Due to the large number of types of branchings in
the electroweak sector, it is desirable to automate this proce-
dure.

For final-state particles with an electroweak charge, a
recoiler is selected through the procedure outlined in Sect.
5.2. The branching phase space is then given by Eq. (31). All
final-state electroweak branching kernels are overestimated
by a parameterized function

OFF = cFF
1

1

|Q2| + cFF
2

1

|Q2|
EI K (EI K + | �pI K |)
si j + sik + m2

i

+ cFF
3

1

|Q2|
EI K (EI K + | �pI K |)
si j + s jk + m2

j

+ cFF
4

m2
I

Q4 , (39)

where |Q2| is given by Eq. (32). The term multiplying
cFF

1 reflects the 1/|Q2| behaviour of most branching ker-
nels, while the second and third terms incorporate the soft
behaviour associated with vector boson emission, contain-
ing ratios EI K /Ei ∼ 1/z and EI K /E j ∼ 1/(1 − z) in terms
of shower variables. The term multiplying cFF

4 represents the
mass corrections that may be present for massive branchers.
The contribution of post-branching masses are typically neg-
ative, and therefore do not improve the overestimate much.

Initial-state branchings are only allowed to recoil against
other initial states. In this case, the antenna phase space is

dΦII
ant = 1

16π2

x2
A

x2
a

x2
B

x2
b

1

sAB
dsaj dsbj

dϕ

2π
, (40)

where A branches to a and j , and B is the recoiler. The
electroweak shower currently only implements vector boson
emission from fermions in the initial state, which are treated
as massless by Vincia. The ordering scale is crossed into the
initial state to give

Q2 = saj − m2
j . (41)

An absolute value qualification is not required here since
resonance type branchings do not occur in the initial state. A

sufficient overestimate is

OII = cII
1

1

Q2

sab
sAB

+ cII
2

1

Q2

x2
As

2
ab

xAsbj (sab − sbj ) + xBsaj (sab − saj )
. (42)

The factor sab/sAB accounts for the additional factor of 1/z
that shows up in the Altarelli–Parisi splitting kernels when
crossed to the initial state. The second term represents the
soft enhancement 1/(1− z) that may appear for vector boson
emissions.

The parameters cFF
1 through cFF

4 , cII
1 and cII

2 are automat-
ically determined for all possible branchings in the elec-
troweak shower. To do that, brancher-recoiler pairs are gener-
ated from antennae with randomly chosen invariant masses.
Branchings are then generated with a distribution 1/|Q2| for
the final state or sab/sAB 1/Q2 for the initial state to roughly
model the branching kernel behaviour. For every event i , the
value of the branching kernel Bi as well as the terms Ai j mul-
tiplying the parameters c j are stored. The problem of finding
suitable values for the overestimate parameters can then be
formulated as

Minimize
n∑

i=1

(Ac)i − Bi

subject to (Ac)i ≥ Bi and c ≥ 0. (43)

The minimization condition minimizes the average differ-
ence between the branching kernel and its overestimate. The
constraints ensure the overestimate is larger than the branch-
ing kernel for all samples and the parameters are positive
definite. Equation (43) is an instance of a linear program-
ming problem, for which many libraries are available. We
make use of the Python [73] package PuLP [74].

5.5 Overview of the shower algorithm

We conclude this section with a short description of the com-
plete shower algorithm. Branching kernels are constructed
using the formalism described in Sect. 3 for all possible elec-
troweak branchings and all helicity configurations. Overesti-
mates are found using the optimization algorithm of Sect. 5.4,
where the post-branching helicities are summed over. This
leaves a total of 277 types of final-state branchings, of which
74 are resonance decays, and 90 types of initial-state branch-
ings.

As the shower initializes, a recoiler is selected for all final-
state particles that have electroweak charge, making use of
the selection probability described in Sect. 5.2. Initial-state
branchers are always paired with the other initial-state parti-
cle, recoiling against the entire event.
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Fig. 1 Branching spectra of a 1 TeV τ− to τγ (left) and τ Z and ντW− (right)

While the shower runs, electroweak branchings compete
against the QCD branchings generated by Vincia. The over-
estimates are used to generate trial branchings which are
accepted or rejected through the usual Sudakov veto algo-
rithm. For resonance decay branchings, the procedure out-
lined in Sect. 5.1 is used to match the shower to a Breit–
Wigner distribution. We make use of the same kinematic
maps as Vincia, and first-order running of the electroweak
coupling constant is incorporated as part of the veto proce-
dure. Wherever applicable, the bosonic interference weight
Eq. (38) is included. After accepting a branching, a helicity
state is selected with probability

PλI ,λi ,λ j = BλI ,λi ,λ j (pI , pi , p j )∑
λi ,λ j

BλI ,λi ,λ j (pI , pi , p j )
, (44)

and equivalent for resonance decay branchings. The QCD
shower and the electroweak shower run interleaved until the
QCD cutoff scale is reached, after which only QED radiation
is simulated.

6 Results

The inclusion of electroweak radiation in parton showers
opens up a rich field of showering phenomena, in particular at
energies well above the electroweak scale. Rather than con-
sidering specific sets of observables for specific processes, in
this section we first consider radiation spectra of several par-
ticles at energies compatible with future colliders, showing
overal branching rates of the electroweak shower, the rela-

tive importance of the large number of emission modes and
the effects of bosonic interference. We conclude by showing
results for hadron collision processes at LHC energies and
comparing with the Pythia electroweak shower [27].

6.1 Branching spectra

In this section, we show electroweak branching spectra of
several highly energetic particles as a function of the invari-
ant mass, which closely corresponds with the ordering scale.
Figures 1, 2, 3 and 4 show this for the first branching of a
left-handed τ and top, a transverse W+ boson and a Higgs.
Note that multiple emission rates are related to these sin-
gle branching spectra through the usual generalized Poisson
statistics associated with shower algorithms due to the mul-
tiplicative property of the Sudakov factor.1 All particles are
produced at an energy of 1 TeV together with a recoiler that is
uncharged under electroweak interactions. For photon emis-
sions, a cutoff around ΛQCD is imposed. All other branch-
ings are automatically regulated by the particle masses or by
matching to the Breit–Wigner distribution.

Figure 1 shows the branching spectrum of a negative-
helicity τ . The two dominant photon production channels
are those where the τ helicity is conserved. The mass-
suppressed spin-flip mode only contributes at very small
invariant masses, as is to be expected from the branching
kernel behaviour of m2

τ /Q
4. The other spin-flip mode is

highly suppressed in the collinear limit as is indicated in

1 Although the equivalence is not exact due to recoiler effects and the
favour-changing nature of many electroweak branchings.
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Fig. 2 Branching spectra of a 1 TeV top quark to bW+ (left), t Z (right) and tγ /h (bottom)

Table 1. For the emission of other vector bosons, the spin-flip
contributions do not become sufficiently enhanced to show
up before the kinematic limit is reached. The longitudinal
vector boson emission channels have a characteristic form
which looks very similar for the W−

0 and the Z0 channels,
and which becomes comparable to the transverse channels at
scales close to the kinematic limit.

Figure 2 shows the branching spectrum of a negative-
helicity top. The left graph displays the resonance branchings
as generated by the sampled matching procedure outlined in
Sect. 5.1. The right and bottom graphs show all other branch-

ings that are not of the resonance decay type. Spin-flip modes
now show up for t → bW+, t → t Z and t → tγ due to
the large top mass, and they show the expected m2

t /Q
4 scal-

ing with the emission scale. The ‘natural‘ mode of spin-flip
Higgs emission is relatively flat compared with the fermion
mass scaling mode of Higgs emission without spin flip.

Figure 3 shows the branching spectrum of a transverse
W+. Resonance peaks only appear for decays to negative-
helicity states due to their small masses. The branchings
W++ → t b̄ with a spin-flipped top do occur on the other
hand. The W++ → W+Z and W+− → W+γ channels are
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Fig. 3 Branching spectra of a 1 TeV W++ to fermions (left), W+Z (right) and W+γ /h (bottom)

dominated by the all-positive helicity configuration because
of its 1/z(1 − z) scaling in the collinear limit as can be seen
in Table 3. The modes to opposite transverse helicities are
almost identical for the W+Z channels due to symmetry in
the collinear limit and almost identical mass, but they are
widely different for low scales in the W+γ channels. This is
caused by the z3/(1−z) and (1−z)3/z scaling of the collinear
limits, where the photon can attain a very small collinear
momentum fraction while that of the W+ is constrained by
its mass. The single-longitudinal channels in W+Z are also
almost identical for very similar reasons. The W+

0 Z0 is a

mode that is related to the Goldstone bosonic part of the W+
and Z , and it can be seen to be very similar to the W+

0 h
channel. On the other hand, the W++ h mode differs signifi-
cantly from the W++ Z0 channel because it is dominated by
the vectorial part of the longitudinal polarization.

Figure 4 shows the branching spectrum of a Higgs. The
only significant resonance decay channels are b±b̄± and
τ±τ̄± as may be expected due to the coupling to the fermion
mass and the Higgs spin zero nature. On the other hand,
the mass-suppressed t± t̄∓ channel is comparable with the
natural t± t̄± channel. All channels to W+W− and Z Z are
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Fig. 4 Branching spectra of a 1 TeV Higgs boson to fermions (left) and VV/hh (right)

almost identical since their branching kernels only differ in
the gauge boson mass and a factor of 1/cw in the coupling.
Also included is the h → hh cubic Higgs coupling which is
proportional to the Higgs mass mh , or equivalently the Higgs
self-coupling λ. This is the only branching where it makes
an appearance, and it can be seen to provide a significant
contribution to the total branching rate.

6.2 Bosonic interference

We now consider the effect of the application of the bosonic
interference factor described in Sect. 5.3. Figure 5 shows
rates for the shower histories e− → e−γ /ZT → e−X and
e+ → e+γ /ZT → e+X using a similar setup as in the
previous subsection, but starting from a 10 TeV source elec-
tron. Multiple interesting features appear when the bosonic
interference weight Eq. (38) is included. The most striking
difference occurs for the W+W− channel, where the bosonic
interference causes an increase in case of the e−, but a major
decrease in case of the e+. This may be understood by consid-
ering the structure of the interfering branching amplitudes.
Factoring out coupling constants and other kinematic com-
ponents, the interference is proportional to

1

M2
WW

+ cw

sw

1

4swcw

(1 − 4s2
w − λe)

1

M2
WW − m2

z + imzΓz
,

(45)

where the factor cw/sw comes from the ZWW -coupling and
λe is the electron helicity. The second term in brackets inter-

feres destructively with the photon contribution for suffi-
ciently large values of MWW , and the remaining terms in
the Z contribution cancel for λ = 1.

The effects of the bosonic interference factor on charged
fermion rates close to the Z peak may be understood through
a similar argument. The rates close to the Z peak are signifi-
cantly affected by the simplified and preliminary method of
matching to resonance decays as described in Sect. 5.1, and
will be improved upon in [67].

6.3 Electroweak corrections to proton collision processes

We finally consider the parton shower predictions of elec-
troweak corrections to some common proton collision pro-
cesses at LHC energies and compare with the Pythia elec-
troweak shower [27]. Since the weak vector bosons produced
by the electroweak shower at high energies are massive and
thus observable, they may provide a rich environment for
phenomenological studies including kinematic effects on the
hard scattering, jet substructure due to vector boson decay
inside jet cones and external high-energy jet and lepton pro-
duction.

With the goal of examining the general significance of
electroweak Sudakov effects in common LHC processes,
we generate dijet and W+ plus jet events at

√
s = 14

TeV using the default tune of Pythia 8.2 [23] and the
NNPDF2.3 sets [75]. Figure 6 shows the approximate elec-
troweak virtual corrections as predicted by the Pythia elec-
troweak shower, which only incorporates vector boson emis-
sion from fermions, and the Vincia electroweak shower as a
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(right) the bosonic interference correction. The showers are initiated from a 10 TeV electron with a neutral recoiler

function of the transverse momentum of the hard scattering.
The virtual corrections may be estimated by counting the
events that contain at least one weak vector boson emission.
The probability for the shower to produce no additional weak
bosons is given by the Sudakov factor

ΔEW = 1 − O(α), (46)

and thus the O(α) corrections are given by the probability
for at least one weak boson emission. Virtual corrections to
these processes were calculated in for example [14,15] for

exclusive dijet production and in [17,18] for vector boson
production.

For dijet production, the results of the showers are very
similar. In the case of W+ plus jet production the sub-
stantial difference between the showers is caused by the
absence of the Yang–Mills vector boson coupling in the
Pythia shower. Furthermore, we find that the contribution
to the weak boson emission rates of the initial-state quarks
is significantly smaller than that of the final state. Because at
large x and high scales the PDFs are predominantly quark-
like and the hard scattering is dominated by qq̄ ′ → W+g,
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and the phase space for initial state radiation is small at large
x , virtual corrections decrease at large values of transverse
momentum.

Also shown in Fig. 6 are the results of interleaving the
electroweak shower with the QCD showers of Pythia and
Vincia. In the strongly ordered limit shower branchings are
unaffected by subsequent branchings, but subleading effects
due to the kinematics and the creation of weakly charged
quarks still lead to minor differences.

Figure 7 shows the average number of weak boson emis-
sions of the showers. In W+ plus jet production the first
purely vector boson branching is always W+ → W+Z
explaining the large increase in the Z boson emission rates.
Similarly, Pythia’sW+ rate is small since the final-state quark
is always down-type. The increase in the Vincia shower is
thus caused entirely by secondary emissions from prior weak
vector boson emissions.

7 Conclusion and discussion

The effects of weak corrections in parton shower algorithms
are known to become significant already at LHC energies, in
particular with the upcoming luminosity upgrade, and will be
even more relevant at future colliders. One of the major chal-
lenges of the construction of such a shower is the calculation
of the relevant branching kernels, which in this paper was
done using the spinor-helicity formalism. Compared with
QCD, the electroweak theory involves many theoretical sub-
tleties that have to be handled carefully. One major issue is
the chiral nature of the electroweak theory, which forces the
shower to be helicity-dependent and leads to a large num-
ber of possible types of branchings. In particular, the scalar
components of longitudinal polarizations lead to unphysi-
cal, unitarity-violating contributions that have to be treated
carefully. The collinear limits of the computed branching
kernels are found to be in agreement with the results of [32].
The electroweak shower also includes many branchings that
would usually be considered to be decays of resonances, in
which case the distribution follows a Breit–Wigner peak. A
strategy to match the parton shower to a resonance decay was
proposed, but this may likely be improved upon by a better
understanding of the interplay between the virtual correc-
tions contained in the Sudakov factor and the decay width.
A more sophisticated treatment of this matching is beyond
the scope of this paper, and will be the topic of future study
[67]. Further electroweak effects added to the shower include
a recoiler selection procedure that compensated for recoiler
effects of previous branchings and treatment of bosonic inter-
ference effects. Results were shown that quantify the general
size of electroweak shower corrections at future collider ener-
gies and at LHC energies.

Several features that are currently lacking from the elec-
troweak shower were already pointed out. They include top-
ics such as soft and spin interference effects, although such
issues have similarly not been fully solved in the QCD sec-
tor of commonly used shower codes. However, further issues
particular to the electroweak sector still remain. One is the
inclusion of the CKM quark-mixing matrix [76–78], which
would lead to an even larger number of possible electroweak
branchings. The impact of the CKM matrix is however not
expected to be large since the off-diagonal terms of the third-
generation row and column are close to zero. The other off-
diagonal terms are not as small, but they mix quarks that are
treated as massless in Vincia anyway.

One other peculiar property of the electroweak theory is
the appearance of Bloch–Nordsieck violation [10,79]. The
parton shower formalism is fundamentally based on the prin-
ciple of unitarity and the cancellation of infrared divergences
between real and virtual corrections. Since the electroweak
vector bosons are massive, divergences associated with their
emission are mass-regulated. The flavour-changing nature
of W -boson emission from the initial state spoils the exact
cancellation of the infrared divergences and some mass-
regulated logarithms may be left-over.

There is no straightforward method to incorporate these
violations in the shower formalism, since they explicitly
break unitarity. We note that, while Bloch–Nordsieck vio-
lations are not particularly significant at the LHC [10,15],
they will be important at future collider energies and a com-
prehensive treatment will be necessary.

Finally, hard processes initiated by vector bosons have
been considered for a long time [80,81]. PDF sets with QED
corrections have been available for some time [82–85], and
recent progress was made towards PDFs with complete elec-
troweak corrections [86–88]. The current shower implemen-
tation only allows for the emission of vector bosons from the
initial state. The calculation of the other required initial-state
branching kernels is in principle as straightforward as the
calculation of those available already, but an implementation
in the Pythia framework is likely not simple.
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Appendix A: Relevant Feynman rules of the electroweak
theory

This appendix lists the Feynman rules of the electroweak the-
ory that are relevant for the calculation of branching ampli-
tudes. We elect to make use of a practical notation for the
electroweak Feynman rules which makes for simpler results,
but obfuscates some of the underlying group structure. The
relevant vertex interactions are given in Fig. 8, where

Y (p1, μ, p2, ν, p3, α) = (p1 − p2)
αgμν + (p2 − p3)

μgνα

+ (p3 − p1)
νgμα (A.1)

is the Yang–Mills vertex. As usual, the weak mixing angle is
defined as

cw ≡ cos θw = mW

mZ
sw ≡ sin θw. (A.2)

The coupling constants are defined in Table 8.

Appendix B: Branching amplitudes

All branching amplitudes are multiplied by a propagator fac-
tor 1/Q2 where

Q2 =
{

2pi ·p j + m2
i + m2

j − m2
i j (Final State)

2pa ·p j − m2
j (Initial State).

(B.3)

Appendix B.1: Vector boson emission

We define the prefactors

Aemit⊥ = 1

2
√

2

λ√
pi ·ki

√
pi j ·ki j p j ·k j

Aemit
L = 1

2

1

m j

1√
pi ·ki

√
pi j ·ki j

. (B.4)

Appendix B.1.1: Vector boson emission from Fermion

M f → f ′V (λ, λ, λ) = Aemit⊥

f ′f

V

= i(v + aγ5)γμ

ff

h

= i
e

2sw

mf

mW

V2h

V1

= ighgμν

hh

h

= −i
3
2

m2
h

mwsw
.

V2V3

V1

pμ
1

pν
2pα

3
= igV Y (p1, μ, p2, ν, p3, α)

Fig. 8 The vertex interactions of the electroweak theory

×
[
(v − λa)S−λ(ki , pi , p j , k j )S−λ(k j , pi j , ki j )

+ (v + λa)mimi j S−λ(ki , k j )S−λ(k j , p j , ki j )

]

M f → f ′V (λ, λ,−λ) = Aemit⊥

×
[
(v − λa)S−λ(ki , pi , k j )S−λ(k j , p j , pi j , ki j )
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Table 8 Values of the coupling
constants

v a gV

γ W Z γ W Z WWγ −e

d −1
3 e −e√

8sw

−e
4swcw

1− 4
3 s2w

)
0 −e√

8sw

−e
4swcw

WWZ −e cw
sw

u 2
3 e −e√

8sw

e
4swcw

1− 8
3 s2w

)
0 −e√

8sw

e
4swcw

gh

e −e −e√
8sw

−e
4swcw

(1− 4s2w) 0 −e√
8sw

−e
4swcw

hWW −e mw
sw

ν 0 −e√
8sw

e
4swcw

0 −e√
8sw

e
4swcw

hZZ −e mw
sw

+ (v + λa)mimi j S−λ(ki , p j , k j )S−λ(k j , ki j )

]

M f → f ′V (λ,−λ, λ) = Aemit⊥

×
[
mi j (v + λa)Sλ(ki , pi , k j )S−λ(k j , p j , ki j )

− mi (v − λa)Sλ(ki , p j , k j )S−λ(k j , pi j , ki j )

]

M f → f ′V (λ,−λ,−λ) = Aemit⊥

×
[
mi j (v + λa)Sλ(ki , pi , p j , k j )Sλ(k j , ki j )

− mi (v − λa)Sλ(ki , k j )Sλ(k j , p j , pi j , ki j )

]

M f → f ′V (λ, λ, 0) = Aemit
L

×
[
S−λ(ki , (v − λa)(m2

i j pi − m2
i pi j )

+ (v + λa)mimi j p j , ki j )

− m2
j

p j ·k j
(

(v − λa)S−λ(ki , pi , k j , pi j , ki j )

+ (v + λa)mi jmi S−λ(ki , k j , ki j )

)]

M f → f ′V (λ,−λ, 0) = Aemit
L

×
[
mi (v − λa)S−λ(ki , p j − m2

j

p j ·k j k j , pi j , ki j )

+ mi j (v + λa)S−λ(ki , pi , p j − m2
j

p j ·k j k j , ki j )
]

Appendix B.1.2: Vector boson emission from antifermion

M f̄ → f̄ ′V (λ, λ, λ) = Aemit⊥

×
[
(v + λa)Sλ(ki j , pi j , k j )S−λ(k j , p j , pi , ki )

+ (v − λa)mimi j Sλ(ki j , p j , k j )S−λ(k j , ki )

]

M f̄ → f̄ ′V (λ, λ,−λ) = Aemit⊥

×
[
(v + λa)Sλ(ki j , p j , k j )S−λ(k j , pi , ki )

+ (v − λa)mimi j Sλ(ki j , k j )S−λ(k j , pi , ki )

]

M f̄ → f̄ ′V (λ,−λ, λ) = Aemit⊥

×
[
mi j (v − λa)Sλ(ki j , p j , k j )S−λ(k j , pi , ki )

− mi (v + λa)Sλ(ki j , pi j , k j )S−λ(k j , p j , ki )

]

M f̄ → f̄ ′V (λ,−λ,−λ) = Aemit⊥

×
[
mi j (v − λa)Sλ(ki j , k j )S−λ(k j , p j , pi , ki )

− mi (v + λa)Sλ(ki j , pi j , p j , k j )S−λ(k j , ki )

]

M f̄ → f̄ ′V (λ, λ, 0) = Aemit
L

×
[
Sλ(ki j , (v + λa)(m2

i j pi − m2
i pi j )

+ (v − λa)mi jmi p j , ki )

− m2
j

p j ·k j
(

(v + λa)Sλ(ki j , pi j , k j , pi , ki )

+ (v − λa)mi jmi Sλ(ki j , k j , ki )

)]

M f̄ → f̄ ′V (λ,−λ, 0) = Aemit
L

×
[
mi (v + λa)Sλ(ki j , pi j , p j − m2

j

p j ·k j k j , ki )

+ mi j (v − λa)Sλ(ki j , p j − m2
j

p j ·k j k j , pi , ki )
]

(B.5)

Appendix B.1.3: Vector boson emission from vector boson

The branching amplitude can be written as

MV → V′V′′(λi j , λi , λ j )

= −2gV
(
p j ·εi ε j ·ε̄i j − pi ·ε j εi ·ε̄i j + pi ·ε̄i j εi ·ε j

)
(B.6)
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To compute the branching amplitude for all helicity config-
urations, we write out all possible products of momenta and
polarization vectors

ελ(pa)·ελ(pb)

= −1

4

1

pa ·ka pb·kb S−λ(ka, pa, pb, kb)Sλ(kb, ka)

ελ(pa)·ε−λ(pb)

= −1

4

1

pa ·ka pb·kb Sλ(ka, pa, kb)S−λ(ka, pb, kb)

ελ(pa)·ε0(pb)

= λ

2
√

2

1

mb

1

pa ·ka
(
S−λ(ka, pa, pb, ka)

− mb

pb·kb S−λ(ka, pa, kb, ka)

)

ε0(pa)·ε0(pb)

= 1

mamb

(
pa ·pb − ma

pa ·ka ka

− mb

pb·kb kb + ma

pa ·ka
mb

pb·kb ka ·kb
)

ελ(pa)·pb
= λ√

2

1

pa ·ka S−λ(ka, pa, pb, ka)

ε0(pa)·pb
= 1

ma

(
pa ·pb − m2

a

pa ·ka
)

(B.7)

The unitarity-violating terms are then removed by the sub-
stitutions

2pi ·p j → m2
i j − m2

i − m2
j

2pi j ·pi → m2
i j + m2

i − m2
j

2pi j ·p j → m2
i j − m2

i + m2
j (B.8)

The same substitutions are used in the computation of ampli-
tudes involving a Higgs and two vector bosons, where similar
products of polarization vectors occur.

Appendix B.2: Higgs emission

Appendix B.2.1: Higgs emission from Fermion

M f → f h(λ, −λ, h) = e

4sw

mi

mw

1√
pi j ·ki j

√
pi ·ki

×
[
S−λ(ki , pi , pi j , ki j ) + m2

i S−λ(ki , ki j )

]

M f→ f h(λ, λ, h) = e

4sw

m2
i

mw

1√
pi j ·ki j

√
pi ·ki

× S−λ(ki , pi + pi j , ki j ) (B.9)

Appendix B.2.2: Higgs emission from antifermion

M f̄ → f̄ h(λ, −λ, h) = e

4sw

mi

mw

1√
pi j ·ki j

√
pi ·ki

×
[
Sλ(ki j , pi j , pi , ki ) + m2

i Sλ(ki j , ki )

]

M f̄ → f̄ h(λ, λ, h) = e

4sw

m2
i

mw

1√
pi j ·ki j

√
pi ·ki

× Sλ(ki j , pi + pi j , ki ) (B.10)

Appendix B.2.3: Higgs emission from vector boson

MV→Vh(λ, λ, h) = −gh
4

1

pi j ·ki j pi ·ki
× S−λ(ki j , pi j , ki )S−λ(ki j , pi , ki )

MV→Vh(λ,−λ, h) = −gh
4

1

pi j ·ki j pi ·ki
× S−λ(ki , ki j )S−λ(ki j , pi j , pi , ki )

MV→Vh(0, λ, h) = − gh

2
√

2

1

mi j

λ

pi ·ki
× S−λ(ki , pi , pi j − m2

i j

pi j ·ki j ki j , ki )

MV→Vh(λ, 0, h) = − gh

2
√

2

1

mi

λ

pi j ·ki j
× S−λ(ki j , pi j , pi − m2

i

pi ·ki ki , ki j )

MV→Vh(0, 0, h) = − gh
m2

i j

×
[

1

2
m2

j + m2
i j

(
pi ·ki
pi j ·ki j + p j ·k j

pi ·ki
) ]

(B.11)

Appendix B.2.4: Higgs emission from Higgs

Mh→hh(h, h, h) = 3

2

m2
i j

mwsw
(B.12)
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Appendix B.3: Vector boson splitting

AppendixB.3.1:Vector boson splitting to fermion–antifermion

Defining the prefactors

Asplit
⊥ = − 1

2
√

2

λ

pi j ·ki j√pi ·ki
√
p j ·k j

Asplit
L = 1

2

1

mI

1√
pi ·ki

√
p j ·k j

(B.13)

the branching amplitudes are

MV→ f f̄ (λ, λ,−λ) = Asplit
⊥

×
[
(v − λa)S−λ(ki , pi , ki j )S−λ(ki j , pi j , p j , k j )

+ (v + λa)mim j S−λ(ki , pi j , ki j )S−λ(ki j , k j )

]

MV→ f f̄ (λ,−λ, λ) = Asplit
⊥

×
[
(v + λa)S−λ(ki , pi , pi j , ki j )

+ (v − λa)mim j S−λ(ki , ki j )S−λ(ki j , pi j , k j )

]

MV→ f f̄ (λ, λ, λ) = Asplit
⊥

×
[
(v + λa)mi S−λ(ki , pi j , ki j )S−λ(ki j , p j , k j )

+ (v − λa)m j S−λ(ki , pi , ki j )S−λ(ki j , pi j , k j )

]

MV→ f f̄ (λ,−λ,−λ) = Asplit
⊥

×
[
(v − λa)mi S−λ(ki , ki j )S−λ(ki j , pi j , p j , k j )

+ (v + λa)m j S−λ(ki , pi , pi j , ki j )S−λ(ki j , k j )

]

MV→ f f̄ (0, λ,−λ) = Asplit
L

×
[
S−λ(ki , (v − λa)(m2

i p j + m2
j pi )

− (v + λa)mim j (pi j − m2
i j

pi j ·ki j )ki j , k j )

− m2
i j

pi j ·ki j (v − λa)S−λ(ki , pi , ki j , p j , k j )

]

MV→ f f̄ (0, λ, λ) = Asplit
L

×
[
mi (v + λa)S−λ(ki , pi j − m2

i j

pi j ·ki j ki j , p j , k j )

− m j (v − λa)S−λ(ki , pi , pi j − m2
i j

pi j ·ki j , k j )
]

(B.14)

Appendix B.4: Higgs splitting

Appendix B.4.1: Higgs splitting to fermion–antifermion

M f → f h(λ, λ, h) = e

4sw

mi

mw

1√
pi ·ki

√
p j ·k j

×
[
S−λ(ki , pi , p j , k j ) − m2

i S−λ(ki , k j )

]

M f → f h(λ,−λ, h) = e

4sw

m2
i

mw

1√
pi ·ki

√
p j ·k j

× S−λ(ki , pi − p j , k j ) (B.15)

Appendix B.4.2: Higgs splitting to vector bosons

Mh→VV (h, λ,−λ) = −gh
4

× S−λ(ki , pi , k j )S−λ(ki , p j , k j )

Mh→VV (h, λ, λ) = −gh
4

× S−λ(k j , ki )S−λ(ki , pi , p j , k j )

Mh→VV (h, 0, λ) = − gh

2
√

2

1

mi

λ

p j ·k j
× S−λ(k j , p j , pi − m2

i

pi ·ki ki , k j )

Mh→VV (h, λ, 0) − gh

2
√

2

1

m j

λ

pi ·ki
× = S−λ(ki , pi , p j − m2

j

p j ·kk k j , ki )

Mh→VV (h, 0, 0) = gh
mim j

×
[

1

2

(
m2

i j − m2
i − m2

j

)
− m2

j
pi ·ki
p j ·k j − m2

i
p j ·k j
pi ·ki

]

(B.16)

Appendix B.5: Vector boson emission (Initial State)

Appendix B.5.1: Vector boson emission from Fermion

We define the prefactors

Ãemit⊥ = 1

2
√

2

λ√
pa ·k j

√
paj ·kaj p j ·k j

Ãemit
L = 1

2

1

m j

1√
pa ·ka

√
paj ·kaj

. (B.17)

M f̃ → f̃ ′V (λ, λ, λ) = Ãemit⊥

123



Eur. Phys. J. C (2020) 80 :980 Page 21 of 23 980

×
[
(v − λa)S−λ(kaj , paj , p j , k j )S−λ(k j , pa, ka)

− (v + λa)mamaj S−λ(kaj , k j )S−λ(k j , p j , ka)

]

M f̃ → f̃ ′V (λ, λ,−λ) = Ãemit⊥

×
[
(v − λa)S−λ(kaj , paj , k j )S−λ(k j , p j , pa, k,a)

− (v + λa)mamaj S−λ(kaj , p j , k j )S−λ(k j , ka)

]

M f̃ → f̃ ′V (λ,−λ, λ) = Ãemit⊥

×
[
(v + λa)maj S−λ(kaj , k j )S−λ(k j , p j , pa, ka)

− (v − λa)maS−λ(kaj , paj , p j , k j )S−λ(k j , ka)

]

M f̃ → f̃ ′V (λ,−λ,−λ) = Ãemit⊥

×
[
(v + λa)maj S−λ(kaj , p j , k j )S−λ(k j , pa, ka)

− (v − λa)maS−λ(kaj , paj , k j )S−λ(k j , p j , ka)

]

M f̃ → f̃ ′V (λ, λ, 0) = Ãemit
L

×
[
S−λ(kaj , (v − λa)(m2

a paj − m2
aj pa)

+ (v + λa)mamaj p j , ka)

− m2
j

p j ·k j
(

(v − λa)S−λ(kaj , paj , k j , pa, ka)

− (v + λa)majmaS−λ(kaj , k j , ka)

)]

M f̃ → f̃ ′V (λ,−λ, 0) = Ãemit
L

×
[
maj (v − λa)S−λ(kaj , p j − m2

j

p j ·k j k j , pa, ka)

+ maj (v + λa)S−λ(kaj , paj , p j − m2
j

p j ·k j k j , ka)
]

(B.18)

Appendix B.5.2: Vector boson emission from antifermion

M
˜̄f → ˜̄f ′V (λ, λ, λ) = Ãemit⊥

×
[
(v + λa)Sλ(ka, pa, k j )S−λ(k j , p j paj , kaj )

− (v − λa)mamaj Sλ(ka, p j , k j )S−λ(k j , kaj )

]

M
˜̄f → ˜̄f ′V (λ, λ,−λ) = Ãemit⊥

×
[
(v + λa)Sλ(ka, pa, p j , k j )S−λ(k j , paj , kaj )

− (v − λa)mamaj Sλ(ka, k j )S−λ(k j , p j , ka)

]

M
˜̄f → ˜̄f ′V (λ,−λ, λ) = Ãemit⊥

×
[
(v − λa)maSλ(ka, p j , k j )S−λ(k j , paj , kaj )

− (v + λa)maj Sλ(ka, pa, k j )S−λ(k j , p j , kaj )

]

M
˜̄f → ˜̄f ′V (λ,−λ,−λ) = Ãemit⊥

×
[
(v − λa)maSλ(ka, k j )S−λ(k j , p j , paj , kaj )

− (v + λa)maj Sλ(ka, pa, p j , k j )S−λ(k j , kaj )

]

M
˜̄f → ˜̄f ′V (λ, λ, 0) = Ãemit

L

×
[
Sλ(ka, (v + λa)(m2

a paj − m2
aj pa)

+ (v − λa)mamaj p j , kaj )

− m2
j

p j ·k j
(

(v + λa)Sλ(ka, pa, k j , paj , kaj )

− (v − λa)majmaSλ(ka, k j , kaj )

)]

M
˜̄f → ˜̄f ′V (λ,−λ, 0) = Ãemit

L

×
[
ma(v − λa)Sλ(ka, p j − m2

j

p j ·k j k j , paj , kaj )

+ maj (v + λa)Sλ(ka, pa, p j − m2
j

p j ·k j k j , kaj )
]

(B.19)
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