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Abstract We find the exact quantum gravity partition func-
tion on the static patch of 3d de Sitter spacetime. We have
worked in the Chern Simons formulation of 3d gravity. To
obtain a non-perturbative result, we supersymmetrized the
Chern Simons action and used the technique of supersymmet-
ric localization. We have obtained an exact non-perturbative
result for the spin-2 gravity case. We comment on the diver-
gences present in the theory. We also comment on higher
spin gravity theories and analyse the nature of divergences
present in such theories.

1 Introduction

Quantum theory of gravity in 3 space-time dimensions does
not cease to surprise us, owing to the richness of physical and
mathematical structures that are being continually revealed
for more than 3 decades starting from [1]. It is interesting that,
gravity in 3 dimensions is devoid of local degrees of freedom.
One of the main causes of non-triviality in 3D gravity is the
BTZ black hole solution [2] for negative cosmological con-
stant. The most interesting sector of solutions for the case
of negative cosmological constant is asymptotically AdS. A
huge body of work has stemmed from the seminal work of
Brown and Henneaux [3], which showed that the asymp-
totic symmetries of asymptotically AdS space-time form two
copies of Virasoro algebra; thereby hinting to a plausible
conformal field theory (CFT) at the two dimensional asymp-
totic boundary. As an example of low dimensional hologra-
phy, this generated a great deal of physical and mathematical
curiosities; motivated just from the question of calculating
partition function for quantum gravity and arriving at black
hole entropy from it. Interested readers may refer Refs. [4,5]
in recent times.
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Analogous progress in the case for zero cosmological con-
stant is being pursued recently, specially in the works of
Refs. [6,7]. In this sector, one attempts at quantum grav-
ity for asymptotically flat space-time, now equipped with the
BMS3 algebra. [8] contains a relatively extensive discussion
of quantum gravity in 3 dimensions from the perspective of
asymptotic symmetries for asymptotically non-AdS space-
time, even including higher spin degrees of freedom.

Whereas these aspects of quantum gravity are under focus
of intensive studies in recent times, one might be curious for
the case of positive cosmological constant. Vacuum solution
to the corresponding Einstein equation is the dS3 space-time.
However unlike Minkowski space-time, here exists a horizon
at thermal equilibrium. As argued in [9], correlation function
of any quantum degree of freedom with respect to a time-like
observer is a thermal correlator. The corresponding vacuum
state, as discussed in [10] and named as the Hartle Hawking
state, is the Euclidean partition function.

The choice of Hartle Hawking state as a candidate for
vacuum state circumvents an otherwise conceptually diffi-
cult problem in the following manner. Standard wisdom says
that isometries of a maximally symmetric space-time like de
Sitter should fix the vacuum state. But if one wishes to incor-
porate effects from quantum gravity, one has to incorporate
all possible quantum fluctuations on the de Sitter background,
from a perturbative viewpoint. Hartle Hawking is however
defined as the Euclidean path integral considering all possible
geometries with some fixed boundary data.

Now in de Sitter space, a time-like observer is in causal
contact with what is known as the static patch, defined in
Euclidean time as:

ds2 = dr2 + cos2 rdτ 2 + sin2 rdφ2. (1)

Euclideanizing is done by setting t = −iτ and it makes
the static patch geometry identical to that of S3 with τ ∈
[0, 2π ], φ ∈ [0, 2π ], r ∈ [0, π/2].
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It would therefore be natural to consider fluctuations over
round S3 background geometry to construct the Hartle Hawk-
ing state. However, as nicely pointed out in [9], there is an
infinite class of topologically distinct manifolds which allow
smooth local geometry as Eq. (1). These are of the form
S3/�, where � is a discrete subgroup of the isometry group
of S3. In terms of the coordinates in Eq. (1), these quotient
spaces with smooth local dS geometry are understood by the
following identifications:

(τ, φ) ∼ (τ, φ) + 2π

(
m

p
,
m q

p
+ n

)
for m, n ∈ Z. (2)

Here q, p are coprime positive integers with p always being
the greater of the pair. That this identification indeed results
into the topological quotient space S3/Zp can be easily
understood by first defining

S3 = {(z1, z2) ∈ C
2
∣∣∣|z1|2 + |z2|2 = 1}. (3)

Then the Zp action on it is:

(z1, z2) →
(
e

2π i
p z1, e

2π iq
p z2

)
. (4)

Finally defining (z1, z2) = (
cos r eiτ , sin r eiφ

)
makes the

identification Eq. (2) clear. The resultant manifold is named
as a Lens space L(p, q), now equipped with the smooth
geometry given by Eq. (1). All of these manifolds are there-
fore valid classical smooth saddles of Einstein equation.

Since S3 as well as all the quotients L(p, q) are closed,
Hartle Hawking state, considering all quantum gravity
effects, would simply be given by:

Z =
∑

L(p,q)

∫
[Dg]e−SE [g] (5)

where SE is the Euclidean action for the theory of gravity.
Interestingly as reported in [9], the functional integral, when
summed over all Lens space saddles, diverges as a harmonic
series in the integer p : ∑∞

p=1
1
p = ζ(1), which cannot be

regularized. The computation for a single Lens space (before
summing up) was performed in a perturbative one-loop cal-
culation in metric variables and cross-checked with results
from a non-perturbative computation in first order formula-
tion of gravity (Chern Simons (CS) theory) [11]. One might
not wish to compare this divergence to the well known diver-
gences regularly encountered in QFTs. Firstly because, this
model, unlike standard QFTs is devoid of local degrees of
freedom. The second and more subtle issue is that, the full
quantum theory of gravity should be background indepen-
dent and hence should not have any canonical definition of
energy scale. The absence of local physics, makes it difficult
to understand the origin, and hence controlling the divergence
becomes a very hard problem.

However, the divergence seems to be tamed, when includ-
ing further degrees of freedom, like topological massive
modes [12] making the Hartle Hawking vacuum state nor-
malizable. This was later established [13] using a twisted
first order theory of gravity (again CS formulation) and a
dimensionless parameter, which can be tuned to get rid of
the divergent piece. Interestingly, using results from SU (N )

topological invariants [14] in 3-manifolds one can repeat the
calculations for higher spin cases. For this, one introduces
a consistently truncated tower of higher spins over gravita-
tional degrees of freedom, to see that the sum over all Lens
spaces become finite, for spins ≥ 4 [15]. Even with these
attempts, it is still not clear, which deformations or coupling
of newer excitations on top of gravity can make the Hartle–
Hawking vacuum state normalizable. It therefore calls for
further attempts to make a classification scheme for such
well behaving excitations, in a fashion analogous to classi-
fying renormalizable quantum field theories. However let us
emphasize that the removal of divergences mentioned above
by introduction of newer degrees of freedom is not equiva-
lent to renormalization via addition of counter-terms in QFT
since the divergence is not caused by local physics.

One further motivation towards a definition of Hartle
Hawking state in 3D quantum de Sitter comes from an anal-
ogous question in AdS3. Euclidean AdS has a topology of
solid torus. The two dimensional toric boundary serves as
the asymptotics. Using the fact that asymptotic symmetry in
AdS3 is given by 2D conformal algebra, one may come up
with speculations [16] regarding a candidate 2D CFT at the
boundary. An exact non-perturbative calculation for the bulk
partition function (corresponding to fixed boundary modular
parameter) can lead one a long way towards a definite answer
regarding the dual field theory. A series of recent remark-
able results in AdS, Refs. [17,18] have taken the approach
of supersymmetrizing the gravity theory (CS formulation)
and exploiting the elegant methods of supersymmetric local-
ization [19]. Although the original theory, modelled as a
purely bosonic theory of gauge fields, the localization proce-
dure brings in fermionic degrees of freedom in the dynamics.
However, it remains guaranteed, as we will later review in
the present article that the computation of the partition func-
tion for the localized theory is same as the one, if one could
evaluate the one for the original purely bosonic one. In the
AdS case it is believed that the non-perturbative result after
localization would constrain completely the CFT dual to the
original bosonic gravity theory. For further progress in local-
ization in low-dimensional AdS space times, the interested
reader is referred to Refs. [20,21]. These references focus on
the program of localization on non-compact manifolds.

Since the additional fermionic fields introduced for super-
symmetrization were non-dynamical, it is believed that the
non-perturbative result after localization would constrain
completely the CFT dual to the original bosonic gravity the-

123



Eur. Phys. J. C (2020) 80 :885 Page 3 of 13 885

ory. For further progress in localization in low-dimensional
AdS space times, the interested reader is referred to Refs.
[20,21]. These references focus on the program of localiza-
tion on non-compact manifolds.

In our present perspective we do not aim at the holographic
point of view. But rather take cue from the above analysis as
far as exact partition function is concerned. We want to inves-
tigate if the divergence in Hartle–Hawking state, previously
encountered in purely bosonic theory while summing over
found in purely bosonic theory, while summing over all sad-
dles can be tamed or modified by the introduction of super-
symmetry. To this end we use the first order CS formulation
here, and supersymmetrize it to write down the exact parti-
tion function. The main aim here was to investigate whether
fermionic degrees freedom , even if non-dynamical, can bring
in change in the analytic property of the partition function
summed over Lens spaces.

To put this point properly in context of our present work,
let us digress a bit on the meaning of partition function.
In traditional quantum field theory on a fixed background
(Minkowski space, for example) describing fundamental
interactions, partition function is an extremely efficient tool
for evaluating correlation functions. As long as the quantum
theory of a classical Euclidean action SE [�] is renormaliz-
able, one is generally interested in the functional integral:

Z [J ] =
∫

D� e−SE [�]+∫
J ·� (6)

in presence of a probe background field J . Correlations of
local operators

〈O1(x1) · · · On(xn)〉 =
∫
D� O1(x1) · · · On(xn) e−SE [�]

Z [0]
(7)

generally are found as appropriate derivatives of Z [J ] with
respect to J at the point J = 0, while the presence of ‘normal-
izing’ factor Z [0] in the denominator of (7) is also standard.

In contrast, the goal of the present series of works
[9,12,13,15] is to investigate the Hartle-Hawking vacuum
via evaluating the partition functions of Chern Simons the-
ory considering all saddles relevant to gravity on locally de
Sitter background and then sum over all geometries. These
saddles being Lens spaces, each such partition function is a
topological invariant [14] and for each Lens space L(p, q),
the CS partition function is a functions of p, q and the CS
level k (possible shifted by quantum correction). We will
see in our analysis, how this quantity for each Lens space,
has a spin-dependent multiplicative power law dependence
on the volume of that particular Lens space. We will notice
in this article that fermions brought in by supersymmetric
localization basically does the job of altering the volume
prefactor’s power, keeping the rest of the functional depen-
dence of k, p, q unchanged with respect to the bosonic case.

This alteration introduced by fermions, makes the previously
encountered divergence worse.

However, it is fair to assume that, had we been interested
in a fixed background question of calculating correlators1

via the definition (7) on a fixed L(p, q), the prefactor would
have got cancelled due to normalization and the results would
remain same as in the purely bosonic theory.

Furthermore, an investigation for whether inclusion of
higher bosonic spins and the corresponding supersym-
metrization would change the behaviour of the proposed par-
tition function is also due. We here realize a better insight
into the interplay between the spin content in the theory
and the divergence structure. In previous [15] analysis, it
was encountered that bosonic higher spin contributions make
product of volume prefactors suppress the divergent contri-
butions. We will elaborate here the quite opposite feature
here.

As choice of newer degrees of freedom, higher spins are
obvious, as these in 3 dimensions are much more tractable
than in the case of higher dimensions, because of an allowed
consistent truncation of the higher spin tower at any finite
spin > 2. Effect of finite number of higher spin fluctuations
coupled with the background spin-2 fluctuations have been as
found in numerous AdS and flat-space calculations. Analysis
in the presence of higher spin fields in AdS spacetimes has
been worked out in the seminal works by Gopakumar et al
in Refs. [22–26]. In flat spacetimes, similar such work has
been carried out in Refs. [27–29]

The paper is organized as follows. In Sect. 2, we introduce
the CS formulation of 3d bosonic gravity. In Sect. 2.1, we
obtain the supersymmetric extension of bosonic CS theory.
In Sect. 3.1, we discuss the technique of supersymmetric
localization of our theory. In Sect. 3.2, we explicitly evaluate
the partition function, obtained as a matrix model, for our case
of spin-2 gravity. We also explicitly identify the divergent
pieces in the partition function. In the following Sect. 4 ,
we evaluate the same for higher spin cases and comment on
the divergences observed. In Sect. 5 , we comment on some
future directions that may be explored. Section 1 carries a
note on our definitions and conventions.

2 Chern Simons formulation for 3d gravity and its
supersymmetrization

3D gravity is long known to be equivalent to a pure CS theory
[1]. Let us first briefly take a detour through this equivalence,
particularly for the case of positive cosmological constant in
Euclidean setting. One can start off with a CS functional on

1 Since pure Einstein gravity in 3 dimensions is devoid of local dynam-
ics, it is hard to define physical, non-trivial correlation functions, par-
ticularly in the bulk.
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a 3-manifold M out of a su(2)⊕ su(2) valued 1-form (gauge
field). Also the Lie algebra is equipped with an Ad invariant
symmetric bilinear quadratic form Tr ≡ 〈·, ·〉 valued to be
diag(k, k, k) and diag(−k,−k,−k) respectively on the first
and the second su(2). The CS functional then can be written
as difference of two su(2) CS functional, Tr now evaluating
diag(1, 1, 1):

S[A+,A−]
= k

4π
Tr

∫
M

(
A+ ∧ dA+ + 2

3
A+ ∧ A+ ∧ A+

)

− k

4π
Tr

∫
M

(
A− ∧ dA− + 2

3
A− ∧ A− ∧ A−

)
(8)

with,

A± = ω ± e, k = 1

4G
(9)

keeping the positive cosmological constant 	 = 1, G is the
Newton’s constant in 3 dimensions and e and ω are the su(2)

triad and connection respectively. It is easy to see that Eq.
(8) is actually the action for first order gravity:

k

2π

∫
M

(
eI ∧

(
2dωI + εI J KωJωK

)
+ 1

3
εI J K e

I ∧ eJ ∧ eK
)

(10)

If M , is closed (for example the manifolds we will be dealing
with in this article, ie the static patch of Euclidean dS3 ∼ S3

or S3/�), ie ∂M = ∅, the variational principle holds for the
action Eq. (8) without any concern for boundary terms. Equa-
tions of motion are flatness conditions of the CS connections,
ie F± = dA± which translate into

torsionless condition deI + ε I J K eJ ∧ ωK = 0 and (11a)
curvature equation 2dωI + ε I J KωJ ∧ ωK = −ε I J K eJ ∧ eK

(11b)

for gravity variables. Interestingly, the following action

S̃[A+,A−]
= k+

4π
Tr

∫
M

(
A+ ∧ dA+ + 2

3
A+ ∧ A+ ∧ A+

)

+ k−
4π

Tr
∫
M

(
A− ∧ dA− + 2

3
A− ∧ A− ∧ A−

)
(12)

with independent levels k± also gives the same equations of
motion Eq. (11) for gravity variables. For sake of convenience
we introduce a parameter γ such that, k± = a(1/γ±1)

4G and
Eq. (12) gives back Eq. (8) at the limit γ → ∞ [13]. The
equations of motion are independent of γ . This applies to
the space solutions as well. On the other hand, other aspects
of the dynamics of the theory, ie. canonical structures are
parametrized by γ . For example, the pre-symplectic structure
on the space of solutions Eq. (11):

(δ1, δ2) = k+
2π

Tr
∫

�

δ1A+ ∧ δ2A+

− k−
2π

Tr
∫

�

δ1A− ∧ δ2A−

= 2a

8πG

(∫
�

(
δ1ω

I ∧ δ2ω
I + δ1e

I ∧ δ2e
I
)

+ 2

γ

∫
�

δ[1ωI ∧ δ2]eI
)

(13)

Recall, in our definition, A[a Bb] ≡ 1
2 (AaBb − AbBa)

2.1 Supersymmetrization

To evaluate the partition function given by Eq. (5) exactly, we
would use the recently developed supersymmetric Localiza-
tion techniques of Pestun et al [19], adapted to our purpose.
Towards this, we start by supersymmetrizing a CS gauge
field A valued in some semi-simple Lie algebra. Later we
will specialize to mainly su(2), the case of relevance to 3D
gravity. We construct the 3dN = 2 vector multiplet, defined,
as always as V = (A, σ, D, λ, λ̄). The supersymmetric CS
Theory action is written as

SSCS[V] = SCS[A] +
∫

d3x
√|g| Tr(−λλ̄ + 2Dσ) (14)

Note that in the 3d N = 2 vector multiplet, the additional
fields (σ, D, λ, λ̄) are not dynamical and give no kinetic
terms contributions to the action.

3 Localization of the 3d supersymmetric Chern Simons
theory on lens spaces

With the connection between 3d Euclidean gravity and the
supersymmetric CS theory made explicit in Eqs. (8) and (10),
we will now evaluate the partition function of the 3d super-
symmetric CS theory via supersymmetric Localization tech-
niques. Since, we are interested in evaluating gravity partition
function on lens spaces, we would we would try localizing
the CS theory on lens spaces L(p, q).

3.1 Principle of localization

Suppose we have a theory on a compact manifoldM, defined
by an action S[�],2 which has a Grassmann-odd symmetry3

δ. Let us further assume that there exists an operator V which
is invariant under the transformation δ2, i.e.δ2V = 0. Once
we have established the existence of such a special V , let us

2 {�} stands for whatever the fields of the theory are.
3 δ is assumed non anomalous. This is a crucial and non-trivial point.
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now consider not the original partition function, but rather a
perturbed one, viz.

Z(t) =
∫
M

Dφ e−S[�]−tδV (15)

Note that this function is independent of t as4

dZ(t)

dt
= −

∫
M

Dφ δVe−S[�]−tδV

= −
∫
M

Dφ δ(Ve−S[�]−tδV ) = 0 (16)

This means that the original unperturbed partition func-
tion maybe evaluated by evaluating the perturbed partition
function Z(t) for any value of t (that is dictated by con-
venience) and especially, for t → ∞. This is immedi-
ately useful. If the perturbing operator has a positive definite
bosonic part, the integral localizes to a sub-space, often even
a finite dimensional one, of field spaces {�0} where we have
(δV )B |{�0} = 0.

With this motivation, we will try and evaluate the parti-
tion function of Supersymmetric CS theory on L(p, q). Now,
to have some supersymmetric actions on some curved 3-
manifold, we need to find some background, off-shell super-
gravity theories that preserve some rigid supersymmetry.
These theories can then be made to couple to some super-
symmetric field theory. This is done via the stress tensor
multiplet.
For our specific case of 3d N = 2 theory, this supergravity
theory was called the “new minimal supergravity” which has
the following field content

Field Content:{
Metric gμν, R Symmetry Gauge Field A(R)

μ , 2-Form Gauge Field Bμν

Central Charge Symmetry Gauge Field Cμ, Gravitini (ψμ, ψ̃μ)
}

(17)

We define the (dualized) field strengths

H ≡ i

2
εμνρ∂μBνρ, Vμ ≡ −iεμνρ∂νCρ (18)

To ensure that we have rigid supersymmetry, we need to
find Killing spinors (ζ, ζ̃ ) which satisfy the Killing spinor
equations, given in terms of these fields, as

(
∇μ − iA(R)

μ

)
ζ = −1

2
Hγμζ − iVμζ − 1

2
εμνρV

νγ ρζ

(
∇μ + iA(R)

μ

)
ζ̃ = −1

2
Hγμζ̃ + iVμζ̃ + 1

2
εμνρV

νγ ρζ̃

(19)

4 Recalling δS = 0 and δ2V = 0.

In terms of these Killing spinors, the general Supersymmetric
variations of the fields in the gauge multiplet for the 3dN = 2
theory are given by5

δAμ = −i(ζγμλ̃ + λ̃γμζ ),

δσ = −ζ λ̃ + λ̃ζ,

δλ = − i

2
εμνργρζFμν + iζ(D + σH)

− γ μζ(i Dμσ − Vμσ),

δλ̃ = − i

2
εμνργρζ̃Fμν − i ζ̃ (D + σH)

+ γ μζ̃ (i Dμσ + Vμσ),

δD = Dμ(ζγ μλ̃ − ζ̃ γ μλ)

− iVμ(ζγ μλ̃ + ζ̃ γ μλ) − [σ, ζ λ̃]
− [σ, ζ̃λ] − H(ζ λ̃ − ζ̃ λ) (20)

We also recall that the 3d N = 2 super Yang–Mills (SYM)
action on S3, given by6,7

SSYM =
∫

d3x
√|g| Tr

[
1

4
FμνFμν + 1

2
DμσDμσ

−1

2

(
D + i

l
σ

)2

− i λ̄γ μDμλ + i λ̄[σ, λ] − 1

2l
λ̄λ

]

(21)

can also be written as

SSYM =
∫

d3x
√|g| 1

ζ̃ ζ
δζ δζ̃ Tr

[
1

2
λ̄λ + iσD

]
(22)

The action given by Eq. (21) is invariant under the transfor-
mations given by Eq. (20).

Equations (21) and (22) hand us a prime candidate for
the operator δV mentioned in the preceding paragraph, viz.,
δV = SSYM . Explicitly, its variation under Grassmann odd
symmetry δζ is zero and has manifestly positive definite
bosonic part.
So, we would like to evaluate

Z(t) ≡
∫
M

Dφ e−SSCS [V]−t SSY M (23)

5 Fμν ≡ ∂μAν − ∂νAμ − i[Aμ,Aν ]
Dμ ≡ ∇μ − iqR(Aμ − 1

2 Vμ) − iAμ, qR being the R charges of
the fields of the vector multiplet .
6 Recall V = {

Aμ, λ̄, λ, σ, D
}

is the field content of the 3d N = 2
theory. They are respectively a vector, two complex fermions, a scalar
and an auxiliary scalar respectively.
7 Actually this is the action given not just on S3 but also on quotient
spaces of the kind S3/Zp . This is understood as such spaces are locally
equivalent to 3-spheres and transformations generated by supercharges
are local.
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with M = L(p, q) and in the limit t → ∞ where the
partition function localises to a finite dimensional integral
and the evaluation is exact. The bosonic part of Eq. (21),
being expressed as the sum of squares, immediately gives us
the BPS configurations. They are viz.,

Fμν = 0 , Dμσ = 0 , D + i

l
σ = 0 (24)

Here, solving the equations in (24), we face non trivialities
due to difference in global topology of L(p, q) when com-
pared to S3.

It is evident that we need the classical saddles correspond-
ing to Eq. (23) on L(p, q) on which the localized partition
function will be supported. Non-triviality of this statement
arises from the fact that the flat connections on a manifold are
characterized by holonomies around non-contractible loops
on the base manifold, modulo a homogeneous adjoint group
action at the base point of the loop. These loops form the first
fundamental group of the base manifold. Hence the moduli
space of space of flat connections modulo gauge transforma-
tion is given by

hom (π1(M) → G) /AdG . (25)

For the present case, L(p, q) is a free Zp quotient of the
simply connected manifold S3. Therefore we have the first
homotopy group as π1(L(p, q))= Zp. This implies that the
CS saddles ie, the flat connections are labelled by g ∈ G,
with gp = 1. If we take g to lie in the maximal torus (this can
be always be done for simply connected lie groups by the Ad
action), we have

g = e
2π i
p m

, m ∈ 	/(p	) (26)

where, 	 is the co-weight lattice of the group G and m is N
dimensional vector, where N is the rank of group G.
Note that Eq. (26) would then imply that m j ∈ Zp . For
example, for G = SU (N ), we have

g = diag

(
e

2π im1
p , e

2π im2
p , . . . , e

2π imN
p

)
(27)

with
∑

i mi = 0. The rest of the equations in the Eq. (24),
imply

σ = ilD ≡ σ̂0

l
= constant, [σ̂0,m] = 0 (28)

We will take σ̂0 to lie in the Cartan sub-algebra h of the Lie
Algebra g of the group G. Note that, the second equation of
Eq. (24) motivates why we can expand m in the same Cartan
basis.

Classical contribution: The classical (tree level) contribu-
tion to the action is obtained by plugging in the BPS config-
urations in SSCS .

There will be two such contributions, one coming from
the scalars, σ and D, which have been shown to be constant
in Eq. (28) and the flat gauge fields. The contribution from
the scalars is

SISCS(σ̂0) = i vol(S3/Zp)

2πl3
Tr(σ̂ 2

0 ) = π i

p
Tr(σ̂ 2

0 ) (29)

The contribution from the flat gauge fields is

SI ICS(m) = −π i

p
Tr(q∗m2) (30)

The total classical contribution is then

SSCS(σ̂0,m) = SISCS(σ̂0) + SI ICS(m) = π i

p
Tr(σ̂ 2

0 − q∗m2)

(31)

with q∗ is defined as q∗q = 1 mod(p)
1-loop determinants: We calculate the 1-Loop determi-

nants from the quadratic fluctuations of the fields about their
BPS configurations. Specifically,

Aμ = t−
1
2 A′

μ,

σ = σ̂0

l
+ t−

1
2 σ ′ ,

D = − i

l2
σ̂0 + t−

1
2 D′ ,

λ = t−
1
2 λ′ ,

λ̄ = t−
1
2 λ̄′ (32)

Plugging these values in Eq. (21), we obtain the terms in the
action proportional to t−1 as

S′
SY M = t−1

∫
d3x

√|g| Tr

×
[

1

4
F ′

μνF
′μν + 1

2
∂μσ ′∂μσ ′ − 1

2l2
[A′

μ, σ̂0]2

− 1

2

(
D′ + i

l
σ ′

)2

− i λ̄′γ μDμλ′

+ i

l
λ̄[σ̂ ′

0, λ
′] − 1

2l
λ̄′λ′

]
+ O(t−2) (33)

The integration over D′ can trivially be done and it just alters
the overall normalization constant sitting in front. To deal
with the Vector and Fermionic fields, we decompose the
gauge field into a divergenceless part (X) and the rest as
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A′
μ = Xμ + ∂μφ (34)

The integrals over φ and σ ′ give determinants that cancel and
we are left with a divergenceless Vector field and Fermionic
fields. Next, we expand them in the �a of the Lie Algebra
with the definition

[σ̂0, �α] = α(σ̂0) (35)

The action then becomes
∫

d3x
√|g|

∑
α∈Ad(G)

(
1

2
Xμ

−α

(
−∇2 + 1

l2
α(σ̂0)

2
)
Xα,μ

+λ̃′−α

(
−iγ μ∇μ + i

l
α(σ̂0) − 1

2l

)
λ′

α

)
(36)

The 1-loop determinant is then, simply

Z1−Loop
gauge (σ̂0,m; p, q) = det

( − iγ μ∇μ + i
l α(σ̂0) − 1

2l

)
det(−∇2 + 1

l2
α(σ̂0)2

) 1
2

(37)

On lens spaces L(p, q), this result may be calculated as:

Z1−Loop
gauge (σ̂0,m; p, q)

=
4

∏
α>0 sinh

π

p
α(σ̂0 + im) sinh

π

p
α(σ̂0 − iq∗m)

∏
α>0 α(σ̂0)2

(38)

where, α are the roots of G and q∗ is defined as q∗q =
1 mod(p).

For a detailed derivation of the result in Eq. (38), we refer
the reader to [30].8 We only draw our reader’s attention to the
fact that the above expression reduces to the 1-loop determi-
nant of the partition function evaluated on S3 for the special
case of p = 1 and q∗ = 0 as it should as L(1, 0) = S3.

Finally, we integrate over the BPS configurations, here,
denoted by σi ’s and sum over the holonomies, identified
by the components of the vector m. Using Weyl integra-
tion formula, as always, the integral reduces from the vector
space spanned by the entire Lie Algebra to a vector subspace
spanned by just the Cartan sub-algebra (h). This, however,
introduces a Vandermonde Determinant

∏
α>0 α(σ̂0)

2. This
is exactly cancelled by the denominator in Eq. (38). Also, to
take into account the residual Weyl symmetry of the gauge
group, we divide the final expression by the order of the Weyl
group of the the gauge group.

8 Note, that supersymmetric CS theory admits Matter Multiplets (MM)
too, in arbitrary representation Ri for the ith multiplet, and indeed, in
the literature, the full theory has been localized, but, for our purposes,
we would not require any MM.

Explicitly, the expression for the partition function
becomes

Z(σ̂0,m; p, q) = 1

|W|
∑
m

∫
h
dσ̂0

×
∏
α>0

α(σ̂0)
2 e−SSCS Z1−Loop

gauge (σ̂0,m; p, q)

= 4

|W|
∑
m

∫
h
dσ̂0 e

−π i
p TrCS(σ̂ 2

0 −qm2)

×
∏
α>0

sinh
π

p
α(σ̂0 + im) sinh

π

p
α(σ̂0 − iq∗m) (39)

We will evaluate the RHS of Eq. (39) explicitly next.

3.2 Partition function: evaluation of the matrix model for
spin-2 gravity

As described in the Sect. 2, the CS version of the spin-2
gravity we are interested in is based on the gauge group
G = SU (2) × SU (2) for the gauge fields in Eq. (12). Here
we would perform the localized integral Eq. (39) and choose
those CS saddles that correspond to smooth gravity back-
ground solutions.

Let us, then, evaluate the partition function given by Eq.
(39) for G = SU (2) × SU (2).
The Weyl group for SU (N ) is the permutation group SN

, the order of which is N !. The rank of SU (N ) group is
(N − 1), which, for our case of SU (2) is simply 1. Hence,
flat connections are identified by the component of a one
component vector m, denoted by m± for the two gauge fields
A± corresponding to the two SU (2) groups of the gauge
group G.

The partition function, for each saddle, identified by a
value of p, receive contribution from two values of m±. They
are explicitly,

m± = (q ± 1)

2
(40)

For further details, we refer the reader to [9].
With the values of m±’s in our hand, we can directly pro-

ceed to calculate the integral given in the RHS of Eq. (39)
explicitly.

As discussed, since the rank of SU (2) group is 1, the
evaluation of the partition function reduces to the problem of
solving a one dimensional integral, viz.:

Z+(σ̂0,m; p, q) = 4

2!
∫

dλ+e
− ik+π

p (λ2+−q∗m2+)

× sinh
π

p
(λ+ + im+) sinh

π

p
(λ+ − iq∗m+) (41)

Fortunately, the integral given in Eq. (41) is tractable.
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Since our chosen gauge group is a product group we have
another flat connection, identified by m−. The correspond-
ing CS level is denoted by k− and we obtain an equivalent
expression for the second flat connection. Explicitly,

Z−(σ̂0,m; p, q)

= − 4

2!
∫

dλ− e
− ik−π

p (λ2−−q∗m2−)

× sinh
π

p
(λ− + im−) sinh

π

p
(λ− − iq∗m−) (42)

As yet, the CS levels are arbitrary but we will choose a special
parametrization, viz.,

k+ = a

(
1

γ
+ 1

)
, k− = a

(
1

γ
− 1

)
(43)

Here, γ is a tunable parameter, whose large limit, for e.g.,
reproduces k+ + k− = 0 . However, we would focus on the
small γ regime for the purpose of divergence structure of the
partition function.
The total contribution to the partition function is their prod-
uct. Explicitly,

Z(σ̂0,m; p, q)︸ ︷︷ ︸
su(2)⊕su(2)

= Z+(σ̂0,m; p, q)︸ ︷︷ ︸
su(2)

×Z−(σ̂0,m; p, q)︸ ︷︷ ︸
su(2)

(44)

Using the the values of m+ and m−, the RHS of Eq. (44)
gives

Z(σ̂0,m; p, q)

= i pγ

(2!)2a
√

1 − γ 2
e
iπ(a(q+q∗+2γ )−4(1+q)γ )

2pγ

×
(

1 + e
4iπ(1+q)

p + e
2iπ(q−q∗)

p

+ e
2iπ(2+q+q∗)

p − e
2iπ(a(1−q)(1−γ )+2γ )

ap(γ−1)

− e
2iπ(a(3+q)(−1+γ )+2γ )

ap(γ−1) − e
2iπ(a(q∗−1)(1−γ )+2γ )

ap(γ−1)

− 2e
2iπ(a(1+q)(1+γ )−2γ )

ap(γ+1) − e
2iπ(a(1+2q−q∗)(1+γ )−2γ )

ap(γ+1)

− e
2iπ(a(1+q∗)(1+γ )−2γ )

ap(γ+1) + e
4iπ(a(γ 2−1)+2γ )
ap(1+γ )(1−γ )

+ e
4iπ(aq(γ 2−1)+2γ )

ap(γ+1)(γ−1) + e
2iπ(a(2+q−q∗)(γ 2−1)+4γ )

ap(γ+1)(γ−1)

+ e
2iπ(a(q+q∗)(γ 2−1)+4γ )

ap(γ+1)(γ−1) − e
2iπ(a(1+2q+q∗)(γ−1)+2γ

ap(γ−1)

)

(45)

This is one of the most striking points in our analysis, which
requires further attention. We should note that, the above
expression is same as that appearing in the purely bosonic

analysis of [13] or the one in [9] (for γ → ∞), apart from
the overall pre-factor p. For this purpose we take γ → ∞
and large a in (45) with an analytical continuations a →
i a. For large |a| (which means assuming large dS radius in
comparison to Planck length), ie where we expect the CS
theory to be describe quantum gravity, (45) yields:

Z(a, p, q) = 8π2

a VL(p,q)

F(a, q, p). (46)

Whereas the result for pure bosonic gravity, as found in [9],9

which also is a special case for higher spin result of [15] is:

Z ′(a, p, q) = VL(p,q)

4aπ2 F(a, q, p),

where F(a, q, p) = e
2πk
p

((
cos(π

p ) − cos
(

πq
p

))
(

cos(π
p ) − cos

(
πq∗
p

)))
. (47)

Here, VL(p,q) = 2π2/p is the volume of L(p, q), mea-
sured in units of dS length cubed. This clearly shows that
inclusion of fermionic modes basically introduced an altered
power law volume dependence. This factor, as explained
also in the introductions, would cancel if one is interested
in local physics ie. calculate correlation functions on a par-
ticular Lens space. However as already motivated, we defer
that analysis here and go on finding an answer to a question
rather topological in nature. We sum over all poassible grav-
ity saddles, ie. Lens spaces. Note that Eq. (45) evaluates the
contribution to the gravity partition function for a specific p
and specific q. To calculate the total contribution of all the
saddles, denoted, essentially by p, we have an overall “sum
over geometries” . In short, the overall contribution to the
gravity partition function Zgravity, we will have a sum over
p and sum over q to accommodate the various contributions
of all the saddles. In short, the gravity partition function will
be obtained by:

Zgravity =
∞∑
p=1

p∑
q=1

(p,q)=1

Z(σ̂0,m; p, q). (48)

We observe an overall positive power of p multiplying the
trigonometric terms. When summed over all topologies, ie.
lens spaces, this p dependence might be a serious cause of
divergence. Interestingly, for the pure bosonic theory (for
γ → ∞) [9] and (finite γ ) [13] the overall p dependence was
1/p. Therefore the expectation that the supersymmetric the-
ory should reproduce exactly the same result as the bosonic
one(because fermions are non-dynamical), does not repro-
duce exactly the same answer as that of the purely bosonic

9 There lingers a typo in [9], particularly in eq. (4.32), involving extra
factors of 2 in the cosine phases.
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theory come out to be true. We will shortly come back to the
detailed analytic structure of the sum and explore deeper in
this aspect. We will express our result, after the sum over q’s
in terms of Kloosterman sums S(x, y; p), which are tailor
made for such sums. The Kloosterman sums are defined as

S(x, y; p) ≡
p∑

q=1
(p,q)=1

e
2iπ
p (xq+yq∗)

.

In terms of these Kloosterman sums, the q sum in Eq. (48)
gives:10

Zgravity = i

(2!)2

∞∑
p=1

pγ

a
√

1 − γ 2
e
iπa
p

×
[

4 cos
(2π

p

)(
S(α − 1, α; p) + S(α + 1, α; p)

)

− 2
(

cos
(4π

p

) + 1
)
S(α, α; p)

−
(
S(α − 1, α − 1; p) + 2S(α + 1, α − 1; p)

+ S(α + 1, α + 1; p)
)]

(49)

To carry out the summation over p, we expand the cosine and
the exponential function in their respective Maclaurin series.
We obtain an infinite series of Kloosterman Zeta Functions
function, defined as

L(x, y; s) =
∞∑
p=1

p−2s S(x, y; p) (50)

The Kloosterman Zeta functions are analytic for Re(s) >

1/2. Writing our result explicitly, in terms of these functions,
will also help us isolate the divergent pieces in the gravity
partition function, as explicitly those terms withRe(s) ≤ 1/2
. The final expression for Zgravity is then obtained as :

Zgravity = i γ

(2!)2a
√

1 − γ 2

∞∑
m=0

(iπa)m

m!

×
[ ∞∑
n=0

(−1)n
4 π2n

(2n)!
(
L

(
α − 1

2
, α,

m + 2n − 1

2

)

+ L

(
α + 1

2
, α,

m + 2n − 1

2

)

− 22n−1L

(
α, α,

m + 2n − 1

2

))

10 α ≡ a

4γ
.

− 2L

(
α, α,

m − 1

2

)

− L

(
α − 1

2
, α,

m − 1

2

)

− 2L

(
α − 1

2
, α + 1

2
,
m − 1

2

)

− L

(
α, α − 1

2
,
m − 1

2

)]
. (51)

Let us investigate the analytic structure of the partition func-
tion summed over all lens spaces Eq. (51). From Eq. (50), i.e.
the analyticity of the Kloosterman zeta function, it is easy to
see a set of divergence is sourced from the terms for which
m+2n ≤ 2 in Eq. (51) and another set being originated from
m ≤ 2 for n independent terms.

It might be a bit more instructive to review the divergence
properties in semi-classical regime along with γ → ∞, so
that a direct comparison with the ζ(1) divergence appearing
in [9] can be made. This is actually made apparent by compar-
ing (47) and (46). Even in the milder case of purely bosonic
theory, which depends linearly on volume as an over-all fac-
tor, a divergence occurs when one considers sum over all
Lens spaces as a harmonic series in p, since VL(p,q) ∼ 1/p,
ie very slowly while accumulating up smaller Lens space vol-
umes. However, we should keep in mind that, this divergence
is completely different in nature to those commonly seen in
local QFTs while probing short length-scales, i.e. the UV
divergences. Those originate from integrating high energy
modes. For a renormalizable theory these divergences can be
absorbed into local counter-terms. We do not have any such
mechanism here, as also commented in [9].

In contrast, our analysis shows existence of more such
divergent pieces in (51), due to dynamical fermions due to
localization. Individual Lens space contributions are finite as
before but summing over Lens spaces makes the divergence
worse. As the prior motivation for this sum over saddles was
to inspect the Hartle–Hawking state for the static patch of
de Sitter space, the present result summarizes that quantum
Hartle–Hawking is not a good choice of vacuum for 3 dimen-
sional dS, even in the supersymmetrized version.

4 Higher spin case

Linearized higher spin fields can be coupled consistently to
gravity in 3 dimensions with finite height of the higher spin
tower, which is nicely captured by the Fronsdal action of
symmetric traceless tensor fields. In principle, we imagine a
(finite) tower of higher spins, namely s = 3, 4, 5,…, N over
and above the spin-2 cases. This construction is possible only
in three dimensions where we can have a consistent trunca-
tion to arbitrary spins. For higher dimensions (d > 3) we
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must include all the higher spin fields. In three dimensions,
however, we have the added advantage where we can have a
truncated tower of higher spin fields.

These higher spin fields are all minimally coupled to the
spin-2 field which forms a background. Following the anal-
ysis put forward in [26], we would include higher spins in
our analysis and evaluate the partition function and see the
nature of divergence, if any. We would explicitly work out the
effect of adding a spin-3 fields as that is the most tractable
case in these theories of higher finite spins. As explained,
the background is still furnished by the spin-2 field such that
gμν remains the metric of the static patch of Euclidean de Sit-
ter spacetime, given by (1). We define a metric compatible
connection ∇ on the manifold such that

[∇μ,∇ν

]
Aρ = Rρ

σμν A
σ (52)

which defines the Riemann curvature tensor on the manifold
for a probe field Aμ.

Spin-3 case To introduce a massless spin-3 field φ(μνρ)

which is minimally coupled to pure gravity in 3 dimensions,
we introduce, following [31], the linearised Fronsdal action
given by

S[φ] =
∫

d3x
√
g φα1α2α3

(
Hα1α2α3 − 1

2
g(α1α2H μ

α3)μ

)

(53)

where the definitions are as follows,

Hα1α2α3 ≡ �φα1α2α3 − ∇(α1∇λφα2α3)λ

+1

2
∇(α1∇α2φ

λ
α3)λ

+ 2g(α1α2φ
λ

α3)λ
(54)

We also note, in passing, that the linearised theory enjoys a
gauge symmetry given by

δφα1α2α3 = ∇(α1ξα2α3)

where, ξαβ is symmetric and traceless.
Interestingly, a first order version of this theory can also

be formulated in terms of CS gauge fields. Campoleoni et al.
[32] gives an elaborate AdS counterpart of that exposition.
Our work is similar in spirit but with a positive cosmolog-
ical constant, which, has not been explored before. At the
level of corresponding Lie algebra for CS theory, going from
AdS to dS background amounts to changing the structure
constants. The CS theory that describes spin 3 fields on the
backdround of (euclideanised) 3d dS spacetime, has a gauge
group SU (3) × SU (3) [15].

For the ease of generalizing to spin-3 case, in spirit of the
Eq. (9), we define

( j±) p
μ ≡ (ω ± e) p

μ . (55)

Let us further define higher tensorial objects obtained simi-
larly as a linear combinations gauge potentials

(t±)
p1 p2···ps−1

μ ≡ (ω ± e) p1 p2···ps−1
μ (56)

We then define the one form gauge fields as

A± ≡ (( j±) p
μ Jp + (t±)

p1 p2···ps−1
μ Tp1 p2···ps−1)dx

μ (57)

where
{
Tp1 p2···ps−1

}
are higher spin generators which are to

be added to
{
jp

}
.

Here too, there are no local degrees of freedom, and we
associate the equations of motion with the condition for flat-
ness for these gauge fields. This is, again, similar in spirit
to the d = 3 Einstein gravity we explored earlier. Thus, we
arrive at the Chern Simons formulation of higher spin gravity.

Explicitly, we need to state the algebra of these higher
spin generators

{
Tp1 p2···ps−1

}
. Firstly, we note that, from Eqs.

(55), (56) and (57), the generators must transform in some
irreducible representation of su(2). This implies that they are
symmetric and traceless. Furthermore, similar to the

{
Jp

}
,

they satisfy[
Jq , Jr

] = εqrt J
t[

Jr , T p1 p2···ps−1

] = ε
q
r(p1

Tp2 p3 ps−1)q (58)

Particularly, for the case of s = 3, Eq. (58) allows for a
non-trivial algebra of the higher spin generators, namely,[

Jq , Jr
] = εqrt J

t[
Jr , Tp1 p2

] = ε
q
r(p1

Tp2)q[
Tp1 p2 , Tp3 p4

] = (
δp1(p3εp4)p2r + δp2(p3εp4)p1r

)
Jr (59)

One can further show that the algebra given by Eq. (59) is
isomorphic to su(3). That we are working on a Riemannian
manifold is made explicit by the appearance of the Kronecker
delta as opposed to the Minkowski metric in the algebra Eq.
(59) .

With the set of generators
{
Jp, Tp1 p2···ps−1

}
which gen-

erate a Lie Algebra g, assumed to admit a non-degenerate
bilinear form Tr, we define a Chern Simons action

S[A+,A−]
= k

4π
Tr

∫
M

(
A+ ∧ dA+ + 2

3
A+ ∧ A+ ∧ A+

)

− k

4π
Tr

∫
M

(
A− ∧ dA− + 2

3
A− ∧ A− ∧ A−

)
. (60)

We would like to calculate the exact partition function in this
case so as to check whether supersymmetric version of the
higher spins make the sum over topologies better in terms
of convergence properties. Let us now evaluate the partition
function given by Eq. (39) for G = SU (3) × SU (3). As
the rank of the group SU (3) is 2, the flat connections are
identified by the component of a two component vector m,
denoted by m(i)

± , where, i running from 1 to 2, denotes the
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two components of m and ±, as before, denote the two gauge
fields A± corresponding to the two SU (3) groups of the
gauge group G.

At this point, as in the case for spin-2 in Eq. (40), we will
have to choose a pair of elements from the corresponding A2

co-weight lattice. This choice is physically motivated by the
fact that quantum fluctuations are considered over the back-
ground that describes dS geometry in terms of gravitons and
zero excitations for higher spin degrees of freedom. The exact
co-weight points are thus found by a principal embedding of
su(2) in su(3). Thus the two components of m± as

m(i)
+ = {q + 1, 0} , m(i)

− = {q − 1, 0} (61)

With the values of m(i)
± ’s in our hand, we can directly pro-

ceed to calculate the integral given in the RHS of Eq. (39)
explicitly.

Z±(σ̂0,m; p, q)

= ± 4

3!
∫

dλ
(1)
± dλ

(2)
± e

− ik±π
p

(
λ

(1)2
± +λ

(2)2
± −q∗(m(1)2

± +m(2)2
± )

)

× sinh
π

p
(2λ

(1)
± − λ

(2)
± + i(2m(1)

± − m(2)
± ))

× sinh
π

p
(2λ

(1)
± − λ

(2)
± − iq∗(2m(1)

± − m(2)
± ))

× sinh
π

p
(2λ

(2)
± − λ

(1)
± + i(m(2)

± − m(1)
± ))

× sinh
π

p
(2λ

(2)
± − λ

(1)
± − iq∗(m(2)

± − m(1)
± ))

× sinh
π

p
(λ

(1)
± + λ

(2)
± + i(m(1)

± + m(2)
± ))

× sinh
π

p
(λ

(1)
± + λ

(2)
± − iq∗(m(1)

± + m(2)
± )) (62)

The integral in Eq. (62) is Gaussian and therefore, tractable.
The argument preceding Eq. (44) holds in this case too, and
we have

Z(σ̂0,m; p, q)︸ ︷︷ ︸
su(3)⊕su(3)

= Z+(σ̂0,m; p, q)︸ ︷︷ ︸
su(3)

×Z−(σ̂0,m; p, q)︸ ︷︷ ︸
su(3)

,

(63)

with k± being parameterized similarly as in the SU (2) case,
via Eq. (43), and the values of m± obtained in Eq. (61),
obtained in the preceding section, the RHS of Eq. (63) gives

Z(σ̂0,m; p, q)

= (pγ )2

(3!)2a2(γ 2 − 1)
e

2iπ
pγ (a(q+q∗+2γ )−4(1+q)γ )

G(γ, a, p, q).

(64)

Here the function G is a linear combination of 824 phase
factors, similar in form, to those appearing inside (45). Due

to the cumbersome appearance and of less significance of
these terms, they have been omitted here.

Again, following similar arguments as before, the grav-
ity partition function is given by a sum over the topologies,
which classify the various saddles, and is obtained as

Zgravity =
∞∑
p=1

p∑
q=1

(p,q)=1

Z(σ̂0,m; p, q) (65)

Even without knowing the explicit structure of the terms in
the right hand side of Eq. (64), just from the pre-factor p2 we
can conclude as in the spin-2 case that Eq. (65) will diverge
because of terms appearing in the non-analytic domain of
Kloosterman zeta function.

We conclude by a comparative remark with the purely
bosonic theory. For example, [15] states, that the partition
function for a purely bosonic theory of higher spins truncated
at a tower of spin N on a Lens space is given by:

∼ (VL(p,q))
N−1 e2πk/p

∏
±

N−1∏
s=2

s−1∏
r=1

sin

(
rπ

q ± 1

p

)

× sin

(
rπ

q∗ ± 1

p

)
. (66)

In that case, the generic structure of the partition function for
a tower of spin-N fields on L(p, q) is Zspin−N ∼ p−N+1,
which makes the sum over topologies more convergent for
higher spins. This makes the sum over topologies more con-
vergent for higher spins. In the supersymmetrized version
however:

Zspin−N ∼ pN−1 ∼ 1

VL(p,q))N−1 ,

due to the presence of fermions we observe a completely
reverse phenomenon as the divergence in the full partition
function gets worse with higher spins. Due to the opposite
statistics of the fermions and opposite power of fermionic
determinants in partition function calculations, the diver-
gence in the full partition function gets only worse. How-
ever, as already discussed several times, this divergence only
tells about stability of quantum gravity fluctuations on de
Sitter background, but goes away while calculating corre-
lators of non-gravitational interactions on fixed Lens space
backgrounds.

5 Conclusions and future directions

To conclude, let us recall what we have achieved. We have
calculated, as the definition of Hartle–Hawking vacuum state
the exact quantum gravity partition function on the static
patch of Euclidean de Sitter space-time. In trying to do so, we
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have argued that the quantum gravity path integral receives
contributions from all the classical saddles, which we have
obtained as the quotient spaces of S3 by the abelian group,
Zp. This have been identified with the Lens Space L(p, q)

and we expect a formal sum over p and q, the parameters of
the space to capture the contributions from the saddles.

To evaluate the quantum gravity partition function exactly,
we have worked in the CS formulation of 3d gravity. This
has proved immediately helpful in calculating the exact par-
tition function by supersymmetric localization technique.
We have calculated the partition function for both spin-2
gravity and higher spin cases. We observe that the Kloost-
erman zeta functions arise naturally in the result of the
partition functions from where we identify explicitly the
divergent pieces. We also observe that our result, being
exact, reproduces the known result in large k limit, apart
from an overall volume factor. That contribution has been
ascribed to the effect of introduction of non-dynamical
fermionic degrees of freedom. Due to the presence of
this change in the prefactor, the analytic properties of the
sum over all Lens space does change. It becomes diver-
gent even for those ranges of parameters, for which the
bosonic theory was finite. This has a serious implication
while interpreting the result as a Hartle–Hawking vacuum
wave-function.

To explore further, let us focus that the divergence is
caused basically from the prefactor volume contributions
from Lens space of higher p. As one goes on incorporating
higher values of p, smaller volumes contribute as p/(2π2)

as per (46). Therefore one of the most natural yet brute-
force regularization would be to consider only those Lens
space whose volumes are greater than some particular vol-
ume V	, similar in spirit to putting a UV cut-off. One obvious
choice for V	 is of course the Planck volume. This gives a
seemingly plausible regulator. However the ultimate phys-
icality of this scheme would be to first compute expecta-
tion value of local operators or correlators and then take
V	 → 0 and check that the results converge uniformly to
a finite limiting value. That would make a very clear sense
of the Hartle–Hawking vacuum for 3 dimensional dS space,
with all quantum gravity effects included. In fact the above
scheme is planned for an immediate future check, which
we would like to perform by including local degrees of
freedom in the form of scalar fields. The present results
of this article from the localized gravitational part of the
path integral would make that calculation relatively more
tractable.

For the higher spin cases, we have proposed a set of sad-
dles which are points in the A2 co-root lattice. With this
prescription for m, we calculate the partition function and
observe that the divergence is indeed worse. Observing the
trend of the divergence reflected on the the volume prefac-
tor, we have also predicted a conjectural form for arbitrary

higher spin cases. The dependence of the individual partition
function on each Lens space scales as positive spin depen-
dent power law. In contrast, in the purely bosonic theory this
dependence was a negative power law, which made a con-
crete proof of convergence result for spins greater than 3,
possible.

Apart from an immediate future problem as pointed above,
as further future direction, we set aside the task of evaluat-
ing the quantum gravity partition function for the N = 2
supergravity theory, instead of the above purely Einstein
gravity using the CS formulation. In that case, the fermions
would be dynamical and we expect non-trivial contribu-
tions to the partition function, coming directly from the
fermionic sector. It would also be interesting to see if the
addition of dynamical fermions takes care of the divergences
in the partition function, as one might expect from boson-
fermion loop contribution cancellations.It would be interest-
ing to study how the fermionic contributions from the super-
gravity theory differ from the present case. That eventually
will be a valuable progress in classifying all possible exci-
tations consistent with quantum gravity on de Sitter static
patch.
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Appendix

Conventions, definitions, notations and identities

Curved (World) indices = {μ, ν, σ, . . .}. Flat (Local Lorentz)
indices = {I, J, K , . . .}.
Frame fields = {

eIμ
}
, Spin connections = {

ωI J
μ

}
, Connec-

tion 1-form = {
ωI J ≡ ωI J

μ dxμ
}
.

ε123 = ε123 = +1, eI ≡ eIμ dxμ , ωI ≡ 1
2ε I J KωJ K .

f I J K = f[I J K ],11 εI J K ε I LM = +(δLJ δMK − δLK δMJ ),
a[n1n2] ≡ 1

2! (an1n2 − an2n1).
Gauge group ≡ G, Lie algebra of G ≡ g, Cartan sub-algebra
≡ h.
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