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Abstract We employ gauge/gravity duality to study the
effects of Lifshitz scaling on the holographic p-wave super-
conductors in the presence of Born–Infeld nonlinear elec-
trodynamics. By using the shooting method in the probe
limit, we calculate the relation between critical temperature
Tc and ρz/d numerically for different values of mass, non-
linear parameter b and Lifshitz critical exponent z in various
dimensions. We observe that critical temperature decreases
by increasing b, z or the mass parameter m which makes
conductor/superconductor phase transition harder to form. In
addition, we analyze the electrical conductivity and find the
behavior of the real and the imaginary parts as a function of
frequency, which depend on the model parameters. However,
some universal behaviors are seen. For instance at low fre-
quencies, the real part of conductivity shows a delta function
behavior, while the imaginary part has a pole, which means
that these two parts are connected to each other through the
Kramers–Kronig relation. The behavior of the real part of the
conductivity in the large frequency regime can be achieved
by Re[σ ] = ωD−4. Furthermore, with increasing the Lifshitz
scaling z, the energy gap and the minimum values of the real
and imaginary parts become unclear.

1 Introduction

After the discovery of superconductivity, considerable
attempts have been done to understand the different aspects of
this phenomenon [1]. The most successful way to describe the
superconductivity within a microscopic theory was proposed
by Bardeen, Cooper and Schrieffer (BCS), who could address
the superconductivity as a microscopic effect that originates
from the condensation of Cooper pairs into a boson-like
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state [2]. However, it was not suitable to declare this effect
completely. More specifically, it is only practical for s-wave
superconductors, while there are other types of supercon-
ductors such as p-waves and d-waves [3,4]. Besides, the
BCS theory cannot explain the mechanism of high temper-
ature superconductors, because the Cooper pairs are decou-
pled and no longer exist when the temperature of the sys-
tem becomes high [4]. By applying the AdS/CFT correspon-
dence, which relates the strong coupling conformal field the-
ory on the boundary ind-dimensions to a weak coupling grav-
ity in (d+1)-dimensional bulk, the novel idea of holographic
superconductors was proposed by Hartnoll et al. [5,6]. The
holographic superconductors opened up a new window for
studying all kinds of superconductors. Based on this idea, the
system undergoes spontaneousU (1) symmetry breaking dur-
ing a phase transition from a black hole with no hair (normal
phase) to a hairy one (superconducting phase) below the crit-
ical temperature [7]. The holographic superconductors have
many properties similar to real world superconductors such
as a second order phase transition at the critical temperature.
One of the most important successes of holographic super-
conductors is that all these models show exact mean-field
behaviors at the critical temperature, just like the Landau–
Gindzburg (LG) theory for continuous phase transitions. All
the critical exponents for the order parameter at Tc are equal
to 1/2 [6]. Nevertheless, the idea of a holographic super-
conductor is a theoretical attempt for addressing the puzzle
of high temperature superconductivity and the experimen-
tal features of this idea are still an open problem. In the past
decade, holographic superconductors gained a lot of attention
(see e.g. [7–37]). While the p-wave and d-wave supercon-
ductors are are known as strong coupling superconductors,
the investigations on them based on the holographic setup has
attracted a lot of attention during the past years (see e.g. [38–
52]). There are different ways to investigate the properties
of holographic p-wave superconductors, including conden-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-08489-4&domain=pdf
mailto:mahya689mohammadi@gmail.com
mailto:asheykhi@shirazu.ac.ir


928 Page 2 of 14 Eur. Phys. J. C (2020) 80 :928

sation of a real or complex massive charged vector field on
the gravity side which is dual to the vector order parameter
in the boundary as well as introducing a 2-form field or a
SU (2) Yang–Mills gauge field in the bulk as the origin of a
spin-1 order parameter [38–42]. The impact of the Gauss–
Bonnet term on the holographic p-wave superconductor is
characterized in different references [53–55]. Moreover, in
the framework of condensed matter physics, dynamical scal-
ing appears near the critical point. In the vicinity of the critical
point, the scale transformation turns out to be [56]

t → λz t, xi → λxi , z �= 0; (1)

when z = 1, the usual AdS spacetime is obtained. Otherwise,
the temporal and the spatial coordinates scale anisotropically.
Many investigations have been done regarding anisotropic
superconductors [57]. Nowadays, the application of super-
conductors is not limited to physics. However, the actual use
of superconducting devices is limited due to the fact that they
must be cooled to low temperatures to become superconduc-
tors and hence cannot be used for ordinary (lab) temperatures.
So in recent times, p-wave and d-wave superconductors as
candidates for high temperature superconductors gained a lot
of attention. In some cases p- wave superconductors show
anisotropic behavior [3]. In addition, heavy fermion com-
pounds and other materials including high Tc superconduc-
tors have a metallic phase (such a metal is dubbed a strange
metal), whose properties cannot be explained within ordi-
nary Landau–Fermi liquid theory. In this phase some quan-
tities exhibit universal behavior such as a resistivity which is
linear in the temperature, σ ∼ T . Such universal properties
are believed to be the consequence of quantum criticality. At
the quantum critical point there is a Lifshitz scaling – the
same as in Eq. (1) [58]. Much research was carried out in
Lifshitz scaling by using the holographic approach (see e.g.
[59–62]). However, all the previous work about the effects of
Lifshitz scaling on holographic p-wave superconductor was
done by considering a SU(2) Yang–Mills gauge field in the
bulk in the presence of Maxwell electrodynamics [56,59].
In this work, we have explored the effects of Lifshitz scal-
ing on holographic p-wave superconductor by introducing
a charged vector field in the bulk. As a consequence of this
method all following calculations to analyze the behavior
of condensation and conductivity became different from the
previous work. However, there is good agreement between
our results with the case of m2 = 0 in [59]. This approach
allows us to consider the effects of the mass term and the
spacetime dimension and Lifshitz scaling z, while in the pre-
vious method the mass term plays no role and is set to zero.
Besides, we can study the effect of conductivity more eas-
ily by turning on only the component δAy = Aye−iωt as
a perturbation on the black hole background, to be com-
pared to the treatment in [59]. Moreover, it is worthful to

investigate this model in the presence of nonlinear electro-
dynamics [56,59]. There exist several types of nonlinear
electrodynamics in the literature, including Born–Infeld (BI)
[63], exponential [64], logarithmic [65] and Power–Maxwell
methods [13]. Among them, BI nonlinear electrodynamics
is perhaps the one best known; it was proposed to address
the problem of the divergence of the electrical field at the
position of a point particle. It was later pointed out that the
BI Lagrangian could be reproduced through string theory,
and its action naturally possesses electric–magnetic dual-
ity invariance, which makes it suitable for describing gauge
fields arising from open strings on D-branes [37,50,63,64].
Disclosing the effects of the nonlinear electrodynamics on
the behavior of superconductors is of interest both for prac-
tical applications and for the study of the fundamental prop-
erties of the materials. In any practical electronic applica-
tion, the designer must know how much power the conduc-
tors can handle and at which power level nonlinear effects,
such as harmonic generation and intermodulation (IM) dis-
tortion, become appreciable. Therefore, the magnitude and
the detailed nature of the nonlinear effects must be measured
and understood in order to facilitate widespread application
of superconductors in microwave frequency electronics. The
effects of nonlinear electrodynamics were widely studied in
the literature (see e.g. [66–71]). Although these investiga-
tions extend over many years, new interest in these nonlinear
effects has been kindled since the discovery of the high-T
oxide materials [71]. Therefore, it is worthwhile to provide a
theoretical approach for the prediction of the behavior of real
high temperature superconductors in the presence of nonlin-
ear electrodynamics based on the holographic approach. For
example we find that by increasing the effect of nonlinearity,
the critical temperature decreases. The effects of nonlinear
electrodynamics on holographic superconductors have been
explored widely in the literature (see e.g. [13,30–37,50]).

Our aim in this work is to investigate the effects of Lifshitz
scaling on the holographic p-wave superconductor in arbi-
trary dimensions. We shall study the phase transition between
conductor and superconductor, which depends crucially on
the parameters m, b and z. In spite of the fact that there is
a dynamical exponent, we find that the condensation shows
a mean-field behavior near the critical temperature, which
is the same as AdS spacetime. Additionally, electrical con-
ductivity in the gauge/gravity correspondence is achieved
by imposing an appropriate perturbation on the gauge field.
Besides the conductivity formula, we calculate the behavior
of the real and imaginary parts of conductivity as a function
of the frequency. Although there are obvious differences in
graphs based on our choice ofm,b and z, they follow the same
trends in some cases. A good illustration of this is obeying
the Kramers–Kronig relation by having a delta function and a
pole in the real and imaginary parts of conductivity. However,
the gap frequency which occurred below the critical tem-
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perature, becomes less obvious by enlarging the anisotropy
between space and time. The effects of nonlinearity param-
eter on the conductivity will be clearly indicated via graphs.
Our choice of the mass in each dimension has a direct out-
come on the effect of BI nonlinear electrodynamics on the
conductivity but generally the gap energy and minimum of
conductivity shift toward larger values of the frequency by
enlarging the nonlinearity effects.

This article is organized as follows. In Sect. 2, we ana-
lyze the holographic setup via condensation of the vector
field in the context of Lifshitz spacetime and in the presence
of nonlinear BI electrodynamics. We explore the electrical
conductivity of this model in Sect. 3. Finally, our results are
summarized in Sect. 4.

2 Holographic p-wave superconductors with Lifshitz
scaling

We consider a (d + 1)-dimensional holographic p-wave
superconductor living on the boundary of a (d + 2)-
dimensional Lifshitz black hole in the presence of BI non-
linear electrodynamics, which is described by the following
action [39]:

S =
∫

dd+2x
√−g (R − 2� + Lm) ,

Lm = L(F) − 1

2
ρ†

μνρ
μν − m2ρ†

μρμ + iqγρμρ†
ν F

μν, (2)

wherem and q are the mass and charge of vector field ρμ. The
metric determinant, the Ricci scalar and the negative cosmo-
logical constant are symbolized by g, R and �, respectively.
In terms of the radius of Lifshitz spacetime, l, we can formu-
late the cosmological constant as [59]

� = − (d + z − 1)(d + z)

2l2
, (3)

where z, the Lifshitz scaling, is a dynamical critical exponent
standing for the anisotropy between space and time. Here-
after, for simplicity we set l = 1. The Lagrangian density of
the BI nonlinear electrodynamics L(F) is given by [63]

L(F) = 1

b

(
1 −

√
1 + bF

2

)
, (4)

where F = FμνFμν is the Maxwell invariant and b, with
dimension of [length]2, represents the strength of nonlin-
earity. When b → 0, L(F) restores the standard Maxwell
Lagrangian Lmax(F) = −F/4. The strength of the electro-
magnetic field is represented by Fμν = ∇μAν −∇ν Aμ where
Aμ is the vector potential. In the Lagrangian of the matter
field,Lm , by using the covariant derivative Dμ = ∇μ−iq Aμ,

we can set ρμν = Dμρν − Dνρμ. The last term in the mat-
ter Lagrangian shows the strength of interaction between ρμ

and Aμ with γ as the magnetic moment in the case with an
applied magnetic field, which will be ignored in this work.
The equations of motion, for the matter fields, can be obtained
by varying the action (2) with respect to the gauge field Aμ

and the vector field ρμ,

∇ν
[−4LF Fνμ

]

= iq
(
ρνρ†

νμ − ρν†ρνμ

)
+ iqγ∇ν

(
ρνρ†

μ − ρ†
νρμ

)
, (5)

Dνρνμ − m2ρμ + iqγρνFνμ = 0, (6)

where LF = ∂L(F)/∂F . Since we work in the probe limit,
the background spacetime is not affected by the vector and
gauge fields. Thus, we can write down the metric of (d + 2)-
dimensional Lifshitz spacetime as [59]

ds2 = −r2z f (r)dt2 + dr2

r2 f (r)
+ r2

d∑
i=1

dxi
2, (7)

f (r) = 1 − rd+z+
rd+z

, (8)

where r+ denotes the black hole horizon obeying f (r+) =
0. We also assume that the vector and gauge field has the
following form:

ρνdx
ν = ρx (r)dx, Aνdx

ν = φ(r)dt. (9)

The regularity condition for the gauge field, on the horizon,
implies that φ(r+) = 0 [56]. The Hawking temperature of
the black hole, associated with the horizon, is defined by [59]

T = f
′
(r+)

4π
= (d + z)r z+

4π
. (10)

Inserting Eqs. (7) and (9) in the field equations (5) and (6),
we arrive at

φ′′(r) +
[
d − z + 1

r
− bd

r2z−1 φ′2(r)
]

φ′(r)

−2q2ρ2
x (r)

f (r)r4

[
1 − b

r2z−2 φ′2(r)
]3/2

φ(r) = 0, (11)

ρ′′
x (r) +

[
d + z − 1

r
+ f ′(r)

f (r)

]
ρ′
x (r)

+ ρx (r)

r2 f (r)

[
q2φ2(r)

f (r)r2z − m2
]

= 0, (12)

where the prime denotes the derivative with respect to r . The
linear electrodynamic form of the above equations of motion
are recovered in the limiting case where b → 0 [59]. In the
remaining part of this paper, without loss of generality, we
will set r+ = 1 and q = 1. At the boundary where r → ∞,
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Table 1 Numerical results for critical temperature Tc for different val-
ues of z, m and b in D = d + 2 = 4 and 5 spacetime dimension

Tc/ρ
z/d

b = 0 b = 0.02 b = 0.04

d = 2 z = 1 m2 = 0 0.125 0.122 0.118

d = 2 z = 1 m2 = 3/4 0.102 0.096 0.089

d = 2 z = 2 m2 = 0 0.037 0.026 0.017

d = 2 z = 2 m2 = −3/4 0.050 0.042 0.035

d = 3 z = 1 m2 = 0 0.200 0.184 0.169

d = 3 z = 1 m2 = −3/4 0.224 0.215 0.207

d = 3 z = 2 m2 = 0 0.065 0.031 0.012

d = 3 z = 2 m2 = −2 0.090 0.071 0.057

the above equations have the asymptotic solutions

φ(r) =
{

μ − ρr z−d + · · · , z < d
μ − ρ log(r) + · · · , z = d

(13)

ρx (r) = ρx+
r+ + ρx−

r− + · · · , ±

= 1

2

[
(d + z − 2) ±

√
(d + z − 2)2 + 4m2

]
. (14)

According to the gauge/gravity duality μ, ρ, ρx+ and ρx−
play, respectively, the role of the chemical potential, charge
density, x-component of the vacuum expectation value of
the order parameter 〈Jx 〉 and the source. Since we expect
spontaneousU (1) symmetry breaking, we impose the source
free condition i.e. ρx− = 0. In addition, we follow the
Breitenlohner–Freedman (BF) bound for our choice of the
mass,

m2 � − (d + z − 2)2

4
. (15)

Considering the canonical ensemble with fixed ρ, and
employing the shooting method, we perform the numeri-
cal calculations to derive the relation between critical tem-
perature, Tc, and charge density, ρz/d , for z = 1, 2 in
D = d + 2 = 4 and 5 spacetime dimensions. Our results
are summarized in Table 1. We find that increasing the val-
ues of z,m and nonlinearity b, in each dimension, hinders the
superconductivity phase by diminishing the critical tempera-
ture. Moreover, the trends of condensation 〈Jx 〉1/(1++) as a
function of the temperature impressed by different values of
z, m and b are shown in Figs. 1 and 2. Based on these graphs,
condensation decreases by increasing z.

3 Electric conductivity

In this section, we are going to investigate the effects of Lif-
shitz scaling and nonlinear parameter on the electric conduc-

tivity of the holographic p-wave superconductor. For this
purpose, we apply an appropriate electromagnetic perturba-
tion by turning on δAy = Aye−iωt on the black hole back-
ground which acts as a boundary electrical current in holo-
graphic setup [59]. So, we have

A′′
y(r) +

[
d + z − 1

r
+ f ′(r)

f (r)
+ br(z − 1)φ′2(r)

br2φ′2(r) − r2z

+ br2φ′(r)φ′′(r)
r2z − br2φ′2(r)

]
A′
y(r)

+
⎡
⎣ ω2

r2z+2 f 2(r)
− 2q2ρ2

x (r)

r4 f (r)

√
1 − bφ′2(r)

r2z−2

⎤
⎦ Ay(r) = 0. (16)

In the Maxwell limit Eq. (16), except for a factor 2 in the last
term, which originates with different approaches to calculat-
ing conductivity, turns to the corresponding equation in Ref.
[59]. The above equation has the asymptotic behavior

A′′
y(r) + (d − 1 + z)

r
A′
y(r) + ω2

r2z+2 Ay(r) = 0, (17)

which admits the following solution for Ay :

Ay =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(0) + A(1)

r + · · · , d = 2, z = 1,

A(0) + A(1)

r2 + · · · , d = 2, z = 2,

A(0) + A(1)

r2 + A(0)ω2 log(�r)
2r2 + · · · , d = 3, z = 1,

A(0) + A(1)

r3 + · · · , d = 3, z = 2,

(18)

where A(0), A(1) and � are constant parameters. Further-
more, by considering z = 1, Eqs. (17) and (18) have the same
form as in AdS case [55]. Based on gauge/gravity duality, the
electrical current is given by

J = δSbulk

δA(0)
= δSo.s

δA(0)
= ∂(

√−gLm)

∂A′
y

|r → ∞, (19)

in which the on-shell bulk action So.s by using Eq. (19) is
defined by

So.s. =
∫ ∞

r+
dr

∫
dd−1x

√−gLm

= −1

2

∫
dd−1x

[
f (r)Ay(r)A′

y(r)

1 − br2−2zφ′2(r)

]

rd+z−1
√

1 − br2−2zφ′2(r). (20)

The electrical conductivity in a corresponding framework
is [6]

σyy = Jy
Ey

, Ey = −∂tδAy . (21)

Employing Eqs. (19), (20) and (21) and using appropri-
ate counterterms, based on the renormalization method
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(a) (b)

(d)(c)

Fig. 1 The behavior of the condensation parameter as a function of temperature for different values of the model parameters in D = d + 2 = 4
dimension

to remove the divergency, the electrical conductivity is
obtained [72]:

σyy =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A(1)

iωA(0) , d = 2, z = 1,

2A(1)

iωA(0) , d = 2, z = 2,

2A(1)

iωA(0) + i
2ω, d = 3, z = 1,

3A(1)

iωA(0) , d = 3, z = 2.

(22)

For z = 1, we obtain the same equations as in the AdS
background [55]. In order to proceed with our research, we
address an ingoing wave boundary condition near the horizon
as follows:

Ay(r) = f (r)−iω/(4πT ) [1 + a(1 − r) + b(1 − r) + · · · ] ,

(23)

where by Taylor expansion of Eq. (17) around the horizon,
the coefficients a and b are obtained. The behaviors of the real
and imaginary parts of the conductivity as a function of ω/T
are shown in Figs. 3, 4, 5 and 6. The conductivity along the y
direction in Lifshitz holographic p-wave superconductors is
the same as σxx in s-types [59]. Although the figures follow
different trends, in all cases the behavior of the real part of the

conductivity in the large frequency regime can be predicted
by a power law function, Re[σ ] = ωD−4, similar to [55].
The real and imaginary parts of the conductivity follow the
Kramers–Kronig relation. Thus, we observe the appearance
of a delta function and pole, respectively. By increasing the
Lifshitz scaling z, the gap energy becomes unclear like the
minimum of the imaginary part. However, in some cases, we
observe that by decreasing the temperature [56] for strong
BI nonlinear electrodynamics, the gap and minimum in the
real and imaginary parts of conductivity appear, which is
obvious in D = 5 with m2 = 0 and b = 0.04. When z =
1, below the critical temperature, the superconducting gap
appears and becomes deeper and sharper by diminishing the
temperature, which yields larger values of ωg, which makes
the conductor/superconductor phase transition harder to form
because it can be interpreted in terms of the energy needed to
break the fermion pairs. With the use of Figs. 7 and 8, which
are graphed in T = 0.3Tc, the value ωg = 8Tc is generally
obtained for z = 1, which differs from the predicted value 3.5
of BCS theory. This difference originates with the fact that
holographic superconductors are strongly coupled systems
and, because of this character, they are expected to be suitable
for a description of the high temperature superconductors
[53]. In addition, larger values of the nonlinearity parameter
shift the maximum and minimum parts of the conductivity
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(a) (b)

(d)(c)

Fig. 2 The behavior of the condensation parameter as a function of the temperature for different values of the mass, the dynamical critical exponent
and nonlinearity parameters in D = d + 2 = 5 dimension

toward larger values but the effects of nonlinearity on the
value of energy gap depends on our choice of the mass, which
implies the fact that the value of ωg/Tc is characterized by
our selection of massm, nonlinearity b and dynamical critical
exponent z in each dimension.

4 Summary and conclusion

In this work by employing gauge/gravity duality, we have
studied the holographic p-wave superconductors with Lif-
shitz scaling in the presence of BI nonlinear electrodynamics.
We applied the shooting method to calculating the equations
of motion and analyzing the behavior of the condensation as a
function of the temperature numerically. We found the rela-
tion between critical temperature Tc and ρz/d for different
values of mass m, nonlinearity effect b and Lifshitz scaling
z in 4D and 5D spacetime. Based on our results, we observe
that the temperature decreases with increasing each of three
parameters m, z and b, which means that superconductivity
phase faces with more difficulties. The condensation behav-
ior in Lifshitz scaling is similar to the AdS spacetime by obey-
ing the mean-field trend in the vicinity of the critical point.
Increasing the anisotropy between space and time diminishes
the condensation value. After that, by applying a suitable per-

turbation on the black hole background as δAy = Aye−iωt ,
we investigated the effects of Lifshitz scaling on the electrical
conductivity of the holographic p-wave superconductors and
plotted the behavior of the real and imaginary parts of con-
ductivity as a function of the frequency. The plotted figures
are different from each other but they follow some universal
behaviors. For instance, for large frequencies, we can pre-
dict the behavior of the real part of the conductivity to be
Re[σ ] = ωD−4. In addition, the real and imaginary parts of
the conductivity are related to each other via the Kramers–
Kronig relation. Actually, the real part shows a delta function
behavior and the imaginary part has a pole at zero frequency.
At low frequencies with z = 1, the real and imaginary parts
of conductivity show a gap energy and minimum which shift
toward larger frequencies by diminishing temperature. In this
regime, increasing the Lifshitz critical exponent z makes the
gap energy and minimum unclear. However, in some cases
they occurred under decreasing temperatures and increasing
the nonlinearity effect. Our choice of mass in each dimen-
sion has a direct impact on the effect of the BI nonlinear
electrodynamics on the conductivity but generally the gap
energy and minimum of conductivity shift toward larger val-
ues of the frequency by enlarging the nonlinearity effect. In
the limit case where z = 1, the ratio ωg/Tc � 8 is obtained
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 The behavior of the real part of the conductivity in D = 4

123



928 Page 8 of 14 Eur. Phys. J. C (2020) 80 :928

(a) (b)

(d)(c)

(e) (f)

(g) (h)

Fig. 4 The behavior of the imaginary part of the conductivity in D = 4
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(a) (b)

(d)(c)

(e) (f)

(g) (h)

Fig. 5 The behavior of the real part of the conductivity in D = 5
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 The behavior of the imaginary part of the conductivity in D = 5
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 7 The behavior of the real and imaginary parts of the conductivity in D = 4 for T/Tc = 0.3
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8 The behavior of real and imaginary parts of the conductivity in D = 5 for T/Tc = 0.3
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generally, which is larger than the BCS value because of the
strong coupling between the pairs.
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