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Abstract The modified supergravity approach is applied
to describe a formation of Primordial Black Holes (PBHs)
after Starobinsky inflation. Our approach naturally leads to
the two-(scalar)-field attractor-type double inflation, whose
first stage is driven by scalaron and whose second stage is
driven by another scalar field which belongs to a supergrav-
ity multiplet. The scalar potential and the kinetic terms are
derived, the vacua are studied, and the inflationary dynamics
of those two scalars is investigated. We numerically compute
the power spectra and we find the ultra-slow-roll regime lead-
ing to an enhancement (peak) in the scalar power spectrum.
This leads to an efficient formation of PBHs. We estimate
the masses of PBHs and we find their density fraction (as
part of Dark Matter). We show that our modified supergrav-
ity models are in agreement with inflationary observables,
while they predict the PBH masses in a range between 1016

g and 1020 g. In this sense, modified supergravity provides
a natural top-down approach for explaining and unifying the
origin of inflation and the PBHs Dark Matter.

1 Introduction

The prospect that Dark Matter (DM) is composed of Primor-
dial Black Holes (PBHs) is an intriguing and highly moti-
vated alternative to any particle physics explanations such
as Weak Interacting Massive Particles (WIMPs), gravitino
or axion dark matter. Indeed, such a possibility reverses the
strategy for DM phenomenology: DM signals may appear
in cosmological data rather than colliders, direct detection

a e-mail: yermek.a@chula.ac.th (corresponding author)
b e-mail: addazi@scu.edu.cn
c e-mail: ketov@tmu.ac.jp

searches or indirect detection in astroparticle physics. The
idea of PBHs was proposed by Zeldovich and Novikov [1],
and then by Hawking [2] who realized that some primor-
dial density fluctuations may lead to PBH seeds in the early
Universe. There are several mechanisms that may catalyze
the formation of PBHs: (i) gravitational instabilities induced
from scalar fields [3] such as axion-like particles or multi-
field inflation, (ii) bubble-bubble collisions from first order
phase transitions (see Refs. [4–6] for recent discussions), and
(iii) formation of critical topological defects such as cosmic
strings [7] and domain walls [8,9] in the early Universe.

After accretion, some PBHs may survive in the Universe
today and provide candidates for (non-particle) Dark Mat-
ter (DM) [10]. More recently, PBHs attracted considerable
attention in the literature, related to observational progress
in lensing, cosmic rays, and Cosmic Microwave Background
(CMB) radiation, see Refs. [11,12] for a review of observa-
tional constraints on PBHs and their prospects for being a
fraction of or a whole DM.

On the theoretical side, PBHs are considered as a probe
of very high energy physics and quantum gravity “even if
they never formed” [13]. Numerous phenomenological sce-
narios were proposed for PBH formation and, especially, for
PBH generation after inflation in the early Universe, under
the assumption that PBHs contribute to DM (see e.g., Refs.
[14–20] and the references therein). Indeed, the whole PBH
DM case leaves only two limited windows for allowed PBH
masses around either 10−15 or 10−12 of the Solar mass.

Therefore, it is of interest to study a possible theoretical
origin of PBHs at a more fundamental level than General Rel-
ativity (GR) by using string theory, as a candidate for quan-
tum gravity, and supergravity as the first step in that direc-
tion. Moreover, because of the constraints imposed by local
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supersymmetry on possible couplings, a viable description of
PBHs in supergravity may lead to significant discrimination
of phenomenological models of inflation and PBHs.

Due to the absence of large non-Gaussianities and isocur-
vature perturbations in the current observational CMB data
[21], single-field inflationary models were distinguished and
discriminated within the large landscape of inflation mecha-
nisms. The Starobinsky R2 inflation [22] seems to be favored
as the best phenomenological fit. Then a required growth (by
a factor of 107 compared to the CMB amplitude) of the ampli-
tude of fluctuations to be responsible for PBH seeds can be
achieved by modifying the inflaton scalar potential with a
nearly inflection point [23–25]. Details of the PBH produc-
tion after single-field inflation are very much dependent upon
a choice of inflaton potential. This requires a significant fine-
tuning for PBHs as a candidate of DM. Standard (Einstein)
supergravity can accommodate single-field inflationary mod-
els in the (new) minimal setup, with the only restriction to
the inflaton potential as a real function squared [26–29].1

Since there are no fundamental reasons for the absence of
non-Gaussianities and iso-curvature perturbations (they just
have to be below the observational limits), multi-field infla-
tionary models were also extensively studied. The required
growth of primordial fluctuations can be achieved by tachy-
onic instabilities, say, in the waterfall phase of hybrid infla-
tion [31,32]. Moreover, the PBH production may be a generic
feature of two-field inflation [33]. On the other side, multi-
field inflation considerably extends a number of physical
degrees of freedom and possible interactions, which reduce
predictive power.

Thus, supersymmetry is expected to be even more impor-
tant in multi-field inflation by limiting the number of fields
involved (in the minimal setup) and severely restricting their
interactions.

As a guiding principle, in this paper we elaborate on a pos-
sible “supergravitational” origin of both inflation and PBHs,
by using only supergravity fields and their locally supersym-
metric interactions, without adding extra matter fields. Only
the minimal number of the physical degrees of freedom asso-
ciated with an N = 1 full supergravity multiplet is used. In its
spirit, our approach is similar to Starobinsky inflation based
on gravitational interactions only (see Ref. [34] for a recent
review of Starobinsky inflation in gravity and supergravity).
The Starobinsky inflation is based on the modified (R+ζ R2)

gravity, which can be further extended to modified super-
gravity in the minimal setup [35–37] leading to the effective
two-field double inflation. We will show that the emerging
double-field inflationary model is suitable for a formation of
PBH seeds after the first inflation. In this sense, Starobinsky

1 See e.g., Ref. [30] for a specific example of the inflaton potential with
an inflection point in supergravity.

supergravity naturally relates inflation with the dark matter
genesis.

Our paper is organized as follows. In Sect. 2 we intro-
duce the general modified supergravity setup and give a spe-
cific example of the bosonic terms arising in the simplest
non-trivial model. In Sect. 3 we introduce the duality trans-
formations between the modified supergravity and the stan-
dard supergravity (in Jordan and Einstein frames) in terms
of the field components (of the bosonic part) and in terms
of the superfields. In Sect. 4 we study the vacuum structure
of our basic model and the effective inflationary dynamics
of its two scalars. Section 5 is devoted to an investigation
of two-field inflation in our basic model defined by keeping
only the leading terms in a generic modified supergravity
action. We demonstrate consistency of the basic model with
CMB observations but also find the necessity of extreme fine-
tuning of initial conditions for PBH generation. In Sect. 6 we
extend our basic model by two subleading terms within the
same modified supergravity framework, and study in detail
the two modifications of our basic model, corresponding
to activation of only one of the two subleading terms. We
numerically compute the power spectra, and estimate PBH
masses and their density fraction, in both cases. We find that
our extended models are capable to simultaneously describe
viable (Starobinsky-type) inflation and PBH production after
inflation, with limited fine-tuning of the parameters, and an
attractor-type behavior in one of our models. In Sect. 7, we
give our conclusions and comments. Some technical details
are summarized in Appendices A and B.

2 Modified supergravity setup

Let us consider a modified supergravity theory with the gen-
eral Lagrangian (in curved superspace of the old-minimal
supergravity in four spacetime dimensions, with MPl = 1)
[36,38]

L=
∫

d2�2E
[
−1

8
(D2 − 8R)N (R,R)+F(R)

]
+h.c.,

(1)

which is parametrized by two arbitrary functions, a non-
holomorphic real potential N and a holomorphic potential
F , of the covariantly chiral scalar curvature superfield R of
the old-minimal supergravity.2 Some relevant details about
supergravity in superspace are collected in Appendix A. It
should be mentioned that the master Eq. (1) goes beyond the
supergravity textbooks and describes amodified supergravity
because the standard (Einstein) supergravity actions are the
extensions of Einstein–Hilbert term, whereas Eq. (1) is more

2 We use the standard (Wess–Bagger) notation [39] for supergravity in
superspace with a few adjustments mentioned in Appendix A.
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general and reduces to the pure Einstein supergravity action
only in the very special case of N = 0 and F = −3R. In
other words, Eq. (1) can be considered as a generic modified
supergravity extension of (R + R2) gravity (see below).

Let us expand the functions N and F in Taylor series and
keep only the leading terms, as our first probe of modified
supergravity. Then our simplest non-trivial ansatz reads

N = 12

M2 RR − ξ

2
(RR)2, F = α + 3βR, (2)

where we have introduced the real parameters M and ξ , and
the complex parameters α and β. The ansatz in Eq. (2) was
already proposed in Ref. [37], and it also appeared in the dual
scalar-tensor supergravity (see Sect. 3) in Ref. [40] where it
was shown that the ξ -term is essential for curing a tachyonic
instability of inflation.

After expanding the Lagrangian above in terms of the field
components (see Appendix A for the definitions of the field
components), we obtain the bosonic part as follows:

e−1L = − 1

12

[
3(β + β̄) − 24

M2 |X |2 + 11ξ |X |4

−2

9

(
6

M2 − ξ |X |2
)
bmb

m
] (

R + 2

3
bmb

m
)

+
(

6

M2 − ξ |X |2
)(

1

72
R2 − 2∂mX∂mX

+ 1

18
(∇mb

m)2 − 1

162
(bmb

m)2
)

+ i

2
(β − β̄)∇mb

m − i

3

(
12

M2 − ξ |X |2
)
bm

× (X∂mX − X∂mX) −U (X, X), (3)

where the scalar potential U (X, X) reads

U= − 6(αX+ᾱX) − 6(β+β̄)|X |2 − 48

M2 |X |4+18ξ |X |6,
(4)

and we demand Reβ < 0 for the correct sign of the Einstein–
Hilbert term.

The scalar potential (4) has an anti-de-Sitter (AdS) min-
imum unless α vanishes, so we set α = 0. This uplifts the
minimum at X = 0 to a Minkowski vacuum provided that
the parameters are chosen appropriately (see the next sec-
tions). Then (at X = 0) the canonical normalization of the
Einstein–Hilbert term fixes β = −1 (or Reβ = −1 in gen-
eral). Next, as will be shown below, the parameter M will be
the mass of Starobinsky scalaron, so that it can be fixed by
identifying scalaron with inflaton via CMB measurements.
Hence, we are left with a single free parameter ξ that will
determine the shape of the scalar potential.

3 Dual supergravity

It is remarkable that the higher-derivative modified super-
gravity (1) can be transformed to the standard supergravity (in
Jordan frame, without higher derivatives) as was first demon-
strated by Cecotti in 1987 [38], similarly to the well known
duality between a modified f (R) gravity and a scalar-tensor
gravity. Moreover, a duality transformation can be done in
the manifestly supersymmetric way, when using superspace
[36,41]. In this section, we first apply the duality transforma-
tion to the Lagrangian (3) in the familiar field components
and then dualize the whole superfield action in Eq. (1). Of
course, both approaches lead to the same physics and the
Lagrangians coincide after some field redefinitions, but only
the superspace approach is manifestly supersymmetric.

3.1 Dual bosonic part in field components

Let us introduce the notation

M4ξ

144
≡ ζ and |X | ≡ M

2
√

6
σ, (5)

where σ is the radial part of the complex scalar X . Its angular
part (let us call it θ ) does not appear in the potential because
we set α = 0.3 We also set θ = bm = 0 for simplicity.

Then the action (3) takes the form

e−1L = 1

2
f (R, σ ) − 1

2
(1 − ζσ 2)(∂σ )2 −U, (6)

where we find

f (R, σ ) =
(

1 + 1

6
σ 2 − 11

24
ζσ 4

)
R + 1

6M2 (1 − ζσ 2)R2,

(7)

U = 1

2
M2σ 2

(
1 − 1

6
σ 2 + 3

8
ζσ 4

)
. (8)

By following the standard procedure, we introduce the
auxiliary field χ and rewrite the action as

e−1L = 1

2

[
fχ (R − χ) + f

] − 1

2
(1 − ζσ 2)(∂σ )2 −U,

(9)

where fχ ≡ ∂ f
∂χ

, and f ≡ f (χ, σ ) is the function (7) with R
replaced by χ . Varying with respect to χ leads to the action
(6). A transfer to Einstein frame is obtained via Weyl rescal-
ing,

gmn → f −1
χ gmn, e → f −2

χ e,

e fχ R → eR − 3

2
e f −2

χ (∂ fχ )2. (10)

3 With α = 0 our model has the global R-symmetry under which X is
rotated by a phase.
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Therefore, the function

fχ = A + Bχ with

A ≡ 1 + 1

6
σ 2 − 11

24
ζσ 4 and B ≡ 1

3M2 (1 − ζσ 2),

(11)

can be identified with Starobinsky scalaron that can be
brought to the canonically normalized field ϕ via the identi-
fication

fχ = exp

[√
2

3
ϕ

]
, (12)

so that

χ = 1

B

(
e

√
2
3 ϕ − A

)
and f = 1

2B

(
e2

√
2
3 ϕ − A2

)
,

(13)

which is essentially the change of variables from χ to ϕ.
After the Weyl rescaling (10) the Lagrangian (9) takes the

following form in terms of the canonical scalaron ϕ:

e−1L = 1

2
R − 1

2
(∂ϕ)2 − 1

2
(1 − ζσ 2)e−

√
2
3 ϕ

(∂σ )2 − V,

(14)

where the two-field scalar potential reads

V = 1

4B

(
1 − Ae−

√
2
3 ϕ

)2

+ e−2
√

2
3 ϕU

= 3M2

4(1−ζσ 2)

[
1−e−

√
2
3 ϕ− 1

6
σ 2

(
1− 11

4
ζσ 2

)
e−

√
2
3 ϕ

]2

+ M2

2
e−2

√
2
3 ϕ

σ 2
(

1 − 1

6
σ 2 + 3

8
ζσ 4

)
. (15)

As is clear from the Lagrangian (14), when σ 2 > 1/ζ ,
the scalar σ becomes a ghost. However, when approaching
σ 2 = 1/ζ , the potential (15) becomes singular, so that it
would take the infinite amount of energy to turn σ into a
ghost (assuming its starting value in the region σ 2 < 1/ζ ).
It is also worth noticing that the inflaton mass M enters the
potential as the overall factor, so that it does not affect the
shape of the potential.

3.2 Superfield dual version

As was demonstrated in Ref. [36], the dual superfield
Lagrangian of Eq. (1) is obtained by introducing the Lagrange

multiplier (chiral) superfield T as4

L = ∫
d2�2E {− 1

8 (D2 − 8R)N (S, S) + F(S)

+6T(S − R)} + h.c. (16)

Varying it with respect toTgives back the original Lagrangian
(1) by identifying the chiral superfield S with R.

When using instead the superspace identity∫
d2�2E(D2 − 8R)(T + T) + h.c.

= −16
∫

d2�2ERT + h.c., (17)

the Lagrangian (16) can be rewritten to

L =
∫

d2�2E
{

3

8
(D2 − 8R)

[
T + T − 1

3
N (S, S)

]

+F(S) + 6TS} + h.c. (18)

Given the functions N (R,R) andF(R) according to Eq. (2),
the Lagrangian (18) can be rewritten to the standard form,

L =
∫

d2�2E
[

3

8
(D2 − 8R)e−K/3 + W

]
+ h.c., (19)

where the Kähler potential K and the superpotential W are
given by (cf. Ref. [40])

K = −3 log(T + T − Ñ ), Ñ ≡ 1

3
N = SS − 3

2
ζ(SS)2,

(20)

W = 3MS
(
T − 1

2

)
, (21)

after rescaling S → MS/2 and using the parameter ζ ≡
M4ξ/144.

It is straightforward to derive the corresponding bosonic
terms in field components. We find

e−1L = 1

2
R − Ki j̄∂m�i∂m� j

−eK
(
Ki j̄ DiW D j̄W − 3|W |2

)
, (22)

where �i = (T, S), i = 1, 2, and the Kähler metric reads

Ki j̄ =
(
KTT KT S
KST KSS

)
= 3

P2

(
1 −ÑS̄

−ÑS ÑS ÑS̄ + P ÑSS̄

)
(23)

with P ≡ T + T − Ñ . The inverse Kähler metric is given by

Ki j̄ =
(
KTT K T S

K ST K SS

)
= P

3

(
P + Ñ SS ÑS ÑS Ñ SS ÑS

Ñ SS ÑS Ñ SS

)
.

(24)

4 We use the bold font for the chiral superfields S and T, and the regular
font for their leading field components.
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Because of the non-vanishing non-diagonal elements of
the Kähler metric, the kinetic part of the Lagrangian mixes
the derivatives of S and T ,

e−1Lkin = − 3

P2

[
∂T ∂T − ÑS∂S∂T − ÑS∂T ∂S

+(ÑS ÑS + P ÑSS)∂S∂S
]
. (25)

In order to bring the Lagrangian to the form (14), where the
contributions of bm5 and the angular part of X are ignored,
we set ImT = 0, S = |S|, and denote |S| = σ/

√
6. The

kinetic mixing between ∂S and ∂T can be eliminated by using
P = T + T − Ñ as the independent (real) scalar instead of
ReT . We get the canonical normalization of its kinetic term

in the parametrization P = exp

[√
2
3ϕ

]
as follows:

e−1Lkin = −1

2
(∂ϕ)2 − 1

2
(1 − ζσ 2)e−

√
2
3 ϕ

(∂σ )2, (26)

that exactly matches the kinetic part of Eq. (14).
It is also straightforward (albeit tedious) to check that the

scalar potential of Eq. (22) also coincides with that of Eq. (15)
after using the field redefinitionsqa diagonalizing the scalar
kinetic matrix above.

4 Critical points

To study vacuum equations in our basic model, we denote

e−
√

2
3 ϕ ≡ x and rewrite the scalar potential (15) as

V = 1

4B
(1 − Ax)2 + x2U,

where

⎧⎪⎪⎨
⎪⎪⎩

A = 1 + 1
6σ 2 − 11

24ζσ 4,

B = 1
3M2 (1 − ζσ 2),

U = M2

2 σ 2
(
1 − 1

6σ 2 + 3
8ζσ 4

)
.

(27)

The equations for critical points read

∂x V = A

2B
(Ax − 1) + 2xU = 0, (28)

∂σV = 2x A′B + (1 − Ax)B ′

4B2 (Ax − 1) + x2U ′ = 0, (29)

where the primes denote the derivatives with respect to σ . A
simple solution to these equations is

Ax = 1, U = U ′ = 0. (30)

5 The vector field bm in higher-derivative supergravity contributes a
physical scalar ∇mbm , as was shown in Ref. [36]. In the dual matter-
coupled supergravity, this scalar can be associated with the axionic field
ImT .

It gives rise to the vanishing potential (27) for σ0 = ϕ0 = 0.
There is another solution by taking U ′ = 0 and obtaining

σ 2 = 2

27ζ
(2 ± √

4 − 162ζ ). (31)

On the other hand, the condition U = 0 is solved by

σ 2 = 2

9ζ
(1 ± √

1 − 54ζ ). (32)

Equating Eqs. (31) and (32) leads to an equation on the
parameter ζ with a solution ζ = 1/54 ≈ 0.019 provided
that the “plus” branch is chosen in Eq. (31). It means, when
ζ = 1/54, we have three Minkowski minima: σ0 and ±|σ1|
where σ 2

1 is given by Eqs. (31) or (32).
When ζ �= 1/54, the two minima at ±σ1 are not given

by Eqs. (31) and (32), being more general solutions to the
vacuum equations (28) and (29). In particular, when 0 < ζ <

1/54, the minima at ±σ1 are AdS, while for 1/54 < ζ <

0.027 the minima are uplifted to metastable de-Sitter (dS).
When ζ ≈ 0.027, there are two inflection points, whereas for
ζ > 0.027 all the critical points, except of σ = 0, disappear.
The scalar potential V/M2 is shown in Fig. 1a (at ζ = 1/54)
and Fig. 1b (at ζ = 0.027).

Let us comment on the scalar masses for the model (20)
and (21). Expanding around the Minkowski vacuum at ϕ =
σ = 0, we find Mϕ = Mσ = M , where Mϕ and Mσ are
the masses of ϕ and σ , respectively. As for the axion ImT ,
after its proper normalization we find that it also has the mass
M . However, the last scalar θ has vanishing mass around the
minimum, so it must be generated by additional means. This,
together with the more detailed analysis of the dynamics of
ImT and θ deserves a separate investigation that we leave to
future works. Here we will focus on the two scalars ϕ and σ .

5 Two-field inflationary dynamics

Having derived the Lagrangian with the two-field scalar
potential from the modified supergravity, in this section we
investigate its suitability for describing cosmological infla-
tion in agreement with CMB observations.

5.1 Field equations

The Lagrangian in Eqs. (14) and (15) takes the form of a non-
linear sigma-model (NLSM) minimally coupled to gravity,

e−1L = 1

2
R − 1

2
GAB∂φA∂φB − V, (33)

where φA = {ϕ, σ }, A = 1, 2, and the NLSM metric is given
by

GAB =
(

1 0

0 (1 − ζσ 2)e−
√

2
3 ϕ

)
. (34)

123
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Fig. 1 The scalar potential V/M2 of Eq. (27). The plot a ζ = 1/54 ≈ 0.019 with three Minkowski minima. The plot b ζ = 0.027 with a single
Minkowski minimum at σ = 0 and two inflection points

Varying the Lagrangian (33) with respect to the scalar
fields yields equations of motion in the form

�φC + �C
AB∂φA∂φB = GAC∂AV, (35)

where � ≡ ∇m∇m is the spacetime Laplace-Beltrami opera-
tor, and �C

AB are the Christoffel symbols of the NLSM target
space. The non-vanishing Christoffel symbols are

�σ
σϕ = − 1√

6
, �ϕ

σσ = 1√
6
(1 − ζσ 2)e−

√
2
3 ϕ

,

�σ
σσ = − ζσ

1 − ζσ 2 . (36)

After using these results, and the Friedmann–Lemaitre–
Robertson–Walker (FLRW) spacetime metric gmn =
diag(−1, a2, a2, a2) with the time-dependent scale factor
a(t), the equations of motion take the form

ϕ̈ + 3H ϕ̇ + 1√
6
(1 − ζσ 2)e−

√
2
3 ϕ

σ̇ 2 + ∂ϕV = 0, (37)

σ̈ + 3H σ̇ − ζσ σ̇ 2

1 − ζσ 2 −
√

2

3
ϕ̇σ̇ + e

√
2
3 ϕ

1 − ζσ 2 ∂σV = 0, (38)

where the dots stand for the time derivatives.
The Friedmann equations for the system (33) read

3H2 = 1

2
ϕ̇2 + 1

2
(1 − ζσ 2)e−

√
2
3 ϕ

σ̇ 2 + V , (39)

Ḣ = −1

2
ϕ̇2 − 1

2
(1 − ζσ 2)e−

√
2
3 ϕ

σ̇ 2 , (40)

where the Hubble function has been introduced, H ≡ ȧ/a.
For numerical computations it is useful to rescale time as

t̃ ≡ Mt (when using t̃ , the dots will denote the derivatives
with respect to t̃) with the rescaled Hubble function H̃ =
H/M .

5.2 Inflationary parameters

In this Subsection we employ the covariant formalism that is
well known in the literature, see e.g., Refs. [42–44] and the
references therein, with the slow-roll parameter

ε ≡ − Ḣ

H2 = −
˙̃H

H̃2
. (41)

In a two-field analysis, it is useful to define the field-space
velocity and acceleration (turn rate) unit vectors as

�A ≡ φ̇A

|φ̇| , �A ≡ ωA

|ω| , (42)

respectively, where the absolute value of a field-space vector
aA is defined by |a| ≡

√
GABaAaB , and the acceleration

vector ωA is defined by

ωA ≡ �̇A + �A
BC�B φ̇C

⎧⎪⎨
⎪⎩

ωϕ = �̇ϕ + 1√
6
(1 − ζσ 2)e

−
√

2
3 ϕ

�σ σ̇ ,

ωσ = �̇σ − 1√
6
(�ϕσ̇ + �σ ϕ̇) − ζσ

1−ζσ 2 �σ σ̇ .
(43)

Another useful quantity is the effective mass matrix,

MA
B ≡ GAC∇B∂CV − RA

CDB φ̇C φ̇D, (44)

where RA
CDB is the Riemann tensor of the NLSM scalar man-

ifold, with the non-vanishing components

Rϕ
σσϕ = 1

6
(1 − ζσ 2)e−

√
2
3 ϕ

, Rσ
ϕϕσ = 1

6
. (45)

With the above definitions we can introduce the adiabatic
and isocurvature parameters

η�� ≡ MA
B�A�B

V
, η�� ≡ MA

B�A�B

V
, (46)

respectively, where η�� plays the role of the second slow-roll
parameter, while η�� is proportional to the effective isocur-
vature mass.
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(a) The solutions ϕ(t̃) (blue) and σ(t̃) (red).
(b) The field-space trajectory of the solutions.

Fig. 2 The solutions (I) to the field equations (37) and (38) with the initial conditions ϕ(0) = 6, σ (0) = 3 and the vanishing initial velocities. The
blue shaded region represents the time period of the last 60 e-foldings

The transfer functions are defined as follows:

TSS(t1, t2) ≡ exp

[∫ t2

t1
dt ′β(t ′)H(t ′)

]
, (47)

TRS(t1, t2) ≡ 2
∫ t2

t1
dt ′|ω(t ′)|TSS(t1, t2), (48)

where

β(t) ≡ −2ε + η�� − η�� − 4|ω|2
3H2 . (49)

The transfer functions describe the evolution of perturbations
on superhorizon scales, i.e. from the moment of horizon exit
t1 (of the k-mode of interest) until some later time t2.

The inflationary observables (CMB tilts) can be computed
as (by assuming that isocurvature modes are suppressed)

ns = 1 − 6ε + 2η�� and r = 16ε

1 + T 2
RS

. (50)

As TRS is real, the maximum value of the tensor-to-scalar
ratio is rmax = 16ε, while it can be computed without the
transfer functions. In Appendix B we estimate both TRS and
TSS and find them negligible. Therefore, isocurvature effects
can be ignored at CMB scales indeed.

According to the latest PLANCK data [21], the observed
values of ns and r are

ns=0.9649 ± 0.0042 (1σ CL) and r < 0.064 (2σ CL).

(51)

5.3 Inflationary solutions

Let us first consider the case of ζ = 1/54 ≈ 0.019 with three
Minkowski minima in Fig. 1a.

We numerically solve the field equations (37), (38) and
(39) with the initial conditions ϕ(0) = 6, σ (0) = 3, and
the vanishing initial velocities, so let us call it the solution
(I). The scalar field solutions are plotted in Fig. 2a, and their
trajectories in the scalar potential are plotted in Fig. 2b. It
can be seen that σ quickly drops to its minimum σ = 0, so
that the trajectory becomes similar to that in the single-field
Starobinsky inflation. In fact, this is a generic feature when
the initial velocities are zero (or almost zero), ϕ(0) � 6 and
|σ(0)| � σmax, where σmax = 1/

√
ζ is the upper bound on

σ where the potential is infinite. When ζ = 1/54 we find
σmax ≈ 7.35.

The solution (I) leads to the spectral tilt and the tensor-
to-scalar ratio as ns ≈ 0.9624 and rmax ≈ 0.004,6 which
are consistent with the observed values and the theoretical
(Starobinsky) predictions of chaotic single-field inflation.

As the initial value σ(0) approaches σmax and/or as the
initial velocities become non-negligible, the trajectory starts
to curve. Also a smaller value of ϕ(0) makes it easier to curve
the trajectory.

As regards PBH production after inflation, let us consider
the field-space trajectory going through the saddle point of
the potential, that is a maximum in the σ -direction and a
(local) minimum in the ϕ-direction. Then the saddle point
divides inflation into two stages. We found a set of initial
conditions that leads to such trajectory with

ϕ(0) = 5, σ̇ (0) = 79.784527415607, σ (0) = ϕ̇(0) = 0.

(52)

6 We evaluate ns and r at the CMB pivot scale k = 0.05 Mpc−1 identi-
fied with the scale exiting the horizon around 54 e-folds before the end
of inflation, and assume the standard reheating temperature of the order
109 GeV [45] that is also expected in the modified supergravity setup
[46].
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(a) The solutions ϕ(t̃) (blue) and σ(t̃) (red).
(b) The field-space trajectory of the solutions.
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(d) The e-foldings number N(t̃).

Fig. 3 The solutions (II) to the field equations (37) and (38) with the initial conditions (52). The red spot in (3b) represents one of the two saddle
points of the potential

Let us call the corresponding solution as the solution (II).
We include its plots in Fig. 3a, b. The time-dependence of
the Hubble function and the e-foldings number defined by
Ṅ = H are shown in Fig. 3c, d. The total number of e-
foldings is around 40, though it can be larger for larger values
of ϕ(0) with more fine-tuning of the initial velocities.

Thus, in order to achieve the two-stage inflation, where
the field-space trajectory passes through the saddle point, we
have to fine-tune the initial conditions as in Eq. (52), though
the last choice is not unique. The reason is, when ϕ is large,
the potential takes the shape of a valley with the minima at
σ = 0, so a generic behavior of σ is to quickly relax at
σ = 0, and let ϕ drive the entire inflationary period. The
same remains true if we change the shape of the potential as
in Fig. 1b by changing ζ (the only difference is the saddle
point to be replaced by an inflection point).

6 Generalized attractor-type models

Having learned the lessons in the previous Sections, we con-
clude that our basic ansatz in Eq. (2) for functions N (R,R)

and F(R) is too restrictive because it requires extreme fine
tuning of the initial conditions for PBHs production. There-
fore, we generalize our ansatz by adding the next-order cor-
rections as

N = 12

M2 |R|2 − 72

M4 ζ |R|4 − 768

M6 γ |R|6, (53)

F = −3R + 3
√

6

M
δR2, (54)

where we have introduced two new parameters γ and δ with
their normalization chosen for later convenience. We keep
α = 0, β = −3 and ζ ≡ M4ξ/144, ignore bm and the angu-
lar mode of R| = X , and set X = Mσ/

√
24, as in the pre-

vious Sections. In the framework of the dual matter-coupled
supergravity (19), the γ -term resides in the Kähler poten-
tial that can be affected by quantum corrections, whereas
the δ-term resides in the superpotential that does not receive
(perturbative) quantum corrections.
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After repeating the procedure outlined in Sect. 3.1, we
obtain the Einstein frame Lagrangian as follows:

e−1L = 1

2
R − 1

2
(∂ϕ)2 − 3M2

2
Be−

√
2
3 ϕ

(∂σ )2

− 1

4B

(
1 − Ae−

√
2
3 ϕ

)2

− e−2
√

2
3 ϕU, (55)

where the functions A, B,U are given by

A = 1 − δσ + 1

6
σ 2 − 11

24
ζσ 4 − 29

54
γ σ 6,

B = 1

3M2 (1 − ζσ 2 − γ σ 4),

U = M2

2
σ 2

(
1 + 1

2
δσ − 1

6
σ 2 + 3

8
ζσ 4 + 25

54
γ σ 6

)
. (56)

When γ = δ = 0, all that reduces to Eqs. (14) and (15), as
it should. Similarly to the basic model, there is the infinite
wall in the scalar potential, which prevents σ from obtaining
values leading to the wrong sign of its kinetic term.

The relevant field equations of the generalized model are

0 = ϕ̈ + 3H ϕ̇ + 1√
6

(
1 − ζσ 2 − γ σ 4

)
e−

√
2
3 ϕ

σ̇ 2 + ∂ϕV,

(57)

0 = σ̈ + 3H σ̇ − ζσ + 2γ σ 3

1 − ζσ 2 − γ σ 4 σ̇ 2 −
√

2

3
ϕ̇σ̇

+ e

√
2
3 ϕ

1 − ζσ 2 − γ σ 4 ∂σV, (58)

0 = 1

2
ϕ̇2 + 1

2

(
1 − ζσ 2 − γ σ 4

)
e−

√
2
3 ϕ

σ̇ 2 + Ḣ , (59)

0 = V − 3H2 − Ḣ . (60)

The generalized model defined by Eqs. (53) and (54)
appears to be rather complicated for a detailed numerical
analysis, so we study only two special cases, the one with
δ = 0 (dubbed the γ -extension) and the one with γ = 0
(dubbed the δ-extension), in what follows.

6.1 The γ -extension

As a representative of the γ -extension (δ = 0), we choose
the parameters γ = 1 and ζ = −1.7774, see Fig. 4. This
choice is interesting because the scalar potential (for ϕ 	
1) has two valleys where σ �= 0, and a single Minkowski
minimum at σ = ϕ = 0. The first slow-roll (SR) inflation is
possible along either of the valleys. The valleys merge into the
Minkowski minimum by passing through inflection points (or

near-inflection points) followed by the second, ultra-slow-
roll (USR), inflationary stage.7

After numerically solving the equations of motion (57)–
(60) we plot the solutions in Fig. 5. The total number of
(observable) e-foldings is set to �N = 60, and the end of
the first stage of inflation is defined by the time when η�� first
crosses unity (see Fig. 5e). We could also define the end of the
first stage from the local maximum of ε, which nearly coin-
cides with the former definition. As may be expected from
the USR period εUSR 
 εSR and can be seen in Fig. 5e, it
leads to an enhancement in the scalar power spectrum indeed.
Inflation ends when ε = 1, as usual. With the chosen param-
eters, the first stage lasts �N1 = 50 e-foldings, whereas
the second stage lasts for �N2 = 10: in the subsequent fig-
ures the first stage of inflation is represented by the blue
shaded region, whereas the second stage is marked by the
green shaded region, whenever is relevant. The length of the
second stage is controlled by the parameter ζ for a given γ .

By using Eq. (50), we find the observables at the CMB
scale as

ns ≈ 0.9545 and rmax ≈ 0.006. (61)

The parameter space The parameter choice leading to a
scalar potential with the suitable properties (as described
above) is not unique, and for any γ greater than ∼ 0.004
there is a value of ζ that leads to a similar shape of the poten-
tial (with two inflection points, unique Minkowski minimum,
etc.). For a given γ , one can solve the system of equations

∂ϕV = ∂σV = H = 0, (62)

where H is the Hessian determinant of the potential, in order
to obtain the value of ζ leading to the desired inflection points.
Then, by fine-tuning ζ around that value, one can change a
duration of the USR stage �N2.

In order to see how γ changes the shape of the scalar
potential, let us evaluate the ratio Vinflec./V∞ as a function
of γ , where Vinflec. is the value of the potential at an inflection
point, and V∞ is the asymptotic value of the potential when
ϕ → ∞ and σ is at its local minimum, which corresponds to
the SR stage. This ratio represents the depth of the inflection
points relative to the SR valleys, and it does not significantly
change the curvature of the inflationary path in the ϕ − σ

plane. The plot of Vinflec./V∞ versus γ , as well as the tra-
jectory in the γ − ζ plane, which solves Eq. (62), are shown
in Fig. 6. After taking all that into account, we conclude the
control over the overall shape of the potential is limited due
to the attractor-type behavior of Vinflec./V∞ at large γ .

When γ = 1, a solution to Eq. (62) gives ζ ≈ −1.774 that,
in turn, leads to �N2 ≈ 6.3. However, in our example we

7 Actually, despite the name, during an ultra-slow-roll regime, the scalar
field(s) roll down the potential faster than during a slow-roll regime (see
e.g. Ref. [47]).
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Fig. 4 The scalar potential V/M2 in the Lagrangian (55) for δ = 0, γ = 1, ζ = −1.7774

(a) (b)

(c) (d) (e)

Fig. 5 a The solution to the field equations (57) and (58) with the ini-
tial conditions ϕ(0) = 6, σ (0) = 0.1, the vanishing initial velocities,
and the choice of the parameters as δ = 0, γ = 1, ζ = −1.7774. The
blue shaded region represents the first stage of inflation, and the green

shaded region represents the second stage. b The trajectory of the solu-
tion. c The corresponding Hubble function. d The e-foldings number. e
The slow-roll parameters ε (red) and η�� (blue)

slightly departed from that value of ζ and set ζ = −1.7774 in
order to obtain �N2 = 10. Our strategy is to compute power
spectra for different choices of γ while keeping �N2 = 10.
The latter condition fixes the value of ζ . Next, we examine
the impact of a variation of �N2.

The power spectrum at fixed �N2 We numerically com-
pute the power spectrum of curvature perturbations by using

the transport method introduced in Refs. [48,49] with the
Mathematica package described in Ref. [50]. We compute
the spectrum around the pivot scale k∗ that leaves the hori-
zon at the end of the first stage, i.e. �N2 e-folds before the
end of inflation (let us call this scale k�N2 ). The inflaton mass
is adjusted in each case around 0.6 × 10−5MPl by requiring
Pζ ≈ 2 × 10−9 at the CMB scale.
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Fig. 6 The ratio of the scalar potential at the inflection point to its
asymptotic value when ϕ → ∞, as a function of γ . The embedded plot
represents the solution to Eq. (62) in terms of ζ(γ )

Fig. 7 The power spectrum Pζ around the pivot scale k∗ = k�N2 at
�N2 = 10 for several values of γ

Table 1 The parameters used in a computation of the power spectrum
in Fig. 7 with �N2 = 10

γ 0.1 1 10 100 1000

ζ −0.31165 −1.7774 −8.91495 −42.7976 −201.722

The power spectrum for various values of γ is shown in
Fig. 7. The parameters considered are collected in Table 1,
where ζ is tuned to satisfy �N2 = 10. A change of ns and
rmax (still given by Eq. (61)) is negligible for those parame-
ters.

As is often adopted in the literature, the desired enhance-
ment of primordial curvature perturbations should exceed the
CMB scales by the factor of 107, in order to efficiently pro-
duce PBHs, although the authors of Ref. [15] argued by using
peak theory that, given a broad peak, the required enhance-
ment in the power spectrum drops by one order of the mag-
nitude to ∼ 106. Our numerical estimates with �N2 = 10
(see Fig. 7) show that the required enhancement of the power
spectrum is not achieved. However, the enhancement grows
as we increase �N2 (see below).

Changing �N2 Let us examine how the power spec-
trum changes with the duration of the USR regime �N2. To
demonstrate that dependence, we consider the power spec-
trum at γ = 0.1 and γ = 1 with various values of duration of
the USR stage, �N2 = 10, 17, 20, 23 for each γ . The results
are collected in Fig. 8. The case of γ � 0.1 can be excluded
because the power spectrum peak is too small (technically, a
larger enhancement is still possible but requires a very long
USR stage that pushes the spectral index well outside of the
3σ (lower) limit of ns ≈ 0.946 (cf.Refs. [14,51]). In the case
of γ = 1, the required enhancement is possible provided that
�N2 � 20, and, therefore, the values of γ � 1 are favored
for efficient production of PBHs.

In Table 2 we collect the approximate values of ns
and rmax. (at the CMB scales) for the values of �N2 =
10, 17, 20, 23, universally across the considered values of
γ = 0.1, 1, 10, 100, 1000. The tensor-to-scalar ratio r is
well within the observational limits in all those cases, but
the scalar tilt ns is outside the 3σ limit when �N2 > 17,
assuming the standard reheating scenario.

PBHmasses and their density fraction The mass of a PBH
created by late-inflationary overdensities was estimated in
Ref. [14] as follows:

MPBH � M2
Pl

H(t∗)
exp

[
2(Nend − N∗)+

∫ texit

t∗
ε(t)H(t)dt

]
,

(63)

where t∗ is the time when the first (slow-roll) stage ends,
whereas texit is the time when the CMB pivot scale k =
0.05 Mpc−1 exits the horizon. The formula is independent of
the period between t∗ and the time of PBHs formation during
the radiation-dominated era.

We estimate the values of MPBH for various values of
�N2 by using Eq. (63). The results are shown in Table 3
together with the corresponding values of the spectral index.
Our estimates are universal across the values of γ =
0.1, 1, 10, 100, 1000. PBHs with masses smaller than ∼
1016g would have already evaporated by now via Hawk-
ing radiation. Thus, on one hand, we need �N2 > 17. On
the other hand, the lower 3σ limit on the spectral index,
ns ≈ 0.946 [21], requires �N2 ≤ 17. Hence, the γ -
extension alone is apparently ruled out as a model of PBH
DM when we assume the standard reheating scenario and
demand PBHs formation during the radiation era. Therefore,
either we need yet another extension of our ansatz in modi-
fied supergravity or we have to assume some alternative (non-
standard) cosmological scenarios.

As regards the constraints on γ , the power spectrum in
Fig. 8 tells us that it is sufficient to have γ ≥ O(1) in order
to produce the required enhancement in the spectrum.

We also estimate the PBHs density fraction by using
Press–Schechter formalism [52]. The useful formulae include
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Fig. 8 The power spectrum at γ = 0.1 (on the left side) and γ = 1 (on the right side) for �N2 = 10, 17, 20, 23

Table 2 The approximate values of ns and r for various choices of
�N2, obtained by tuning the parameter ζ around its inflection point
value

�N2 10 17 20 23

ns 0.955 0.946 0.942 0.936

rmax 0.006 0.008 0.009 0.011

the PBH mass M̃PBH(k), the production rate β f (k), and the
density contrast σ(k) coarse-grained over k as follows (see
e.g., Refs. [53,54] and references therein):

M̃PBH � 1020
(

7 × 1012

k Mpc

)2

g, β f (k) � σ(k)√
2πδc

e
− δ2

c
2σ2(k) ,

(64)

σ 2(k) = 16

81

∫
dq

q

(q
k

)4
e−q2/k2

Pζ (q), (65)

respectively, where we have chosen the Gaussian window
function for the density contrast and have introduced δc as a
constant representing the density threshold for PBH forma-
tion, which is usually estimated as δc ≈ 1/3 [55] for simplic-
ity (its more precise value depends upon details of the power
spectrum). In terms of the above functions, the PBH-to-DM
density fraction can be estimated as follows [53,54]:

�PBH(k)

�DM
≡ f (k) � 1.2 × 1024β f (k)√

M̃PBH(k)g−1
, (66)

where the numerical factor is computed for the Minimal
Supersymmetric Standard Model degrees of freedom (in
the case of the Standard Model it would be approximately
1.4 × 1024).

In order to numerically evaluate the functions (65) and
(66), we need to normalize the values of k in terms of the
observable scales today. As we already mentioned above, we
use the scale k = 0.05 Mpc−1 leaving the horizon 54 e-folds

Table 3 The PBH masses estimated by Eq. (63) for the γ -extension
with the corresponding (approximate) values of the spectral index. In
the Solar mass units, 1 g ≈ 5.03 × 10−34 M�
�N2 10 17 20 23

MPBH, g 109 1015 1017 1020

ns 0.955 0.946 0.942 0.936

before the end of inflation. To find a specific example, we
search for a set of the parameters that can lead to a substantial
PBH density with the critical density in the range 1/3 � δc �
2/3. We get such an example with γ = 1.5, �N2 = 20,
and δc = 0.4 (this leads to ns ≈ 0.942 as can be seen in
Table 3). The resulting PBH fraction is shown in Fig. 9 on
the background of the observational constraints of Ref. [56]
(see also Ref. [57]). According to Fig. 9, our peak is located
at the edge of the lowest-mass window, between 1017 and
1018 g. The constraints of Fig. 9 are imposed by assuming
a monochromatic PBH mass spectrum. In our case the mass
distribution is narrow, albeit is not strictly monochromatic.

The total PBH-to-DM density fraction, given by

ftot =
∫

d(log M̃PBH) f (M̃PBH), (67)

is estimated for Fig. 9 as ftot ≈ 1, i.e. PBHs can constitute
the whole DM in that case.

6.2 The δ-extension

Having established that the PBH DM scenario in the γ -
extension is in conflict with the CMB constraint, the next
possibility is to study the δ-extension. In this subsection, we
take γ = 0 for simplicity and take δ �= 0 in Eqs. (53) and
(54).8 It breaks the R-symmetry and the reflection symme-

8 A model similar to our δ-extension was considered in Ref. [58] in
relation to spontaneous supersymmetry breaking after inflation. The
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Fig. 9 The PBHs fraction
obtained with the parameters
γ = 1.5, �N2 = 20, and
δc = 0.4 (black curve). The
shaded regions represent the
observational constraints of Ref.
[56]: from evaporation (red),
lensing (blue), gravitational
waves (gray), various dynamical
effects (green), accretion (light
blue), large-scale structure
(pink), and CMB distortions
(orange)

Fig. 10 The scalar potential in the Lagrangian (55) for γ = 0, δ = 0.1 and ζ = 0.033407

try σ → −σ of the potential (see Fig. 10), and generates
θ -dependent terms in the potential (we remind that θ is the
angular component of the complex scalar X ≡ R|). Those
terms can be obtained by replacing δ → δ cos θ in Eq. (56).
We assume that the angular scalar θ is stabilized during infla-
tion. Then its VEV 〈θ〉 can be absorbed into a redefinition
of δ. According to Eq. (56), the θ terms are multiplied by
the factors of σ , so that they vanish when σ = 0, includ-
ing the Minkowski minimum. A stabilization of θ requires
additional tools that we leave to future studies.

As far as the shape of the potential is concerned, for any
non-zero δ there is a value of ζ that leads to an inflection point:

Footnote 8 continued
difference between our model and that of Ref. [58] is in the scalar poten-
tial: the potential of Ref. [58] has an additional (Minkowski) minimum
(away from σ = 0) that breaks both supersymmetry and R-symmetry.
In our case, we have a single, SUSY-preserving Minkowski minimum
(at σ = 0) and an inflection point away from σ = 0, in order to achieve
an ultra-slow-roll stage.

for a positive δ the inflection point is at σ = −|σinflec| (as in
our example of Fig. 10), and for a negative δ the inflection
point is at σ = +|σinflec|.

In contrast to the γ -extension, here we have a single val-
ley for large positive ϕ and σ = 0, so that in this limit
the model reduces to a single-field Starobinsky model. As
one approaches ϕ = 0, the potential inclines towards the
(near-)inflection point which could, in principle, guide the
inflationary trajectory towards passing through the (near-
)inflection point before falling to the Minkowski minimum
at ϕ = σ = 0.

Let us consider, for example, the parameter values δ =
0.1 and ζ = 0.033407 (ζ is chosen to get �N2 = 10).
After solving the corresponding field equations, we show the
time dependence of ϕ, σ , H̃ , N , ε and η�� in Fig. 11. The
near-inflection point divides inflation into two stages with
�N1 = 50 (slow-roll) and �N2 = 10 (ultra-slow-roll). We
set initial velocities to zero, with ϕ(0) = 6 and σ(0) = 0.05.
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(a)

(c) (d) (e)

(b)

Fig. 11 a The solution to the field equations (57) and (58) with the
initial conditions ϕ(0) = 6 and σ(0) = 0.05, the vanishing initial
velocities, and the parameter choice γ = 0, δ = 0.1 and ζ = 0.033407.

b The trajectory of the solution (ϕ – blue, σ – red). c The corresponding
Hubble function. d The number of e-folds. e The slow-roll parameters
ε (red) and η�� (blue)

Fig. 12 The left side: the ratio Vinflec/V∞ and ζ as the functions of δ according to Eq. (62). The right side: the profile of the potential V/M2 with
a single inflection point, when ϕ is at its local minimum

Similarly to the γ -extension, the inflationary trajectory is
stable against variations of the initial conditions, as long as
they are not very large.

The parameter space When demanding the presence of a
(near-)inflection point, the parameters must satisfy Eq. (62).
The plot of Vinflec./V∞ (V∞ is taken for ϕ 	 1 and σ = 0)
versus δ, and the solution ζ(δ) to Eq. (62), are displayed
on the left side of Fig. 12. On the right side of Fig. 12 we
show the profile of the potential with ϕ at its local minimum

satisfying ∂ϕV = 0, for several choices of δ. In particular,
our plot shows, when δ → 0, the inclination of the potential
towards the inflection point becomes smaller until it vanishes
when δ = 0 (in such case the potential coincides with the one
in Fig. 1b). Therefore, when δ is very small, the inclination of
the potential becomes insufficient for guiding the inflationary
trajectory through the inflection point. Instead, the trajectory
tends to the σ = 0 path (when δ = 0, the trajectory exactly
follows the σ = 0 path).
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Fig. 13 The inflationary trajectories and the corresponding inflection
points marked by the colored points. The parameters are δ = 0.01 (red),
δ = 0.05 (green) and δ = 0.1 (blue)

We plot the inflationary trajectories in the ϕ − σ plane
for various choices of δ (with ζ being fixed by requiring the
existence of an inflection point) in Fig. 13. The colored spots
represent the inflection points. As can be seen in Fig. 13 for
δ = 0.01 and δ = 0.05, the trajectory misses the correspond-
ing inflection point by a large margin and, therefore, avoids
the USR regime. On the other hand, when δ = 0.1, the tra-
jectory stops near the inflection point and then oscillates a
few times before going to the minimum at ϕ = σ = 0. This
indicates the possibility of an USR stage, and it happens in
Fig. 11 for this parameter choice indeed.

The scalar power spectrum at fixed �N2 and δ � 0.1
Let us fix �N2 = 10, and consider the power spectrum for
several values of δ. We find that the spectrum has a non-trivial
dependence on δ, see Fig. 14. In the left plot, δ is varied from
0.1 to 0.2, and we observe the spectrum enhancement to
become smaller as δ grows. In the right plot, once δ reaches
0.2, the enhancement starts growing with δ and develops a
sharper peak.

As regards larger values of δ, our numerical results show,
when δ � 0.6, it becomes increasingly more difficult to main-
tain the USR stage and to achieve �N2 > 10, in particular.
It may be due to the need of an extreme fine-tuning of the
parameter ζ when δ is large.

Changing �N2 Amongst the values of δ studied above,
let us pick up those with the highest power spectrum peaks,
namely, δ = 0.1 and δ = 0.6, and plot the spectrum for
�N2 = 10, 17, 20, 23. The results are displayed in Fig. 15
with the plots on the left side and the right side corresponding
to δ = 0.1 and 0.6, respectively. As expected, the enhance-
ment becomes larger with increasing �N2.

PBH masses and their density fraction To be specific, let
us consider two different examples: a smooth peak for δ ∼
0.1, and a sharp peak for δ ∼ 0.6, in the power spectrum.
Requiring the total PBH density fraction ftot ≈ 1 and the
corresponding density threshold in the region 1/3 ≤ δc ≤
2/3, we find δ = 0.09 and δ = 0.61 are suitable for efficient
generation of PBHs.

We estimate the PBH masses by using Eq. (63) and sum-
marize our results in Table 4. We find when δ = 0.09, the 3σ

value of ns � 0.946 requires �N2 � 19. When δ = 0.61,

it requires �N2 � 20. In the examples of δ = 0.09 and
δ = 0.61 we take the upper limits �N2 = 19 and �N2 = 20,
respectively, and compute the PBH density fraction from
Eq. (66). The results are shown in Fig. 16 where the obser-
vational constraints are included for the reference purposes
only, as they assume the monochromatic PBH mass function.
The density functions of Fig. 16 peak at MPBH ∼ 1020 g and
MPBH ∼ 1018 g when δ = 0.09 and δ = 0.61, respectively.9

7 Conclusions and comments

In this paper, we analyze several supergravity extensions of
the Starobinsky inflationary model. We explore possibilities
of PBHs genesis that could account for part of Cold Dark
Matter. We find that PBHs generation can be efficiently cat-
alyzed by primordial perturbations sourced by the Starobin-
sky scalaron coupled to a new supersymmetric “modulus”
(scalar) field.

Let us summarize our strategy.
We rely on theoretical considerations before compar-

ing them with cosmological observations, as a top-down
approach. As our starting point, we adopt the Starobinsky
inflationary model serving as the theoretical tool and point-
ing out the need of modified gravity in a more fundamen-
tal approach, i.e. beyond considering the Starobinsky model
as merely the best phenomenological fit to CMB observa-
tions. We extend the modified (R + ζ R2) gravity to the
modified supergravity, where the latter is considered as the
candidate (or as the approximation) of a more fundamental
theory of quantum gravity. Amongst the theoretical advan-
tages of modified supergravity are (i) the use of supergravi-
tational couplings only, (ii) predicted new physical degrees
of freedom, and (iii) its formal equivalence to the standard
(matter-coupled) supergravities. However, unlike the stan-
dard supergravities coupled to matter, modified supergrav-
ity can be limited to the supergravity fields alone, where
the new physical scalar naturally accompanies the inflaton
(scalaron), together with metric and gravitino. It happens
because modified supergravity is a higher-derivative theory,
so that the “auxiliary” scalar of the standard (off-shell) super-
gravity multiplet becomes dynamical. We find that modi-
fied supergravity naturally leads to the two-field inflation-
ary models with restricted couplings and a small number
of free parameters. Therefore, local supersymmetry has pre-
dictive power for phenomenology of the early universe cos-
mology via the double-inflation scenario. Indeed, the second
field coupled to the Starobinsky scalaron is not introduced
ad hoc but is predicted by the supergravity extension of the

9 The peak in the PBH density of the case δ = 0.09 can be seen to
deviate from the prediction of Eq. (63) shown in Table 4, likely due to
the relatively broad nature of the peak.
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Starobinsky model. Our strategy is to use those models for a
viable description of Starobinsky inflation together with the
PBH production after inflation. Cosmological inflation and
the PBH production can be considered as probes of super-
gravity for its use as a more fundamental approach, and vice
versa: modified supergravity provides a theoretical input for
the discrimination of phenomenological models of inflation
and PBHs.

We summarize our main results as follows.
A generic modified supergravity Lagrangian in the mani-

festly supersymmetric form (with all couplings included) is
given by Eq. (1). After (Taylor) expanding its potentials N
and F in powers of the scalar curvature superfield R and
keeping only the leading terms (needed for minimal embed-

ding of R + ζ R2 gravity), we arrive at our basic model
defined by Eq. (2), whose relevant bosonic terms (in Jor-
dan frame) are given by Eqs. (3) and (4). As the next step,
we perform the duality transformation of the derived bosonic
terms to Einstein frame, and arrive at the two-scalar NLSM
minimally coupled to gravity with the derived NLSM met-
ric and the scalar potential, given by Eqs. (14) and (15). We
also provide the manifestly supersymmetric (complete) dual-
ity transformation in terms of the superfields, and compute
the corresponding Kähler potential and the superpotential,
given by Eqs. (20) and (21) in the case of the basic model
as an example. Then, we study the critical points (vacua) of
the derived scalar potentials and the inflationary dynamics
of two scalars in the context of two-field inflation, and we

Fig. 14 The power spectrum for various values of δ from 0.1 to 0.2 (on the left side), and from 0.2 to 0.6 (on the right side). The pivot scale is
k∗ = k�N2 with �N2 = 10

Fig. 15 The power spectrum for δ = 0.1 (left) and δ = 0.6 (right) around the pivot scale k∗ = k�N2 when changing �N2

Table 4 The PBH masses
estimated from Eq. (63) for
δ = 0.09 and δ = 0.61, with the
corresponding values of ns and
rmax

�N2 δ = 0.09 δ = 0.61

10 17 20 23 10 17 20 23

MPBH, g 109 1015 1018 1020 109 1015 1018 1020

ns 0.9566 0.9486 0.9443 0.9390 0.9581 0.9504 0.9461 0.9409

rmax 0.005 0.007 0.008 0.010 0.004 0.006 0.007 0.008
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Fig. 16 The PBH fraction in
the two working examples of the
δ-type extension, including
ftot ≈ 1. The solid black curve
corresponds to δ = 0.09,
�N2 = 19, and δc = 0.47; the
dashed black curve corresponds
to δ = 0.61, �N2 = 20, and
δc = 0.4. The observational
constraints are taken from Ref.
[56]

find consistency of the basic model with CMB observations.
However, we also observe that such a scenario can work only
with an extreme fine-tuning of initial conditions for efficient
formation of PBHs.

To overcome that problem, we add the next (subleading)
terms to our basic model within the same modified super-
gravity master Lagrangian (1). There are two such terms, see
Eqs. (53) and (54), so we study them separately. We numer-
ically compute the power spectra, estimate PBH masses
and their density fraction, in both cases. We find that any
of the extended models can simultaneously describe viable
(Starobinsky-type) inflation and the PBH production after
inflation, with limited fine-tuning of the parameters, exhibit-
ing an attractor-type behavior. Actually, the PBH produc-
tion is less sensitive to changes of the parameter γ in the
γ -extension of the N -potential. Next, we confront our the-
oretical predictions for PBHs (as part of DM) with current
observations in Figs. 9 and 16; in the cases of the γ - and δ-
extensions, respectively. When assuming the standard reheat-
ing temperature of 109 GeV with PBHs formation during the
radiation era, the γ -model is apparently ruled out by the CMB
constraints because it predicts ns outside the 3σ limit. It moti-
vates us to consider the δ-extension that predicts a larger ns
within the CMB constraint. It is, therefore, quite possible that
having both the γ - and δ-terms (and, perhaps, even higher
order terms) in the Lagrangian will render our supergravity
model more flexible in accommodating the PBHs DM.

Of course, modified supergravity does not pretend on the
status of an ultimate fundamental theory. However, there are
indications that it may be embedded into superstrings consid-
ered as an ultra-violet complete theory of quantum gravity.
Here it is worthwhile to mention that (i) modified supergrav-
ity always leads to the no-scale Kähler potential (20) that

often arises in superstring compactifications (see e.g., Ref.
[59]), and (ii) there is a possibility of interpreting (some)
modified supergravity theories as the D3-brane worldvolume
theories in type II superstrings [60,61]. Thus, the exploration
of cosmological predictions from modified supergravity pro-
vides a remarkable bridge between quantum gravity on one
side and phenomenology of inflation and PBHs on the other
side.

PBH formation necessarily leads to gravitational waves
(GWs) because large scalar overdensities act as a source for
stochastic GWs background. Frequencies of those GWs can
be directly related to expected PBHs masses and duration
of the second stage of inflation [62]. Those GWs may be
detected in the future ground-based experiments, such as the
Einstein telescope [63] and the global network of GWs inter-
ferometers including advanced LIGO, Virgo and KAGRA
[64], as well as in the space-based GWs interferometers
such as LISA [65], TAIJI (old ALIA) [66], TianQin [67]
and DECIGO [68].
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Appendix A: Supergravity in curved superspace

We follow the notation and conventions of Ref. [39]
with a few obvious modifications. A standard superspace
Lagrangian of chiral superfields �i coupled to supergravity
reads (MPl = 1)

L=
∫

d2�2E
[

3

8
(D2 − 8R)e−K (�i ,�i )/3+W (�i )

]
+h.c.,

(68)

where E is the chiral density superfield, R is the chiral curva-
ture superfield, Dα,Dα̇ are the superspace covariant deriva-
tives with D2 ≡ DαDα and D2 ≡ Dα̇Dα̇ . A (real) Kähler
potential K and a (holomorphic) superpotential W are func-
tions of the superfields, as indicated above.

A chiral superfield can be expanded in terms of its field
components as

� = � + √
2�χ + �2F. (69)

The �-expansion of E and R is given by

2E = e
[
1 + i�σmψm + �2(6X − ψmσmnψn)

]
, (70)

R = X + �

(
−1

6
σmσ nψmn − iσmψmX − i

6
ψmb

m
)

+�2
(

− 1

12
R − i

6
ψmσ nψmn − 4XX − 1

18
bmb

m

+ i

6
∇mb

m + 1

2
ψmψmX + 1

12
ψmσmψnb

n

− 1

48
εabcd

(
ψaσ bψcd + ψaσbψcd

))
, (71)

where e ≡ det(eam) and ψmn ≡ D̃mψn − D̃nψm with the
covariant derivative D̃mψn ≡ ∂mψn + ψnωm . The vector
bm and complex scalar X are known in the literature as the
old-minimal set of supergravity auxiliary fields. In modified
supergravity, those “auxiliary” fields become dynamical (or
propagating) because of the presence of higher-derivatives in
the Lagrangian (see e.g., Ref. [36] for details). In our notation,

the scalar curvature R has the opposite sign compared to that
in Wess–Bagger notation [39].

In the standard supergravity, after eliminating the auxiliary
fields and going to Einstein frame, the bosonic part of the
Lagrangian of matter superfields �i takes the form

e−1L = 1

2
R − Ki j̄∂m�i∂m� j

−eK
(
Ki j̄ DiW D j̄W − 3|W |2

)
, (72)

where K = K (�i , �i ) is the Kähler potential, and W =
W (�i ) is the superpotential, while the same notation is
used for the superfields and their leading field components,
together with the standard definitions

Ki j̄ ≡
∂2K

∂�i∂� j
, Ki j̄ ≡K−1

i j̄
, DiW ≡ ∂W

∂�i
+ W

∂K

∂�i
.

(73)

Appendix B: Estimating the transfer functions and the
isocurvature fraction

Let us consider the case of γ = 1 and �N2 = 10 as an
example. After computing the transfer functions in Eq. (48)
as functions of t2, with t1 being fixed as the time correspond-
ing to 60 e-folds before the end of inflation (it corresponds
to the horizon exit of the largest observable scale of around
k = 10−4 Mpc−1), we find the result shown in Fig. 17.

Having determined TRS and TSS, we compute the isocur-
vature fraction at the end of inflation, i.e. with t2 = tend, and
get

βiso = T 2
SS

1 + T 2
SS + T 2

RS

= O(e−1200), (74)

which is truly negligible.

Fig. 17 The time dependence of the transfer functions
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