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Abstract Viewing the negative cosmological constant as
a dynamical quantity derived from the matter field, we
study the weak cosmic censorship conjecture for the higher-
dimensional asymptotically AdS Reissner–Nordström black
hole. To this end, using the stability assumption of the mat-
ter field perturbation and the null energy condition of the
matter field, we first derive the first-order and second-order
perturbation inequalities containing the variable cosmolog-
ical constant and its conjugate quantity for the black hole.
We prove that the higher-dimensional RN-AdS black hole
cannot be destroyed under a second-order approximation of
the matter field perturbation process.

1 Introduction

The weak cosmic censorship conjecture means that the sin-
gularity behind the horizon of the black hole formed by grav-
itational collapse cannot be exposed by any physical process.
It also means that the event horizon of the black hole cannot
be destroyed by particle matter or general matter. According
to the conjecture, to ensure the existence of the event horizon
of a black hole with mass M , electric charge Q and angular
momentum J , there must be an inequality

F(M, Q, J ) � 0. (1)

It was shown in [1] that the cosmic censorship inequal-
ity cannot be violated by simply adding particle matter with
energy E , charge q and angular momentum l, even for
extreme black holes. That is, we still have

F(M + E, Q + q, J + l) � 0 (2)

with the particle matter thrown into the black hole.

a e-mail: mingzhang@jxnu.edu.cn
b e-mail: jiejiang@mail.bnu.edu.cn (corresponding author)

For a slightly non-extreme black hole, it was pointed out in
[2] that the inequality (1) may be violated by fine-tuning the
parameters of the particle matter. However, this Hubeny type
violation originates from the neglect of the electromagnetic
self-energy and self-force effects. In fact, one must calculate
the quadratic-order contribution of the involved parameters
of the particle to the energy. Later, by numerical calculations,
though not analytical ones, this type of violation for the nearly
extreme black hole was proved to be impossible [3–6].

To test the weak cosmic censorship conjecture for the
black hole against any matter perturbation (rather than
the particle matter perturbation [7–16]), a new version of
gedanken experiment, where the self-force effects or finite
size effects to the energy are regarded, was proposed recently
[17]. Assuming that the nearly extreme Kerr–Newman black
hole can still be stable against linear perturbations of the
matter field and the null energy condition of the non-
electromagnetic contribution to the matter’s stress–energy
tensor is not violated, it was explicitly proved that the con-
jectured inequality (1) cannot be violated for the black hole.
This new kind of gedanken experiment has been used to test
(1) for other black holes; see, e.g., [18–27]. Furthermore,
the new gedanken experiment was recently extended from
asymptotically flat black hole to asymptotically AdS black
hole with a negative cosmological constant [28], completing
the investigation of the weak cosmic censorship conjecture
for the AdS black hole via a particle absorbing process (see,
e.g., [9,29]). The philosophy is one of viewing the cosmolog-
ical constant as a dynamical variable due to the evolution of
the system composed of the black hole and arbitrary matter.

In [30], it was shown that the weak cosmic censorship
conjecture cannot be violated for the nearly extreme higher-
dimensional RN black hole with the new gedanken exper-
iment. In this brief article, wondering whether the Hubeny
type violation could occur in the AdS spacetime, we will
use the new gedanken experiment to test the weak cosmic
censorship conjecture for an asymptotically AdS higher-
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dimensional RN black hole. We will derive the first-order
and second-order perturbation inequalities in Sect. 2. Then
in Sect. 3 we will prove that the higher-dimensional RN-AdS
black hole cannot be destroyed by arbitrary matter and the
weak cosmic censorship conjecture is respected. Section 4 is
devoted to our conclusion.

2 First-order and second-order perturbation
inequalities

We provide some preliminaries of the RN-AdS black hole
in Einstein–Maxwell gravity in Appendix A. The first-order
variation of the Einstein–Maxwell Lagrangian L is

δL = Eφδφ + d�(φ, δφ), (3)

where we use δ to denote a derivative valued at 0 point of the
variation parameter λ for the field configurations φ. We have

E(φ)δφ = −ε

[
1

2
T abδgab + jaδAa

]
, (4)

where

Tab = 1

8π

(
Rab − 1

2
Rgab

)
− T EM

ab , (5)

ja = 1

4π
∇a F

ab. (6)

The symplectic potential can be decomposed into a gravity
part and an electromagnetic part,

� = �GR + �EM, (7)

where

�GR
a1···aD−1

(φ, δφ)

= 1

8π
εba1···aD−1

(
Pa

cbdδ�a
cd + δgbd∇a P

acbd
)

,

�EM
a1···aD−1

(φ, δφ) = − 1

4π
εba1···aD−1 F

bcδAc ,

(8)

with

Pabcd = 1

2

(
gacgbd − gadgbc

)
. (9)

Associated with a smooth vector field ζ a and the field
configuration φ on the spacetime manifold, there is a Noether
current (D − 1)-form,

Jζ = �
(
φ,Lζ φ

) − ζ · L. (10)

It has been proved in [31] that the Noether current can also
be expressed as

J ζ = Cζ + d Qζ , (11)

where Qζ is the Noether charge (D − 2)-form

Qζ = QGR
ζ + QEM

ζ , (12)

with(
QGR

ζ

)
a1···aD−2

= − 1

16π
εaba1···aD−2

(
Pabcd∇cζd − 2ζd∇c P

abcd
)

,

(
QEM

ζ

)
a1···aD−2

= − 1

8π
εaba1···aD−2 F

ab Acζ
c. (13)

Cζ = ζ · C are constraints of the gravity theory, with

Cba2···aD = εaa2···aD
(
Tb

a + Ab j
a) . (14)

We have C = 0 and d J = 0 if E(φ) = 0.
The symplectic current can be defined as

ω (φ, δ1φ, δ2φ) = δ1� (φ, δ2φ) − δ2� (φ, δ1φ) , (15)

the symplectic current can be conserved under the condition
that δ1Eφ = δ2Eφ = 0. According to (10), we have the
first-order variation of the Noether current Jζ as

δ Jζ = −ζ · (
Eφδφ

) + ω(φ, δφ,Lζ φ) + d (ζ · �) . (16)

Next we choose the vector field ζ to be a Killing field
in the background spacetime. By choosing a proper gauge
condition, we can set δζ a = 0. Then we get the first-order
perturbation identitiy

d
[
δQζ − ζ · �(φ, δφ)

] = −ζ · Eφδφ − δCζ (17)

and the second-order perturbation identity

d
[
δ2 Qζ − ζ · δ�(φ, δφ)

]

= ω
(
φ, δφ,Lζ δφ

) − ζ · Eφδ2φ − ζ · δEφδφ − δ2Cζ .

(18)

We now consider that the higher-dimensional RN-AdS
black hole is perturbed by the spherically symmetric charged
matter field with one-parameter family of field configurations
φ(λ). This corresponds to theλ-dependent perturbation equa-
tions of motion

Rab(λ) − 1

2
R(λ)gab(λ) = 8π

[
T EM
ab (λ) + Tab(λ)

]
,

∇(λ)
a Fab(λ) = 4π ja(λ),

(19)

where

T EM
ab (λ)

= 1

4π

[
Fac(λ)Fb

c(λ) − 1

4
gab(λ)Fcd(λ)Fcd(λ)

]
,

(20)

is the stress–energy tensor of the electromagnetic field, and
Tab(λ) is the stress–energy tensor of the non-electromagnetic
matter source. In this paper, we assume that the cosmological
constant is a dynamical quantity and therefore it should come
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from the matter source, i.e., we have

Tab = 
(0)

8π
gab (21)

for the background geometry. Here we denote η = η(λ = 0)

for the background quantity η. The spacetime in this case can
be generally described by

ds2(λ) = − f (r, v, λ)dv2 + 2μ(r, v, λ)drdv + r2d�D−2,

(22)

where μ(r, v, 0) = 1 and

f (r, v, 0) = f (r)

= 1 − 2M
rD−3 + Q2

r2D−6 − 2
r2

(D−1)(D−2)

(23)

for the background geometry. We suppose that the space-
time can still be described by the higher-dimensional RN-
AdS solution at sufficiently late times after the original black
hole being perturbed by general spherically symmetric mat-
ter source. It indicates that

f (r, v, λ) = f (r, λ)

= 1 − 2M(λ)

r D−3 + Q2(λ)

r2D−6 − 2
(λ)r2

(D − 1)(D − 2)
,

μ(r, b, λ) = 1 , A = −Q(λ)

r D−3 dv,

(24)

at sufficiently late times. This supposition is dubbed the
stability assumption [17]. Moreover, we also assume that
the perturbation vanishes on the bifurcation surface B. i.e.,
φ(λ) = φ on B.

We can choose a hyper-surface  which starts from a
perturbation-vanishing future event horizon of the nearly
extreme higher-dimensional RN-AdS black hole, contin-
ues up through the non-vanishing matter source region, and
finally becomes space-like as it extends to infinity. Let H and
1 individually be the horizon portion and space-like portion
of the Cauchy surface ; we have

 = H ∪ 1. (25)

The globally hyperbolic hyper-surface  terminates at the
(D − 2)-dimensional bifurcation surface B of the near
extreme D-dimensional RN-AdS black hole.

After using the Killing vector ξa = (∂/∂v)a for the back-
ground fields, (17) can be evaluated at λ = 0 and integrated
over ,∫

∂

[
δQξ − ξ · Q(φ, δφ)

]

+
∫



ξ · Eφδφ +
∫



δCξ = 0 .

(26)

For the first term on the left side of (26), we have∫
∂

[
δQξ − ξ · Q(φ, δφ)

]

=
∫
Sc

[
δQξ − ξ · Q(φ, δφ)

]

−
∫
B

[
δQξ − ξ · Q(φ, δφ)

]

=
∫
Sc

[
δQGR

ξ − ξ · QGR(φ, δφ)
]

+
∫
Sc

[
δQEM

ξ − ξ · QEM(φ, δφ)
]

= δM − VcδP − 1

8π

∫
Sc

εaba1···aD−2δF
ab Acξ

c

= δM − VcδP,

(27)

where we denote Vc = �D−2πr D−1
c /(D − 1). To avoid the

divergence taken by the cosmological constant as a dynami-
cal quantity, Sc is a sphere with radius rc replacing the asymp-
totic infinity boundary of a isochronous surface 1 that can
be described by the late time line element of the higher-
dimensional RN-AdS black hole. Above we have used the
condition that the perturbations vanish on the bifurcation sur-
face B. For the second term, we have∫



ξ · Eφδφ

=
∫
H

ξ · Eφδφ +
∫

1

ξ · Eφδφ

=
∫

1

ξ · Eφδφ = −
∫

1

ξ · ε

[
1

2
T abδgab + jaδAa

]

= 


16π

∫
1

ξ · εgabδg
ab

= 0,

(28)

where we have used ξ · ε = 0 on H as well as ja(λ) = 0 and
gabδgab = 0 on 1. For the third term, we have

∫


δCξ =
∫

1

εaa2···aD
[
δTb

aξa + Abξ
bδ ja

]

+
∫
H

εaa2···aD
[
δTb

aξa + Abξ
bδ ja

]

=
∫

1

εaa2···aD δTb
aξb

+
∫
H

εaa2···aD
[
δTb

aξa + Abξ
bδ ja

]

= (Vc − VH )δP +
∫
H

εaa2···aD δTb
aξb

−�H δ

[∫
H

εaa2···aD ja
]
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= (Vc − VH )δP +
∫
H

εaa2···aD δTb
aξb − �H δQ,

(29)

where we have used ja | = 0 and denoted VH =
�D−2πr

D−1
H /(D − 1). As a result, we can write the first-

order perturbation equality as

δM − �H δQ − VH δP = −
∫
H

εaa2···anδT baξb

=
∫
H

ε̃δT abξakb

∝
∫
H

ε̃δT abkakb,

(30)

where we have used the condition that the future-directed
vector ka be normal to the horizon and proportional to
the Killing vector ξa . The volume element on the hori-
zon ε̃ is defined via the relation εaa2···aD = ka ∧ ε̃a2···aD .
Provided that the null energy condition is respected by
the non-electromagnetic stress–energy tensor δT ba , i.e.,∫
H δT abkakb � 0, we have the first-order perturbation

inequality for the higher-dimensional RN-AdS black hole

δM − �H δQ − VH δP � 0. (31)

When the stree-energy flux of the non-electromagnetic matter
vanishes, we can have the optimal perturbation process for
the horizon-corruption of the higher-dimensional RN-AdS
black hole at first order.

Like the first-order case, the second-order perturbation
identity (18) can also be evaluated at λ = 0 over  after
choosing the Killing vector ξa ,
∫

∂

δ
[
δQξ − ξ · �(φ, δφ)

] −
∫



δ
(
ξ · Eφδφ

)

+
∫



δ2Cξ −
∫
H

ω
(
φ, δφ,Lξ δφ

)

−
∫

1

ω
(
φ, δφ,Lξ δφ

) = 0.

(32)

Similar to the first-order case, for the first term on the left
side, we have∫

∂

δ
[
δQξ − ξ · �(φ, δφ)

]

=
∫
Sc

δ
[
δQξ − ξ · �(φ, δφ)

]

=
∫
Sc

(D − 2)
√|g|

16π

δ2 f

r
dθ1 ∧ dθ2 ∧ · · · dθD−2

+
∫
Sc

2(D − 3)

8π

√|g|Qδ2Q

r2D−5
(dθ)1 · · · ∧ (dθ)D−2

−
∫
Sc

1

8π
εaba1···aD−2δF

abδAeξ
e

−
∫
Sc

1

8π
εaba1···aD−2δ

2Fab Aeξ
e

= δ2M − Vcδ
2P −

∫
Sc

1

8π
εaba1···aD−2δF

abδAeξ
e. (33)

It is evident that the second term vanishes. For the third term,
we have

∫


δ2Cξ = (Vc − VH )δ2P −
∫
H

ε̃δ2Tabξ
akb

− �H δ2Q.

(34)

For the fourth term, resorting to a similar result in [17], we
get

∫
H

ω
(
φ, δφ,Lξ δφ

) =
∫
H

ε̃δ2T EM
ae ξake .

(35)

In order to calculate the last term, we need to use an indirect
method. We may choose the one-parameter family φRA(λ),
whose perturbations satisfy

MRA(λ) = M + λδMRA = M + λδM ,

QRA(λ) = Q + λδQRA = Q + λδQ ,


RA(λ) = 
 + λδ
RA = 
 + λδ
 .

(36)

It is natural that δ2M = δ2Q = δ2
 = 0. Integrating (18)
over 1 yields

∫
∂1

δ
[
δQRA

ξ − ξ · �(φRA, δφRA)
]

−
∫

1

δ
(
ξ · ERA

φ δφRA
)

+
∫

1

δ2CRA
ξ −

∫
1

ω
(
φRA, δφRA,Lξ δφ

RA
)

= 0 .

(37)
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As the second and third terms vanish in (37), fortunately, we
have

∫
1

ω
(
φRA, δφRA,Lξ δφ

RA)

=
∫

∂1

δ
[
δQRA

ξ − ξ · �(φRA, δφRA)
]

=
∫
Sc

δ
[
δQRA

ξ − ξ · �(φRA, δφRA)
]

−
∫
B1

δ
[
δQRA

ξ − ξ · �(φRA, δφRA)
]

= −
∫
Sc

1

8π
εaba1···aD−2δF

abδAeξ
e

+
∫
B1

(D − 2)δQ2
[∏D−3

i=1 sinD−2−i θi

]
r3−D

8π

i=D−2∏
i=1

dθi .

(38)

Then we obtain
∫

1

ω
(
φRA, δφRA,Lξ δφ

RA
)

+
∫
Sc

1

8π
εaba1···aD−2δF

abδAeξ
e

=
�D−2

[
(D − 2)δQ2r3−D

H

]
8π

.

(39)

So we can express the second-order perturbation equality as

δ2M − �H δ2Q − VH δ2P

=
�D−2

[
(D − 2)δQ2r3−D

H

]
8π

+
∫
H

ε̃
(
δ2T EM

ab + δ2Tab
)
kaξb.

(40)

Finally, we can get the second-order inequality for the
perturbation

δ2M − �H δ2Q − VH δ2P

�
�D−2

[
(D − 2)δQ2r3−D

H

]
8π

,

(41)

if the null energy condition for the matter fields

δ2T EM
ab + δ2Tab � 0 (42)

is fulfilled.

3 New gedanken experiment to destroy a nearly
extreme higher-dimensional RN-AdS black hole

The key of testing the weak cosmic censorship conjecture for
the nearly extreme higher-dimensional RN-AdS black hole
under the perturbation is to verdict the sign of the perturbed
metric function f (r, λ), which, for convenience, can be used
to define a perturbation function

h(λ) = f (rm(λ), λ) , (43)

where rm(λ) is the extreme value of f (r, λ) and it can be
obtained from

∂r f (rm(λ), λ) = 0 ,

(44)

so that (43) gives the minimal value of the metric function
at late time. We can obtain the mass parameter of the black
hole M in terms of the minimal radius rm :

M = r−D−1
m

[(
D3 − 6D2 + 11D − 6

)
Q2r4

m + 2
r2D
m

]
(D − 3)(D − 2)(D − 1)

.

(45)

Then we have the differential relation

δrm = 1

(D − 1)
[
(D − 3)2(D − 2)Q2r4

m − 2
r2D+1
m

]

×
[
2r2D

m δ
 −
(
D3 − 6D2 + 11D − 6

)
r D+2
m δM

+2rm
(
D3 − 6D2 + 11D − 6

)
Qr4

mδQ
]
.

(46)

Expanding h(λ) in terms of λ to second-order level, we have

h(λ) = h0 + λh1 + λ2(h21 + h22) + O(λ2), (47)

where

h0 = 1 − 2
r2
m

D2 − 5D + 6
− Q2r6−2D

m , (48)

h1 = − 2r2
mδ


D2 − 3D + 2
+ 2Qr6−2D

m δQ − 2r3−D
m δM, (49)

h21 = Qr4−2D
m

[
(D − 3)2Qδr2

m + r2
mδ2Q

]
− r3−D

m δ2M

−2(D − 1)
δr2
m + r2

mδ2


(D − 2)(D − 1)
, (50)

h22 = r5−2D
m [rmδQ − 4(D − 3)Qδrm] δQ

+2(D − 3)r2−D
m δrmδM − 4rmδ
δrm

D2 − 3D + 2
. (51)

Following a similar setup to [17], we consider the black
hole to approach the extreme geometry, with

rm = (1 − ε)rH , (52)
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where ε → 0 is in agreement with the extra matter fields’
first-order perturbation, i.e., it is of the same order as λ. Note
that ε is defined in the background geometry and therefore
it is independent of λ. Without loss of generality, it is not
difficult to deduce

f ′ (rH ) = εrH f ′′ (rH ) (53)

and

f (rm) = f (rH (1 − ε))

	 −εrH f ′(rH ) + ε2r2
H

2
f ′′(rH )

= −1

2
ε2r2

H f ′′(rH ) .

(54)

Moreover, considering the zero-order approximation of ε,
we have


 = 1

2
(D − 3)(D − 2)r−2(D+1)

m

(
r2D
m − Q2r6

m

)
,

M = r−D−3
m

(
(D − 2)Q2r6

m + r2D
m

)
D − 1

,

(55)

which can be derived from f ((1+ε)rm) = 0 and f ′(rm) = 0.
After using the first-order perturbation inequality (31) and the
second-order perturbation inequality (41), (47) can be further
reduced,

h(λ) � X (λ)2

4(D − 3)r−2(D+1)
m

(
(2 − D)Q2r6

m + r2D
m

) + O(λ2)

= − X (λ)2

2 f ′′(rm)
+ O(λ2), (56)

where X (λ) is a tedious normal expression; we here will
not explicitly show it. As f (rm) � f (r), or, in other words,
f (rm) is the minimum value of the metric function f (r)
for the higher-dimensional RN-AdS black hole, we have
f ′′(rm) > 0. Then (56) implies

h(λ) � 0. (57)

This result tells us that, to the level of second-order approx-
imation of the perturbation from the extra spherically sym-
metric matter field, which affects the mass, electric charge
and the cosmological constant of the higher-dimensional RN-
AdS black hole, the event horizon of the nearly extreme black
hole cannot be ignored and the weak cosmic censorship con-
jecture is straightforwardly respected.

4 Conclusion

In this article, assuming that the stress–energy tensors of the
non-electromagnetic matters do not violate the null energy

condition, and the nearly extreme higher-dimensional RN-
AdS black hole comes to be linearly stable at late times under
the perturbation of the matter, we derived the first-order per-
turbation and the second-order perturbation inequalities. We
then proved that the weak cosmic censorship conjecture for
the higher-dimensional RN-AdS black hole cannot be vio-
lated.

There are two kinds of investigations we can do further.
The first one is to study whether the weak cosmic censor-
ship conjecture can be violated by considering higher-order
approximations, though this is highly unlikely [32]. The sec-
ond one is to consider the new gedanken experiment address-
ing an asymptotically AdS rotating black hole.
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AppendixA:Abrief reviewofhigher-dimensionalReissner–
Nordström black hole in anti-de Sitter background

The action of the Einstein–Maxwell gravity with a cosmo-
logical constant is

L = ε

16π

(
R − 2
 − FabF

ab
)

, (A1)

where ε is the volume element, R is the Ricci scalar, 
 is the
negative cosmological constant, F is electromagnetic field
strength. The equation of motion is

Gab = 8π
(
T EM
ab + Tab

)
, (A2)

∇a F
ab = 4π jb, (A3)

where

T EM
ab = 1

4π

(
FacFb

c − 1

4
gabFcd F

cd
)

(A4)
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is the stress–energy tensor for the electromagnetic field,

Tab = 


8π
gab (A5)

is the stress–energy tensor for the matter field, Gab is the
Einstein tensor and ja is the electric current for the matter
field.

The D-dimensional RN-AdS black hole solution corre-
sponding to the equations of motion is

ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�D−2,

A = − Q

rD−3 dt,

(A6)

where

f (r) = 1 − 2M

rD−3 + Q2

r2D−6 − 2
r2

(D − 1)(D − 2)
, (A7)

d�D−2 =
D−2∑
i=1

⎛
⎝ i∏

j=1

sin2 θ j−1

⎞
⎠ dθ2

i , θ0 ≡ π

2
. (A8)

We can introduce the Eddington–Finkelstein coordinate

v = t +
∫

dt

f (r)
; (A9)

then the solution can be written as

ds2 = − f (r)dν2 + 2drdν + r2d�D−2,

A = − Q

rD−3 dν.

(A10)

The mass, electric charge, electric potential, cosmological
constant, thermodynamic pressure are [33,34]

M = (D − 2)�D−2

8π
M, (A11)

Q = (D − 2)�D−2

8π
Q, (A12)

�H = Q

rD−3
H

, (A13)

P = − 


8π
, (A14)

V = �D−2

D − 1
r D−1
H , (A15)

where �D−2 = 2π(D−1)/2/�[(D − 1)/2] is the volume of
the (D − 2)-dimensional sphere.
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