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Abstract In this paper, we consider a massive charged
fermionic quantum field and investigate the current densi-
ties induced by a magnetic flux running along the core of
an idealized cosmic string in the background geometry of
a 5-dimensional anti-de Sitter spacetime, assuming that an
extra dimension is compactified. Along the compact dimen-
sion quasi-periodicity condition is imposed on the field with
a general phase. Moreover, we admit the presence of a mag-
netic flux enclosed by the compactified axis. The latter gives
rise to Ahanorov–Bohm-like effect on the vacuum expec-
tation value of the currents. In this setup, only azimuthal
and axial current densities take place. The former presents
two contributions, with the first one due to the cosmic string
in a 5-dimensional AdS spacetime without compact dimen-
sion, and the second one being induced by the compactifica-
tion itself. The latter is an odd function of the magnetic flux
along the cosmic string and an even function of the magnetic
flux enclosed by the compactified axis with period equal to
the quantum flux. As to the induced axial current, it is an
even function of the magnetic flux along the string’s core and
an odd function of the magnetic flux enclosed by the com-
pactification perimeter. For untwisted and twisted field along
compact dimension, the axial current vanishes. The massless
field case is presented as well some asymptotic limits for the
parameters of the model.

1 Introduction

In the context of grand unified theories, a consequence of
the vacuum symmetry breaking phase transitions is the for-
mation of different types of topological defects in the early
Universe [1,2]. In particular, cosmic strings have been receiv-
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ing considerable attention. Although the recent observational
data on the cosmic microwave background (CMB) have ruled
out cosmic strings as a primary source for primordial den-
sity perturbations, they are still possible candidates for the
generation of a variety of interesting physical effects such as
gamma ray bursts [3], high energy cosmic rays [4] and gravi-
tational waves [5]. In addition, cosmic strings have also been
considered in scenarios beyond the standard model of par-
ticles, like in supersymmetry and in string theory approach
[6,7]. More recently, the proposal of a formation mechanism
for cosmic strings in the framework of brane-inflation has
been attracting renewed interest on this type of topological
defects [8].

The simplest theoretical model describes a cosmic string
as an infinitely long and straight object which locally presents
no curvature, except on its core, where it has a delta shaped
curvature tensor [9]. Moreover, a cosmic string in this
model is mainly characterized by a deficit angle on the two-
dimensional sub-space perpendicular to its core. The corre-
sponding nontrivial topology gives rise to a number of inter-
esting physical phenomena. One of these concerns the effect
of a cosmic string on the vacuum structure.

The presence of a cosmic string in anti-de Sitter (AdS)
spacetime provides an even more interesting framework,
given that the combined geometry allows to distinguish the
source of each part in the vacuum expectation values (VEV)
of some observables. An interesting feature of the negative
cosmological constant solution of the General Relativity field
equations, is the fact that it makes possible to solve several
problems exactly as a consequence of its high symmetry,
allowing for the quantization of the fields more easily, besides
providing deep insights into the quantization of the fields in
other curved spacetimes. Furthermore, the AdS spacetime
appears as a ground-state solution of string and supergrav-
ity theories and plays a fundamental role in the context of
the AdS/CFT correspondence, a framework that realizes the
holographic principle, relating the aforementioned funda-
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mental theories with conformal field theories living on their
boundaries [10]. Moreover, the AdS space also appears in
braneworlds scenarios with large extra dimensions, provid-
ing a way to overcome the hierarchy problem between the
gravitational and electroweak mass scales [11].

Another typical ingredient coming from the context of
the above-mentioned fundamental theories, in which AdS
spacetime plays a relevant role, is given by compact extra
dimensions. The latter induce non-vanishing contributions
to the expectation values of physical observables, such as the
energy–momentum tensor, which has not only the energy
density component, but also the stress components (see [12]
and references therein). In this case, for instance, the vac-
uum energy density induced by the extra compact dimensions
offers an explanation for the observed and still unexplained
accelerated expansion of the Universe at recent epoch. In
Kaluza-Klein-type models and in braneworld scenarios, on
the other hand, the dependence of the size of the compact
extra dimension by the vacuum energy density serves as a
mechanism to stabilize fields known as moduli fields [13].

All the above-mentioned ingredients can provide modi-
fications in the vacuum quantum fluctuations of relativistic
fields in curved spacetime. In particular, the induced VEV
of the current density by curved backgrounds with a cos-
mic string has been investigated in Refs. [14–19]. In these
papers the authors have shown that the presence of a mag-
netic flux running along the cosmic string induces vacuum
azimuthal current densities if the ratio of the magnetic flux
by the quantum one has a non-vanishing fractional part. This
is an Aharonov–Bohm-like effect. Moreover, the importance
of investigating the effects of cosmic string on the vacuum
current is because its conical topology increases the magni-
tude of the induced current. In AdS spacetime with compact
dimension, investigations of the vacuum polarizations as well
as induced vacuum currents have been carried out in [20–25]
providing strong motivations to study it.

In the present paper, we are mainly interested in investi-
gating the effects on the vacuum current densities associated
with a charged massive Dirac field arising from the geometry
and topology of a 5-dimensional AdS spacetime, in the pres-
ence of a cosmic string carrying a magnetic flux. Also we
will admit the compactification of the extra dimension and
the existence of a magnetic flux enclosed by the compacti-
fied axis. The non-trivial topology of this compactified extra
dimension, as well as the magnetic fluxes, will give rise to
additional contributions to the VEV of the current densities.

The paper is organized as follows. In the next section we
obtain the mode-functions for a massive charged fermionic
quantum field in the setup considered. In Sect. 3 these mode-
functions are used for the evaluation of the induced azimuthal
current density. By making use of the Abel-Plana summation
formula, the latter is decomposed as the sum of contributions
induced by the cosmic string without compactification, and

a second one induced by compactification itself. For these
contributions we investigate some asymptotic limits of the
model parameters. Toward to the end of this section, we show
that the charge density as well as the currents along the radial
and Poincaré coordinates are zero. In Sect. 4 we calculate the
axial current density and investigate its behavior for some
specific asymptotic limits. Section 5 is devoted for the draw
of the main conclusions about our results. Throughout the
paper, we use natural units G = h̄ = c = 1.

2 Dirac equation in (1+4)

In this section we will obtain the fermionic wave-function
associated to a massive charged quantum field, ψ(x), in the
background geometry of a (1 + 4)-dimensional AdS space-
time in the presence of a cosmic string and a compactified
extra dimension. The mode-summation approach is used and
the mode-functions will be needed in the calculation of the
current densities.

2.1 Setup

By using cylindrical coordinates, the geometry associated
with a cosmic string in a (3+1)-dimensional AdS spacetime
is given by the line element below:

ds2 = e−2y/a[dt2 − dr2 − r2dφ2] − dy2 , (2.1)

where r � 0 and φ ∈ [0, 2π/q] define the coordinates on the
conical geometry, (t, y) ∈ (−∞, ∞), and the parameter a
determines the curvature scale of the background spacetime.
In the above coordinate system the string is along the y−axis.
The parameter q ≥ 1 defines the planar angle deficit on the
two-dimensional surface orthogonal to the string. Using the
Poincaré coordinate defined by w = aey/a , the line element
above can be conformally related to the line element associ-
ated with a cosmic string in Minkowski spacetime:

ds2 =
( a

w

)2 [dt2 − dr2 − r2dφ2 − dw2] . (2.2)

For the new coordinate one has w ∈ [0, ∞). Specific values
for this coordinate deserve to be mentioned: w = 0 and w =
∞ correspond to the AdS boundary and horizon, respectively.

In order to write the line element (2.2) in a five-
dimensional AdS spacetime, we adopt the standard proce-
dure, by adding an extra spatial coordinate [21]:

ds2 =
( a

w

)2
[

dt2 − dr2 − r2dφ2 − dw2 − dz2
]

. (2.3)
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The cosmological constant, �, and the Ricci scalar, R, are
related with the scale a by the formulas

� = − 6

a2 , R = −20

a2 . (2.4)

The dynamics of a spinorial quantum field in curved space-
time coupled with a gauge field, Aμ, is given by the following
equation

iγ μ(∇μ+ieAμ)ψ−s̃mψ = 0, ∇μ = ∂μ+�μ, s̃ = ±1 ,

(2.5)

where γ μ are the Dirac matrices in curved spacetime and �μ

is the spin connection. Moreover, the two possible values of
s̃ correspond to the two irreducible representations of Dirac
matrices in spacetimes with odd number of dimensions. Both
sets of matrices in curved spacetime are related to the flat
ones, γ (a), by the relations,

γ μ = eμ

(a)γ
(a), �μ = 1

4
γ (a)γ (b)eν

(a)e(b)ν;μ. (2.6)

The tetrad basis, eμ

(a), satisfies the relation eμ

(a)e
ν
(b)η

ab = gμν ,

with ηab being the Minkowski spacetime metric tensor.
Note that we will also consider the presence of a con-

stant vector potential along the extra compact dimension.
This compactification is implemented by assuming that z ∈
[0, L], and the matter field obeys the quasiperiodicity con-
dition below,

ψ(t, r, φ,w, z + L) = e2π iβψ(t, r, φ,w, z), (2.7)

where 0 ≤ β ≤ 1. The special cases β = 0 and β = 1/2
correspond to the untwisted and twisted fields, respectively,
along the z-direction.

The set of Dirac matrices in flat spacetime assumed in this
paper is the following:

γ (0) = −i

(
0 1

−1 0

)
, γ (a) = −i

(
σa 0
0 −σa

)
,

with a = 1, 2, 3, γ (4) = i

(
0 1
1 0

)
, (2.8)

where σ1, σ2, σ3 are the Pauli matrices. It is easy to verify that
the above matrices obey the Clifford algebra, {γ (a), γ (b)} =
2ηab. We take the tetrad basis as follows:

eμ

(a) = w

a

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 cos(qφ) − sin(qφ)/r 0 0
0 sin(qφ) cos(qφ)/r 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

(2.9)

where the index a identifies the rows of the matrix. With this
choice, the gamma matrices take the form

γ 0 = w

a
γ (0) , γ l = −i

w

a

(
σ l 0
0 −σ l

)
, γ 4 = i

w

a

(
0 1
1 0

)

(2.10)

where we have introduced the 2×2 matrices for l = (r, φ,w):

σ r =
(

0 e−iqφ

eiqφ 0

)
, σφ = − i

r

(
0 e−iqφ

−eiqφ 0

)
,

σw =
(

1 0
0 −1

)
. (2.11)

For the spin connection we have:

�μ = 1

2a
γ (3)γμ + (1 − q)

2
γ (1)γ (2)δφ

μ , �w = 0, (2.12)

and its contraction with the Dirac matrices in curved space-
time is given by,

γ μ�μ = − 2

w
γ w + 1 − q

2r
γ r . (2.13)

Thus the Dirac equation takes the following form:

(
γ μ(∂μ + ieAμ)− 2

w
γ w + 1 − q

2r
γ r + i s̃m

)
ψ = 0. (2.14)

As we have already mentioned, in this paper we want to
consider the presence of a vector potential along the string’s
core and enclosed by the compact dimension. In this case we
assume

Aμ = (0, 0, Aφ, 0, Az) . (2.15)

For positive energy solutions, assuming the time-dependence
of the eigenfunction in the form e−i Et and the boost symme-
try in the coordinate z represented by eigenfunctions in the
form eikz z , we may decompose the spinor field, ψ , as
(

σ l∂l − 2

w
σw + 1 − q

2r
σ r + ieAφσφ − s̃ma

w

)
ϕ

−i[E + (kz + eAz)]χ = 0,(
σ l∂l − 2

w
σw + 1 − q

2r
σ r + ieAφσφ + s̃ma

w

)
χ

+i[(kz + eAz) − E]ϕ = 0, (2.16)

where ϕ and χ are the upper and lower components of the
spinor field, respectively. Now taking the function χ from
the second equation into the first one, we get the following
second order differential equation for the ϕ:
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{
∂2

r + 1

r
∂r + 1

r2

[
∂φ + ieAφ − i(1 − q)

2
σw

]2

+ ∂2
w

− 4

w
∂w + 6 − (s̃ma)2 − (−1)l s̃ma

w2

+[E2 − k̃2
z

]}
ϕ = 0 , (2.17)

where we have introduced the notation k̃z = kz + eAz . In
order to find the solution for (2.17), we may use the follow-
ing Ansatz, compatible with the cylindrical symmetry of the
problem:

ϕ =
(

C1 R1(r)W1(w)eiqn1φ

C2 R2(r)W2(w)eiqn2φ

)
, (2.18)

with C1 and C2 being two arbitrary constants. Plugging this
Ansatz into (2.17), we can see that the solution of the radial
equation which is regular on the string is expressed in terms
of the Bessel function of the first kind, Rl = Jβl (λr), where
its order is given by

β1 = |q(n1+α)−(1−q)/2| , β2 = |q(n2+α)+(1−q)/2| ,
(2.19)

with nl = 0,±1,±2, . . . Note that we have introduced the
notation α = eAφ/q = −�φ/�0, where �0 = 2π/e is
the quantum flux. As to the differential equation associated
with the Poincaré coordinate, the general solution is given in
terms of a linear combination of the functions w5/2 Jνl (pw)

and w5/2Yνl (pw), where Yν(x) is the Neumann function and

νl = |s̃ma + (−1)l/2|. (2.20)

Considering ma ≥ 1/2, the Neumann function must be
excluded according to the normalizability conditions of the
mode functions, and therefore, we shall adopt the solution

Wl(w) = w5/2 Jνl (pw) . (2.21)

The energy associated to the modes is given by

E =
√

λ2 + p2 + k̃2
z . (2.22)

For sake of simplicity, from now on we shall assume the
representation of the Clifford algebra corresponding to s̃ = 1.

In short notation, the solution for the upper component is
written as

ϕl = Clw
5/2 Jβl (λr)Jνl (pw)eiqnlφ. (2.23)

Taking (2.23) into the first equation in (2.16), after some
intermediate steps, we obtain

χ = w5/2
(

B1 Jβ1(λr)Jν1(pw)eiqn1φ

B2 Jβ2(λr)Jν2(pw)eiqn2φ

)
(2.24)

with the relations

n2 = n1 + 1 , β2 = β1 + εn1, (2.25)

where εn = 1 for n > −α and εn = −1 for n < −α. The
coefficients B1,2 in (2.24) are given by

B1 = i

E + k̃z
(pC1−εnλC2) , B2 = i

E + k̃z
(εnλC1+pC2) .

(2.26)

We can see from the upper and lower spinor components
given by (2.23) and (2.24), respectively, that the wave func-
tion, ψ , is an eigenfunction of the total angular momentum
projected along the direction of the string:

Ĵwψ =
(

− i∂φ + q

2
�w

)
ψ , �w =

(
σw 0
0 σw

)
, (2.27)

where

j = n1 + 1/2 , j = ±1/2,±3/2, . . . . (2.28)

Note that the components of the fermionic wave function
obtained have four coefficients and two equations relating
them, given in (2.26). The normalization condition on the
wave function yields an additional relation. Thus, one of the
coefficients remains arbitrary and in order to determine this
coefficient some additional condition should be imposed on
the coefficients. The imposition of this condition comes from
the fact that the quantum numbers σ = (λ, p, j, kz) do not
specify the fermionic wave function uniquely and some addi-
tional quantum number is required.

In order to specify the second constant we will require the
following relation between the upper and lower components
[26]:

χ1 = κϕ1, χ2 = −ϕ2/κ. (2.29)

From the expressions for the spinor components we find the
eigenvalues of the parameter κ ,

κ = κs =
−k̃z + s

√
k̃2

z + p2

p
, s = ±1, (2.30)

and the relation

C2 = −εnκs

λ

(
E − s

√
k̃2

z + p2

)
C1, (2.31)
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for the coefficients in (2.23). Note that now the fermionic
wave function is uniquely specified by the set of quantum
numbers σ = (λ, p, j, kz, s). The eigenvalues of the quan-
tum number kz are determined from the quasi-periodicity
condition (2.7):

kz = kl = 2π(l + β)/L , with l = 0,±1,±2, . . . . (2.32)

On the basis of all considerations above, the positive-
energy fermionic wave function can be expressed as

ψ(+)
σ (x) = C (+)

σ e−i Et+ikl zw5/2

×

⎛
⎜⎜⎜⎝

Jβ j (λr)Jν1(pw)

−ε jκsb(+)
s Jβ j +ε j (λr)Jν2(pw)eiqφ

iκs Jβ j (λr)Jν2(pw)

iε j b
(+)
s Jβ j +ε j (λr)Jν1(pw)eiqφ

⎞
⎟⎟⎟⎠ eiq( j−1/2)φ ,

(2.33)

where ε j = 1 for j > −α and ε j = −1 for j < −α, and the
order of the Bessel function is defined as:

β j = q| j + α| − ε j/2. (2.34)

Note that ε j = εn . The energy is expressed in terms of λ, p
and k̃l by the relation

E =
√

λ2 + p2 + k̃2
l , (2.35)

where k̃l = 2π(l + β̃)/L , with

β̃ = β + eAz L/(2π) = β − �z/�0. (2.36)

In (2.33) and in what follows below, we use the notation

b(±)
s =

E ∓ s
√

k̃2
l + p2

λ
. (2.37)

Note that one has the relation b(+)
s b(−)

s = 1.
The coefficient C (+)

σ in (2.33) is determined from the nor-
malization condition

∫
d3x

√
γ (ψ(+)

σ )†ψ
(+)

σ ′ = δσ,σ ′ , (2.38)

where γ is the determinant of the spatial metric. The delta
symbol on the right-hand side is understood as the Dirac
delta function for continuous quantum numbers (λ, p) and
the Kronecker delta for discrete ones ( j, s, l). Taking the
eigenspinor in (2.33) into (2.38) and using the value of the

standard integral involving the products of the Bessel func-
tions [27], we find

|C (+)
σ |2 = sqp2λ2

8πa4L Eκsb(+)
s

√
k̃2

l + p2
. (2.39)

The negative-energy fermionic mode function can be
obtained in a similar way. The corresponding result is given
by the expression:

ψ(−)
σ (x) = C (−)

σ ei Et+ikl zw5/2

×

⎛
⎜⎜⎜⎝

Jβ j (λr)Jν1(pw)

ε jκsb(−)
s Jβ j +ε j (λr)Jν2(pw)eiqφ

iκs Jβ j (λr)Jν2(pw)

−iε j b
(−)
s Jβ j +ε j (λr)Jν1(pw)eiqφ

⎞
⎟⎟⎟⎠ eiq( j−1/2)φ ,

(2.40)

and the normalization constant is given by the relation

|C (−)
σ |2 = sqp2λ2

8πa4L Eκsb(−)
s

√
k̃2

l + p2
. (2.41)

3 Fermionic current density

The VEV of the fermionic current density, 〈 jμ〉 = eψ̄γ μψ ,
can be evaluated by using the mode sum formula,

〈 jμ〉 = e

2

∑
σ

[ψ̄(−)
σ γ μψ(−)

σ − ψ̄(+)
σ γ μψ(+)

σ ] . (3.1)

where ψ̄
(±)
σ = ψ

(±)†
σ γ (0) is the Dirac adjoint, and the sum-

mation over σ is a compact notation defined below,

∑
σ

=
∫ ∞

0
dλ

∫ ∞

0
dp
∑

s=±1

∑
j=±1/2,...

∞∑
l=−∞

. (3.2)

As we will see, this VEV is a periodic function of the mag-
netic fluxes �φ and �z with the period equal to the quantum
flux. Thus, it is convenient to express the parameter α as

α = n0 + α0, (3.3)

where n0 is an integer number and |α0| < 1/2.

3.1 Charge density, current densities in the radial and
w-directions

Let us compute the VEV of the charge density

ρ(x) = 〈 j0(x)〉 = ew

2a

∑
σ

[ψ(−)†
σ ψ(−)

σ −ψ(+)†
σ ψ(+)

σ ] . (3.4)
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Taking (2.33) and (2.40) into (3.4), we arrive directly to a
vanishing charge density. Thus, there is no charge density
induced.

As to the VEV of the radial current, substituting the mode
functions for positive and negative-energy as well the Dirac
matrices given in (2.10) and (2.11) into (3.1), we can see that
there appears a cancellation between the terms. Thus, there
is no induced radial current. A similar analysis also leads to
a vanishing induced current density along the coordinate w.

3.2 Azimuthal current

The VEV of the azimuthal current is given by

〈 jφ〉 = e

2

∑
σ

[ψ̄(−)
σ γ φψ(−)

σ − ψ̄(+)
σ γ φψ(+)

σ ] . (3.5)

Substituting the positive and negative wave functions into the
above expression, we get

〈 jφ〉 = − qew6

2π La5r

∫ ∞

0
dλ

∫ ∞

0
dp

×
∑

j

ε j pλ2 Jβ j (λr)Jβ j +ε j (λr)[J 2
ν2

(pw) + J 2
ν1

(pw)]

×
∞∑

l=−∞

1√
λ2 + p2 + [2π(l + β̃)/L]2

, (3.6)

where the sum over s has been already performed and it
has yielded an overall factor of 2. In order to sum over the
quantum number l, we shall apply the Abel-Plana formula in
the form [28]

∞∑
l=−∞

g(l + β̃) f (|l + β̃|) =
∫ ∞

0
du[g(u) + g(−u)] f (u)

+i
∫ ∞

0
du[ f (iu) − f (−iu)]

∑
n=±1

g(inu)

e2π(u+inβ̃) − 1
,

(3.7)

taking g(u) = 1 and

f (u) = 1√
(2πu/L)2 + λ2 + p2

. (3.8)

As a result we may decompose the induced azimuthal current
as

〈 jφ〉 = 〈 jφ〉cs + 〈 jφ〉c (3.9)

where the first term, 〈 jφ〉cs, comes from the first integral on
the right-hand side of (3.7) and corresponds to the induced
azimuthal current density in the geometry of a cosmic string
without compactification. The second contribution, 〈 jφ〉c, is

induced by the compactification. As we shall see the latter
vanishes in the limit L → ∞.

Combining (3.6) and (3.7), we get

〈 jφ〉cs = − qew6

2π2a5r

∫ ∞

0
dλ

∫ ∞

0
dp

×
∑

j

ε j pλ2 Jβ j (λr)Jβ j +ε j (λr)[J 2
ν2

(pw) + J 2
ν1

(pw)]

×
∫ ∞

0

dx√
λ2 + p2 + x2

, (3.10)

where we have introduced the variable x = 2πu/L . Using
the following integral representation

1√
λ2 + p2 + x2

= 2√
π

∫ ∞

0
dse−s2(λ2+p2+x2) , (3.11)

we can carry out the integrations over all variables except
over s, obtaining

〈 jφ〉cs = − qew6

4π2a5r6

∫ ∞

0
dyy2e−(1+w2/r2)y

×
[

Iν2

(
w2

r2 y

)
+ Iν1

(
w2

r2 y

)]

×[I(q, α0, y) − I(q,−α0, y)
]
, (3.12)

where we have introduced a new variable y = r2/2s2 and
the function I(q, α0, y) is given by [29]

I(q, α0, y) = ey

q
− 1

π

∫ ∞

0
dz

e−y cosh z f (q, α0, z)

cosh(qz) − cos(qπ)

+ 2

q

p∑
k=1

(−1)k cos[2πk(α0 − 1/2q)]ey cos(2πk/q) ,

(3.13)

with 2p < q < 2p + 2 and with the notation

f (q, α0, z) = cos[qπ(1/2 − α0)] cosh[(qα0 + q/2 − 1/2)z]
− cos[qπ(1/2 + α0)] cosh[(qα0 − q/2 − 1/2)z] .

(3.14)

Using the formula (3.13), after the integration over y with
the help of [27], (3.12) can be presented in the form

〈 jφ〉cs = − 8e

(2π)5/2a5

⎡
⎣

[q/2]∑′

k=1

(−1)k sin(πk/q) sin(2πα0k)Z(uk)

+ q

π

∫ ∞

0
dz

cosh(z)g(q, α0, 2z)

cosh(2qz) − cos(qπ)
Z(uz)

]
, (3.15)

where [q/2] represents the integer part of q/2 and the prime
on the sign of the summation means that in the case q = 2p
the term k = q/2 should be taken with the coefficient 1/2.
Moreover, the function g(q, α0, z) is defined as
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Fig. 1 The VEV of the induced azimuthal current without compacti-
fication in (3.15) is plotted, in units of a5e−1, as a function of α0 for
r/w = 1, ma = 5, q = 1.5, 2.5 and 3.5

g(q, α0, z) = cos[qπ(1/2 + α0)] cosh[q(1/2 − α0)z]
− cos[qπ(1/2 − α0)] cosh[q(1/2 + α0)z] .

(3.16)

In (3.15) we have introduced the function

Z(u) =
∑

i=1,2

Fνi (u) , with Fνi = e−i5π/2 Q5/2
νi −1/2(u)

(u2 − 1)5/4
,

(3.17)

where Qν
μ(z) represents the Legendre Associated Functions

of second kind [27]; moreover, we have defined the new vari-
ables

uk = 1 + 2(r/w)2 sin2(πk/q) ,

uz = 1 + 2(r/w)2 cosh2(z) . (3.18)

Let us now consider some special cases of the function Z(u)

defined in (3.17). For values of ma ≥ 1/2, according to
(2.20), we have the relation ν2 = ν1 + 2. In this case, for
large values of the argument, u 
 1, the function Z(u) is
simplified and to the leading term takes the form:

Z(u) ≈
√

2π(1 + ν2)ν2

2ν2 uν2+2 . (3.19)

Now considering m = 0, it implies from (2.20) that ν1 =
ν2 = 1/2. In this case, simplifications can be carried out and
Eq. (3.17) may be presented as

Z(u) = 3
√

π

4

1

(u − 1)5/2
. (3.20)

In Fig. 1 we plot the string contribution to the azimuthal
current as function of the magnetic flux along the string for
q = 1.5, 2.5 and 3.5. As we can see, 〈 jφ〉cs is an odd function
of α0 and has its amplitude depending on the deficit angle
caused by the presence of the string.

Fig. 2 The VEV of the string contribution to the induced azimuthal
current in Eq. (3.15) is plotted, in units of a5e−1, as a function of r/w
for α0 = 0.25, ma = 5, q = 1.5, 2.5 and 3.5

Now we turn our attention to the investigation of (3.15) for
small and large values of the ratio r/w by using the asymp-
totic expressions from Ref. [12]. For points close to the string,
r/w � 1, we have the following expression:

〈 jφ〉cs ≈ − 3e

(4π)2

(
w

ar

)5
⎡
⎣

[q/2]∑′

k=1

(−1)k sin(2πα0k)

sin4(πk/q)

+ q

π

∫ ∞

0
dz

cosh−4(z)g(q, α0, 2z)

cosh(2qz) − cos(qπ)

⎤
⎦ . (3.21)

From the above expression we can see that this VEV diverges
as (w/r)5. On the other hand, for points far away from the
string, r/w 
 1, and values of ma ≥ 1/2, we find by plug-
ging (3.19) into (3.15), the following asymptotic expression

〈 jφ〉cs ≈ −ν2(1 + ν2)e

22ν2+1π2a5

(
w

r

)2ν2+4

×
⎡
⎣

[q/2]∑′

k=1

(−1)k sin(2πα0k)

sin2ν2+3(πk/q)

+ q

π

∫ ∞

0
dz

cosh−(2ν2+3)(z)g(q, α0, 2z)

cosh(2qz) − cos(qπ)

]
.

(3.22)

We can see from this expression that in this regime the cosmic
string influence on the intensity of the azimuthal current starts
to fade and the decay behavior depends on the mass of the
particle. In Fig. 2 is displayed the string contribution without
compactification as function of the proper distance in units
of a, r/w, for different values of q. This plot shows that
this contribution diverges on the string, r = 0, as well as it
vanishes for distant points with its decay behavior depending
on q.
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Now let us develop the contribution induced by the com-
pactification:

〈 jφ〉c = − ieqw6

2π2a5r

∫ ∞

0
dλ

∫ ∞

0
dp

×
∑

j

ε j pλ2 Jβ j (λr)Jβ j +ε j (λr)[J 2
ν1

(pw) + J 2
ν2

(pw)]

×
∫ ∞
√

λ2+p2

dx√
x2 − λ2 − p2

×
(

1

eLx+2π i β̃ − 1
+ 1

eLx−2π i β̃ − 1

)
. (3.23)

In order to proceed with the calculation, we shall use the
series expansion, (eu − 1)−1 = ∑∞

l=1 e−lu in the above
expression. Taking this expansion into (3.23), we can per-
form the integral over x with the help of [27]. After some
intermediate steps, we obtain

〈 jφ〉c = − eqw6

π2a5r

∞∑
l=1

cos(2πlβ̃)

×
∑

j

ε j

∫ ∞

0
dλλ2 Jβ j (λr)Jβ j +ε j (λr)

×
∫ ∞

0
dpp[J 2

ν1
(pw) + J 2

ν2
(pw)]K0(l L

√
λ2 + p2) .

(3.24)

Using the following integral representation for the Macdon-
ald function [30],

Kν(x) = 1

2

(
x

2

)ν ∫ ∞

0
ds

e−s−x2/4s

sν+1 , (3.25)

we may write (3.24) as

〈 jφ〉c = − eqw6

2π2a5r

∞∑
l=1

cos(2πlβ̃)

∫ ∞

0
ds

e−s

s

∑
j

ε j

×
∫ ∞

0
dλλ2 Jβ j (λr)Jβ j +ε j (λr)e−l2 L2λ2/(4s)

×
∫ ∞

0
dpp[J 2

ν1
(pw) + J 2

ν2
(pw)]e−l2 L2 p2/(4s).

(3.26)

Performing the integrations over λ and p with the help of
[27], we get

〈 jφ〉c = − eqw6

2π2a5r6

∞∑
l=1

cos(2πlβ̃)

×
∫ ∞

0
dyy2e−[1+w2/r2+(l L)2/2r2]y

×
[

Iν1

(
w2

r2 y

)
+ Iν2

(
w2

r2 y

)]

×[I(q, α0, y) − I(q,−α0, y)] , (3.27)

Fig. 3 The azimuthal current induced by compactification given in
(3.28) is plotted in units of a5e−1 as function of β̃ and α0 for fixed
r/w = 1, ma = 5 and q = 2.5

where we have introduced the variable y = 2sr2/(l L)2.
Using the representation given in (3.13) for the function
I(q,±α0, y), we can perform the integral over y, arriving to
the expression

〈 jφ〉c = − 16e

(2π)5/2a5

∞∑
l=1

cos(2πlβ̃)

×
⎡
⎣

[q/2]∑′

k=1

(−1)k sin(πk/q) sin(2πα0k)Z(ulk)

+ q

π

∫ ∞

0
dz

cosh(z)g(q, α0, 2z)

cosh(2qz) − cos(qπ)
Z(ulz)

⎤
⎦ ,

(3.28)

where we have introduced the variables

ulk = 1 + (l L)2 + 4r2 sin2(πk/q)

2w2 ,

ulz = 1 + (l L)2 + 4r2 cosh2(z)

2w2 . (3.29)

We can see that (3.15) and (3.28) are odd functions of
α0. This means that if we change α0 → −α0 the azimuthal
current density changes its sign. In fact this changing corre-
sponds to invert the direction of the magnetic flux along the
string, implying also in a reversion of the induced azimuthal
current. Moreover, (3.28) is an even function of β̃. The rea-
son for this behavior is because it is not expected to invert
the direction of the azimuthal current due to a changing of
the magnetic flux enclosed by the compactified dimension.

In Fig. 3, 〈 jφ〉c is plotted in units of a5e−1 as function of α0

and β̃, for ma = 5 and q = 2.5. This plot exhibits the above
mentioned characteristics of the induced azimuthal current
density.
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On the string’s core, r = 0, 〈 jφ〉c is finite and takes the
form:

〈 jφ〉c|r=0 = − 16e

(2π)5/2a5

∞∑
l=1

cos(2πlβ̃)Z(1 + (l L)2/2w2)

×
⎡
⎣

[q/2]∑′

k=1

(−1)k sin(πk/q) sin(2πα0k)

+ q

π

∫ ∞

0
dz

cosh(z)g(q, α0, 2z)

cosh(2qz) − cos(qπ)

⎤
⎦ . (3.30)

Combining (3.15) and (3.28), we may write the total
azimuthal current density as

〈 jφ〉 = − 16e

(2π)5/2a5

∞∑
∗

l=0

cos(2πlβ̃)

×
⎡
⎣

[q/2]∑′

k=1

(−1)k sin(πk/q) sin(2πα0k)Z(ulk)

+ q

π

∫ ∞

0
dz

cosh(z)g(q, α0, 2z)

cosh(2qz) − cos(qπ)
Z(ulz)

⎤
⎦ , (3.31)

where the asterisk sign in the summation over l in (3.31)
indicates that the term l = 0 must be halved.

For a massless charged fermion field we have ν1 = ν2 =
1/2. Thus, taking (3.20) into (3.31), the total azimuthal cur-
rent is simplified and takes the form

〈 jφ〉 = − 12e

π2 L5

(
w

a

)5
⎡
⎣

[q/2]∑′

k=1

(−1)k sin(πk/q) sin(2πα0k)V (β̃, ρk)

+ q

π

∫ ∞

0
dz

cosh(z)g(q, α0, 2z)

cosh(2qz) − cos(qπ)
V (β̃, τ (z))

⎤
⎦ , (3.32)

where we have introduced the function

V (β̃, x) =
∞∑

∗
l=0

cos(2πβ̃l)

(l2 + x2)5/2
, (3.33)

in the integrand of (3.32), with the corresponding arguments
defined as

ρk = 2r sin(πk/q)

L
, τ (z) = 2r cosh(z)

L
. (3.34)

The summation over l can be developed with the help of [27].
So, after some intermediate steps, we obtain:

V (β̃, x) = π2 cosh(2πβ̃x)

4x2 sinh2(πx)

+π
cosh[π(1 − 2β̃)x] + 2πβ̃x sinh[π(1 − 2β̃)x]

4x3 sinh(πx)
,

(3.35)

for 0 � β̃ � 1.
At large lengths of the compact extra dimension, L/w 


1, and for ma ≥ 1 we have by plugging (3.19) into (3.28),
the following expression

〈 jφ〉c ≈ −16ν2(ν2 + 1)e

π2a5

(
w

L

)2ν2+4 ∞∑
l=1

cos(2πlβ̃)

×
⎧
⎨
⎩

[q/2]∑′

k=1

(−1)k sin(πk/q) sin(2πα0k)(
l2 + ρ2

k

)ν2+2

+ q

π

∫ ∞

0
dz

cosh(z)g(q, α0, 2z)

[cosh(2qz) − cos(qπ)][l2 + τ 2(z)
]ν2+2

⎫
⎬
⎭ .

(3.36)

From the above equation we note that the azimuthal current
induced by the compactness starts to fade for large lengths
of the compact dimension, and therefore, in this regime, the
total azimuthal current is dominated by the string induced
contribution.

To conclude this section, we turn our focus to the consid-
eration of the Minkowskian asymptotic limit. In this case,
we consider a → ∞ for fixed value of the coordinate y.
As a consequence ma 
 1 and the coordinate w goes like
w ≈ a+y, such that the functionZ(u) assumes the following
form: [25]

Z(u) = 2m5/2a5 K5/2(mu)

u5/2
, (3.37)

where Kν(x) is the Macdonald function. Taking this result
into (3.31), after a few simplifications, we get the following
expression:

〈 jφ〉M ≈ −e

(
2m

π L

)5/2 ∞∑
∗

l=0

cos(2πlβ̃)

×
⎧⎨
⎩

[q/2]∑′

k=1

(−1)k sin(πk/q) sin(2πα0k)
K5/2(mL

√
l2 + ρ2

k )

(l2 + ρ2
k )5/4

+ q

π

∫ ∞

0
dz

cosh(z)g(q, α0, 2z)

cosh(2qz) − cos(qπ)

K5/2(mL
√

l2 + τ 2(z))

[l2 + τ 2(z)]5/4

⎫⎬
⎭ .

(3.38)
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4 Induced current along the compactified extra
dimension

In this section, we want to analyze the VEV of the induced
current density along the compactified axis, namely axial
current. As we are going to see, this VEV goes to zero in the
limit L → 0.

The current density induced in the compactified extra
dimension is calculated by

〈 j z〉 = e

2

∑
σ

[ψ̄(−)
σ γ zψ(−)

σ − ψ̄(+)
σ γ zψ(+)

σ ] . (4.1)

Plugging (2.33) and (2.40) into the above expression, we
obtain

〈 j z〉 = qew6

8π La5

∫ ∞

0
dλ

∫ ∞

0
dp
∑

s=±1

∑
j

×
∞∑

l=−∞

λ2 p2

Eκs

√
k̃2

l + p2
s[J 2

ν1
(pw) − κ2

s J 2
ν2

(pw)]

×[b(+)
s J 2

β j +ε j
(λr) − b(−)

s J 2
β j

(λr)
]
. (4.2)

Summing over s, we obtain

〈 j z〉 = − qew6

4π La5

∫ ∞

0
dλ

∫ ∞

0
dp
∑

j

×
∞∑

l=−∞
λp

{
k̃l

E
[J 2

ν1
(pw) + J 2

ν2
(pw)]

×[J 2
β j

(λr) + J 2
β j+ε j

(λr)
]

+[J 2
ν1

(pw) − J 2
ν2

(pw)][J 2
β j

(λr) − J 2
β j+ε j

(λr)
]}

.

(4.3)

Note that this expression is divergent due to the second term
inside the integrand, and therefore some regularization pro-
cedure is necessary. We shall assume that a cutoff function
is introduced in the aforementioned divergent term without
explicitly writing it, since the explicit form of this function
is not relevant for this discussion. Moreover, using the Abel-
Plana formula given in (3.7), we can see that this term van-
ishes.

For the remaining term, on the other hand, we take g(u) =
2πu/L and the expression given in (3.8) for the function
f (u). We can see that the first integral on right-hand side
of (3.7) is zero, because g(u) is an odd function. Thus, the
only contribution for the axial current comes from the second
integral in (3.7):

〈 j z〉 = − iqew6

4π2a5

∫ ∞

0
dpp[J 2

ν1
(pw) + J 2

ν2
(pw)]

×
∑

j

∫ ∞

0
dλλ

[
J 2
β j

(λr) + J 2
β j+ε j

(λr)
]

×
∫ ∞
√

λ2+p2

dxx√
x2 − λ2 − p2

×
(

1

eLx+2π i β̃ − 1
− 1

eLx−2π i β̃ − 1

)
, (4.4)

where we have introduced the variable x = 2πu/L . As
before, the next step is to use the expansion (eu − 1)−1 =∑∞

l=0 e−lu in the above expression, and with the help of [27]
the integral over x can be performed, with the result given in
terms of the Macdonald function, K1(z),

〈 j z〉 = − qew6

2π2a5

∞∑
l=1

sin(2πlβ̃)

×
∫ ∞

0
dpp[J 2

ν1
(pw) + J 2

ν2
(pw)]

×
∑

j

∫ ∞

0
dλλ

[
J 2
β j

(λr)

+J 2
β j+ε j

(λr)
]√

λ2 + p2 K1(l L
√

λ2 + p2) . (4.5)

Using the integral representation for the Macdonald function
already given in (3.25) and the fact that Kν(z) = K−ν(z),
we can write

〈 j z〉 = − qew6

2π2 La5

∞∑
l=1

sin(2πlβ̃)

l

×
∫ ∞

0
dse−s

∫ ∞

0
dppe−(l L)2 p2/4s [J 2

ν1
(pw) + J 2

ν2
(pw)]

×
∑

j

∫ ∞

0
dλλe−(l L)2λ2/4s[J 2

β j
(λr) + J 2

β j+ε j
(λr)

]
.

(4.6)

Performing the integrals over λ and p with the help of [27],
we obtain

〈 j z〉 = − qew6L

4π2a5r6

∞∑
l=1

l sin(2πlβ̃)

×
∫ ∞

0
dyy2e−[1+(l L)2/2r2+w2/r2)]y

×
[

Iν1

(
w2

r2 y

)
+ Iν2

(
w2

r2 y

)]

×[I(q, α0, y) + I(q,−α0, y)
]
, (4.7)

where we have introduced the new variable y = 2sr2/(l L)2.
Using again (3.13) for the function I(q, α0, y), we can eval-
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uate the integral over y, obtaining

〈 j z〉 = − 8eL

(2π)5/2a5

∞∑
l=1

l sin(2πlβ̃)

×
⎡
⎣

[q/2]∑′

k=0

(−1)k cos(πk/q) cos(2πα0k)Z(ulk)

+ q

π

∫ ∞

0
dz

sinh(z)h(q, α0, 2z)

cosh(2qz) − cos(qπ)
Z(ulz)

⎤
⎦ , (4.8)

where we have introduced the function

h(q, α0, z) = cos[qπ(1/2 + α0)] sinh[q(1/2 − α0)z]
+ cos[qπ(1/2 − α0)] sinh[q(1/2 + α0)z] .

(4.9)

Note that the prime on the sum sign means that the term
with k = 0 should be halved. The VEV in (4.8) may be also
represented as

〈 j z〉 = 〈 j z〉(0) + 〈 j z〉(q,α0) , (4.10)

The first term, 〈 j z〉(0), does not depend on α0 and q, and
it corresponds to the current density induced only by com-
pactification in AdS spacetime. For this contribution one has

〈 j z〉(0) = − 4qeL

(2π)5/2a5

∞∑
l=1

l sin(2πlβ̃)Z(ul0) , (4.11)

where ul0 is given in the first relation of (3.18) for k = 0.=
The second term in (4.10) is given by

〈 j z〉(q,α0) = − 8eL

(2π)5/2a5

∞∑
l=1

l sin(2πlβ̃)

×
⎡
⎣

[q/2]∑′

k=1

(−1)k cos(πk/q) cos(2πα0k)Z(ulk)

+ q

π

∫ ∞

0
dz

sinh(z)h(q, α0, 2z)

cosh(2qz) − cos(qπ)
Z(ulz)

⎤
⎦ .

(4.12)

From (4.12) one can see that this contribution for the axial
current density vanishes, for the special cases of untwisted
and twisted field configuration, in the absence of magnetic
flux enclosed by the compactified extra dimension, and more
in general for half-integer values of β̃. Another feature of this
current density is that it is an odd function of β̃. It means that
for the case β = 0 (untwisted field), for example, the axial
current density changes its sign if the magnetic flux enclosed
by the compacitifed dimension has its direction inverted.

Fig. 4 The VEV of the axial current induced by the compactification
in Eq. (4.12) is plotted, in units of a5e−1, for q = 2.5, r/w = 1 and
ma = 5

Besides, we note that the axial current is an even function
of α0. In fact, as an opposite situation of the azimuthal cur-
rent, it is not expect that reversing the magnetic flux along
the string, the induced axial current will be affected.

In Fig. 4 is presented a plot of (4.12) in terms of the α0

and β̃, for values of r/w = 1, ma = 5 and q = 2.5. In Fig. 5
we plot (4.12) for α0 = 0 (left panel) and α0 = 0.35 (right
panel) as function of β̃ for different values of q. As we can
observe, the magnetic flux along the cosmic string can invert
the direction of the current density along the axial axis.

For a massless spinor field, we have ν1 = ν2 = 1/2. Thus,
by plugging (3.20) into (4.8), we find

〈 j z〉 = − 6e

π2 L4

(
w

a

)5
⎡
⎣

[q/2]∑′

k=0

(−1)k cos(πk/q) cos(2πα0k)G(β̃, ρk)

+ q

π

∫ ∞

0
dz

sinh(z)h(q, α0, 2z)

cosh(2qz) − cos(qπ)
G(β̃, τ (z))

⎤
⎦ , (4.13)

where we have defined a new function

G(β̃, x) =
∞∑

l=1

l sin(2πlβ̃)

(l2 + x2)5/2
. (4.14)

The summation on the quantum number l can be developed
with the help of [27]. The result is:

G(β̃, x) = −π2

4x

[sinh(2πβ̃x) − 2β̃ sinh(πx) cosh[πx(1 − 2β̃)]]
sinh2(πx)

.

(4.15)

Clearly we can see that G(β̃, x) vanishes for β̃ = 0, 1/2, 1.
Now let us turn our attention to some special asymptotic

limits of (4.8). Taking w fixed and large values of lengths for
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Fig. 5 The VEV of the axial current induced by the compactification in Eq. (4.12) is plotted, in units of a5e−1, as function of β̃ for q = 2.5,
r/w = 1 and ma = 5. In the left plot, we consider α0 = 0, while in the right plot, we take α0 = 0.35

the compact dimension, L/w 
 1, the total axial current is
expressed as

〈 j z〉 ≈ −8ν2(ν2 + 1)eL

π2a5

(
w

L

)2ν2+4

×
∞∑

l=1

l sin(2πlβ̃)

⎧
⎨
⎩

[q/2]∑′

k=0

(−1)k cos(πk/q) cos(2πα0k)(
l2 + ρ2

k

)ν2+2

+ q

π

∫ ∞

0
dz

sinh(z)h(q, α0, 2z)

[cosh(2qz) − cos(qπ)][l2 + τ 2(z)
]ν2+2

⎫
⎬
⎭ ,

(4.16)

which is valid only for values of ma ≥ 1/2.
Another very interesting asymptotic behavior comes from

the Minkowskian limit. Making use again of the correspond-
ing Z(u) function in this limit given by (3.37), and taking it
into (4.8), the total axial current density is expressed as

〈 j z〉M ≈ −23/2m5/2e

π5/2 L3/2

∞∑
l=1

l sin(2πlβ̃)

×
⎧
⎨
⎩

[q/2]∑′

k=0

(−1)k cos(πk/q) cos(2πα0k)
K5/2

(
mL
√

l2 + ρ2
k

)

(l2 + ρ2
k )5/4

+ q

π

∫ ∞

0
dz

sinh(z)h(q, α0, 2z)

cosh(2qz) − cos(qπ)

K5/2
(
mL
√

l2 + τ 2(z)
)

[l2 + τ 2(z)]5/4

⎫
⎬
⎭ .

(4.17)

5 Conclusion

In this paper, we have considered a massive charged
fermionic field and investigated the induced current densities
in a 5-dimensional AdS space-time, assuming the presence of
a cosmic string having a magnetic flux running along its axis.
Additionally, we admit that an extra dimension is compact-
ified to a circle of perimeter L and that, in addition, a mag-
netic flux enclosed by the compactified axis exists. In order
to develop this analysis, we calculated the complete set of

fermionic wave functions of positive and negative frequency
obeying quasi-periodicity condition, with an arbitrary phase,
β, along the compact dimension. To calculate the VEV of
the fermionic induced current, we have made use of the sum
mode formula given in (3.1) and the positive and negative
fermionic modes given in (2.33) and (2.40), respectively. In
our analysis we proved that only azimuthal and axial cur-
rent densities take place. These VEVs are periodic functions
of the magnetic flux running along the string, α0, and the
parameter β̃. This is an Aharonov–Bohm-like effect.

By using the Abel-Plana summation formula given in
(3.7), we were able to decompose the VEV of the total
azimuthal current density given in (3.31) into two parts:
one purely associated to the cosmic string (corresponding
to l = 0) and another related to the compactification (l �= 0).
The string contribution is given in (3.15) and it is an odd
function of the magnetic flux, α0, with its periodic behavior
displayed in Fig. 1. The analysis of the asymptotic behaviors
was made for points close and far away from the string, and it
is presented in (3.21) and (3.22), respectively. In the former,
r/w � 1, 〈 jφ〉cs diverges on the string as (w/r)5; in the lat-
ter, r/w 
 1, the current density starts to fade away with its
decay strength depending on the mass of the fermion. These
behaviors are graphically exhibited in Fig. 2.

As to the azimuthal current induced by compactification
given in Eq. (3.28), we note that it is an odd function of the
magnetic flux along the string’s core, α0, and it is an even
function of the parameter, β̃, with a period equal to the quan-
tum flux �0. This periodic behavior can be observed in Fig.
3. In particular, for β = 0, 〈 jφ〉c becomes an even function
of the magnetic flux enclosed by the compact dimension.
Besides, it is finite on the string’s core, and its asymptotic
expression for large lengths of the compactified dimension
is presented in (3.36). The total azimuthal current density is
calculated for a massless spinor field, and it is given in (3.32).
In (3.38) we present the Minkowskian asymptotic limit for
the total induced azimuthal current density.

123



Eur. Phys. J. C (2020) 80 :963 Page 13 of 14 963

The presence of compactification also gives rise to an
induced axial current density, and it is presented in closed
form in (4.8). This contribution can be separated into two
components. The first one, given in (4.11), comes from the
term k = 0 and does not depend on the radial distance r , nei-
ther on q or α0. The second one, given by (4.12), however,
depends on the aforementioned parameters, and it is an even
function of α0 and an odd function of the parameter β̃, with
this periodic behavior displayed in Fig. 4. For α0 = 0 and
α0 = 0.35 we have plotted Eq. (4.12) in Fig. 5. The plots
show that the magnetic flux along the string’s core has the
effect of inverting the direction of the current. The expression
for a massless field is presented in (4.13). For large lengths
of the compact dimension, an asymptotic expression is given
in (4.16) and shows that the induced axial current vanishes
when L → ∞. Finally, the Minkowskian asymptotic limit is
calculated for the total axial current density, and it is given
in (4.17).

In conclusion, we have showed in this paper that the
fermionic current densities induced in the vacuum are not
only generated by the magnetic fluxes, but also from the non-
trivial topology of the compactified extra dimension intro-
duced by the arbitrary phase in the quasi-periodic condition.
As it was showed graphically, the angular deficit produced
on the background geometry by the cosmic string plays an
important role on the intensity and behavior of the VEVs
analysed.
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