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Abstract Collapsing solutions in f (R) gravity are restric-
ted due to junction conditions that demand continuity of the
Ricci scalar and its normal derivative across the time-like col-
lapsing hypersurface. These are obtained via the method of
R-matching, which is ubiquitous in f (R) collapse scenarios.
In this paper, we study spherically symmetric collapse with
the modification term αR2, and use R-matching to exemplify
a class of new solutions. After discussing some mathemat-
ical preliminaries by which we obtain an algebraic relation
between the shear and the anisotropy in these theories, we
consider two metric ansatzes. In the first, the collapsing met-
ric is considered to be a separable function of the co-moving
radius and time, and the collapse is shear-free, and in the
second, a non-separable interior solution is considered, that
represents gravitational collapse with non-zero shear viscos-
ity. We arrive at novel solutions that indicate the formation of
black holes or locally naked singularities, while obeying all
the necessary energy conditions. The separable case allows
for a simple analytic expression of the energy-momentum
tensor, that indicates the positivity of the pressures through-
out collapse, and is further used to study the heat flux evo-
lution of the collapsing matter, whose analytic solutions are
presented under certain approximations. These clearly high-
light the role of modified gravity in the examples that we
consider.

1 Introduction

Einstein’s general relativity (GR) is the most successful the-
ory of gravity till date, although modifications to GR con-
tinue to attract much attention. One of the primary reasons
for attempting such modifications has to do with explain-
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ing the late time acceleration of the universe. It is known
that this phenomenon is compatible with GR in the presence
of a dark energy component in the stress tensor. However,
much work has been done over the last two decades in try-
ing to explain cosmic acceleration of the universe without
invoking dark forms of matter and energy. One such candi-
date theory is f (R) gravity1 (for a sampling of the literature,
see the excellent reviews [1–7]) obtained by modifying the
Einstein–Hilbert action to one which includes a regular non-
linear function f (R) of the Ricci scalar R, i.e one in which
the Lagrangian density is R + f (R), apart from the mat-
ter part. In this paper, we will deal with the specific model
f (R) = αR2, with α being a positive constant, a model
proposed in [8].

While phenomenological studies of f (R) gravity abound
in the literature, there has been relatively lesser focus on col-
lapse scenarios, where matter collapses under its own gravita-
tional force, with the underlying theory being f (R) gravity.
We briefly mention a few relevant papers to highlight the
progress made thus far. In [9], the collapse process of a star
was considered in modified gravity, and it was shown that a
class of f (R) theories can result in the prevention of a cen-
tral singularity in such a process. A generic study of collapse
processes of self gravitating dust in f (R) gravity was initi-
ated in [10]. In [11], this process was studied for the case of
null dust. In the context of cosmology, collapse in modified
gravity was studied in [12], while an extensive numerical
analysis for black hole formation in these theories was car-
ried out in [13]. A more recent analysis on collapsing stars
in modified gravity was done in [14] (with a generalisation
to conformally flat stars appearing in [15]) while results on
the collapse of a perfect fluid in f (R) gravity was reported
in [16].

As is well known by now, collapse situations in f (R) grav-
ity are greatly restricted compared to their GR counterparts,

1 We will always deal with metric f (R) gravity in this paper and per-
form calculations in the Jordan frame.
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due to stringent boundary conditions. In GR, such bound-
ary conditions, known as the Darmois–Israel conditions [17],
[18] require the first and second fundamental forms to match
on the collapsing hypersurface, which is a time-like junc-
tion between an internal and an external region of space-
time. This guarantees smooth matching of the two regions
of space-time, i.e without a stress tensor at the junction. On
the other hand, due to higher order nature of f (R) gravity
additional conditions have to be imposed [19,20] (see also
[21]) over and above the Darmois–Israel conditions. These
often require the Ricci scalar and its (normal) derivative to
vanish at the boundary, for smooth matching of the collapsing
region with an external Schwarzschild space-time.

This fact was exploited fairly recently in [14] to provide
some realistic models of gravitational collapse in f (R) the-
ories in which the coefficient of viscosity is turned off. The
starting point of the analysis is the assumption of a specific
form of a time dependent spherically symmetric metric, that
depends on an arbitrary function of the radial coordinate. The
modified Einstein equations in f (R) gravity are then used to
constrain these functions in such a way that the extra junc-
tion conditions are satisfied, and specific choices give con-
crete examples of collapse scenarios in f (R) models. Impor-
tantly, as pointed out in [14], the additional junction condi-
tions mentioned in [19,20] render a straightforward gener-
alisation of collapse processes in GR, to scenarios involving
modified gravity, difficult. We should emphasise here that in
addition to the junction conditions, the collapsing fluid must
satisfy various energy conditions that we will elaborate upon
in sequel. In totality, all this amounts to the fact that analysing
collapsing scenarios in f (R) gravity might be a substantially
complicated task.

In this paper, we present new solutions for collapse in
f (R) gravity, by assuming some simple ansatzes for the met-
ric, which is then solved by the extra junction conditions,
namely the matching of the Ricci scalar and its derivative
across a time-like boundary. This the R-matching method
commonly used in f (R) collapse scenarios. This is elabo-
rated upon for two cases, first when the metric consists of
separable functions of the radial and the time coordinate,
and second when it is not. Importantly, the second condition
admits shear, and we study this in the presence of a non-zero
coefficient of shear viscosity. The R-matching method gives
us the full solution of the modified Einstein equations, and
we are able to provide a class of realistic collapse models
in f (R) gravity, consistent with all energy conditions. For
separable solutions to the metric, we are able to provide sim-
ple analytic expressions for the components of the energy
momentum tensor. These are then used to construct analytic
solutions of the heat flux evolution equation. Further, the
junction conditions in our model, in the corresponding Ein-
stein scalar theory are analysed in the Jordan frame.

This paper is organised as follows. In the next Sect. 2, after
a brief review of the necessary formalism, we write down the
general evolution equation of the shear in f (R) theories. The
general equation for the evolution of shear is written down
and we obtain an algebraic relation between the shear and
the anisotropy in f (R) collapse models, via this formula.
After this, the necessary energy conditions and the junction
conditions of the collapsing fluid are reviewed. With these
ingredients, in Sect. 3, we construct a separable solution of
the metric using the R-matching method, and show that the
end state of collapse is necessarily a black hole. In this case,
the collapse is shear-free. Then in Sect. 4, we extend this to
non-separable solutions and construct collapsing solutions
that obey all energy conditions with the end state being a
(locally) naked singularity. The role of shear is commented
upon, in this example. In Sect. 5, we study some physical
properties of the collapsing fluid, for the separable case. The
nature of the equation of state is commented upon, and the
heat flux evolution equation is solved under some assump-
tions to clearly highlight the role of the f (R) parameter. In
Sect. 6, we comment on the description of our model in the
Einstein scalar theory, and revisit the junction conditions in
the Jordan frame. Finally, Sect. 7 ends this paper with a sum-
mary of the main results and some discussions.

2 Mathematical preliminaries and set up

For a generic collapse scenario, in co-moving coordinates
(t, r, θ, φ) the metric inside the spherically symmetric col-
lapsing cloud is written as

ds2− = −e2ν(r,t)dt2 + e2ψ(r,t)dr2 + Q2(r, t)d�2, (1)

where d�2 = dθ2 + sin2 θdφ2. The metric outside the col-
lapsing matter is usually represented by the Vaidya solution
in terms of the retarded time u as

ds2+ = −
(

1 − 2m(u)

r̃

)
du2 − 2dudr̃ + r̃2d�2 (2)

In this paper, we will be interested in an exterior vacuum solu-
tion (i.e without any radiation) and hence with m(u) being
a constant, the metric out side the collapsing matter can be
taken to be the Schwarzschild metric, given by

ds2+ = −H(r̃)dt̃2 + H(r̃)−1dr̃2 + r̃2d�2,

H(r̃) = 1 − 2m

r̃
, (3)

wherem is the (constant) Schwarzschild mass, so that the heat
flux obtained from Eq. (1) is zero at the matching hypersur-
face.
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The modified Einstein’s equations for a Lagrangian den-
sity R + f (R) + Lmatter are given by

Gμν = 1

1 + F

(
Tμν + DμνF(R) + 1

2
gμν( f − RF)

)
,

Tμν = − 1√−g

δLmatter

δgμν
(4)

where the Einstein tensor Gμν = Rμν − 1
2gμνR, g is the

determinant of the metric, and

F(R) = d f (R)

dR
, Dμν = ∇μ∇ν − gμν∇α∇α. (5)

We need to solve the modified Einstein equations with the
energy momentum tensor2

Tμν = ρuμuν + Phμν − 
μν + 2qu(μnν) − 2ησμν, (6)

where we define the quantities

σμν = u(μ;ν) + a(μuν) − 1

3


(
gμν + uμuν

)
,


μν = 


(
nμnν − 1

3
hμν

)
,


 = pθ − pr , P = pr + 2pθ

3
, (7)

where (, ) denote a symmetrization, and a semicolon denotes
a covariant derivative. Here, ρ is the energy density, pr and
pθ are the radial and tangential pressures, respectively, qμ =
qnμ is the radial heat flow vector where nμ is a unit 4-vector
along the radial direction, and uμ is the 4-velocity of the fluid.
The quantity, aμ = uμ

;νu
ν designates the 4-acceleration of

the fluid. These satisfy nμnμ = 1, uμuμ = −1, uμqμ = 0,
uμnμ = 0. Also,  = uν

;ν is the expansion parameter and
hμν = gμν + uμuν is the projection tensor.

In this paper, we will be dealing with two situations, to be
elaborated in Sects. 3 and 4. In the former, we will consider
shear-free collapse, with the fluid being non-geodesic. In the
latter, we will consider a geodesic fluid, but with non-zero
shear. It will therefore be useful for us to record the relations
that connect these quantities, in the f (R) model that we con-
sider. As we will see, we are led to some useful insights here.

To begin with, we record the Raychaudhuri equation,
which reads (see, e.g [22])

uα;α + 1

3
2 + 2

3
σ 2 − aμ

;μ

+ 1

1 + F

[
−1

2
(R + f (R))

+
(
dF

dR

)
hμνR;μν + Tμνu

μuν

]
= 0, (8)

2 We work in units such that c = 8πG = 1, with c being the speed of
light and G is the Newton’s gravitational constant.

where σαβσαβ = 2
3σ 2. This equation is valid only for f (R)

models with d2F/dR2 = 0, which is the case under consid-
eration here.3 Now, we will use the identity given by [25]

uβuρR
ρ
αβμh

α
γ h

μ
ν = hα

γ h
μ
ν (aα;μ − uβσαμ;β)

+aγ aν − 1

3
uβ;βhγ ν − 1

9
2hγ ν − 2

3
σμν

−σ 2

3

(
nγ nν + 1

3
hγ ν

)
, (9)

and the well known relation between Riemann and Weyl ten-
sors given by

Rμ
νρσ = Cμ

νρσ + 1

2

(
Rμ

ρ gνσ − Rμ
σ gνρ − Rνρδμ

σ + Rνσ δμ
ρ

)

+ R

6

(
δμ
σ gνρ − δμ

ρ gνσ

)
. (10)

For f (R) gravity (recall that f (R) = αR2 with d2F/dR2 =
0), Eq. (10) can be evaluated by using the results derived in
[22] and after some algebra, we obtain (with R;μ;ν ≡ R;μν),

uβuρR
ρ
αβμh

α
γ h

μ
ν = Eγ ν + 1

2(1 + F)

[
− (R + f (R))

3
hγ ν

+dF

dR

(
hγ νh

αβ R;αβ − hα
γ h

μ
ν R;αμ

)

+
(

2

3
ρhγ ν + 
γν + 2ησγν

)]
. (11)

This generalises a corresponding result obtained for GR in
[25]. Here, Eμν is the electric part of the Weyl tensor, defined
as Eμν = Cμνρλuρuλ, with the magnetic part of the Weyl
tensor vanishing identically due to spherical symmetry. Then,
eliminating ρ from Eq. (11) using Eq. (8), we obtain

uβuρR
ρ
αβμh

α
γ h

μ
ν

= Eγ ν + 1

2(1 + F)

[
dF

dR

(
1

3
hγ νh

αβ R;αβ

−hα
γ h

μ
ν R;αμ

)
+ P̂μν

]

−1

3
hγ ν

(
uα;α + 1

3
2 − aμ

;μ + 2

3
σ 2

)
, (12)

where we have defined

Eμν = E
(
nμnν − 1

3
hμν

)
, P̂μν = (
γν + 2ησγν) (13)

Equating Eqs. (12) and (9) we get

hα
γ h

μ
ν

(
aα;μ − uβσαμ;β

) + aγ aν − 1

3
σγν(2 + σ)

= Eγ ν + 1

2(1 + F)

[
dF

dR

(
1

3
hγ νh

αβ R;αβ

3 This is straightforwardly generalised to situations where d2F/dR2 �=
0, but the expressions are lengthy, and we will not record them here as
these will not be useful for our purpose.
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−hα
γ h

μ
ν R;αμ

)
+ P̂μν

]
+ 1

3
hγ νa

μ

;μ. (14)

Finally, contracting withnγ nν and denoting P̂ = (
 + 2ησ),

nαnμ
(
aα;μ − uβσαμ;β + aαaμ

) − 2

9
σ(2 + σ)

= 2

3
E + 1

2(1 + F)

[
dF

dR

(
1

3
hαμ − nαnμ

)
R;αμ + 2

3
P̂

]

+1

3
aμ

;μ. (15)

Expanding the left hand side of Eq. (15), the evolution of the
shear is given by the equation

e−ψ da

dr
− 2

3
e−ν dσ

dt
+ a2 − 2

9
σ(2 + σ)

= 2

3
E + 1

2(1 + F)

[
dF

dR

(
1

3
hαμ − nαnμ

)
R;αμ + 2

3
P̂

]

+1

3
aμ

;μ, (16)

with a = nμaμ. Equation (16) is the most general evolution
equation for the shear tensor in f (R) = αR2 scenarios, with
d2F/dR2 = 0. The GR case corresponds here to α = 0 and
has been analysed in [25]. We can make a few comments here.
Now note that σ (being computed entirely from the metric)
does not depend on the f (R) parameter α. This means that
the term in square brackets in Eq. (16) has to be independent
of α. For f (R) = αR2 theories, this can be seen to imply
that

σ = 3

4ηR

(
1

3
hαμ − nαnμ

)
R;αμ − 


2η

+ (1 + 2αR)

4ηR

(
∂


∂α

)
(17)

Eq.(17) gives an algebraic relation between the shear and the
anisotropy in the f (R) theories that we consider.4 To the
best of our knowledge, Eqs. (16) and (17) have not appeared
in the literature before, and provide useful insights into the
dynamics of f (R) collapse. These equations will be identi-
cally satisfied in the explicit solutions that we will construct
in sequel.

The next ingredient in our analysis will be the relevant
energy conditions of the collapsing fluid. In this context,
we begin from the energy momentum tensor of Eq. (6), that
describes the motion of a fluid with shear, with heat flow in
the radial direction. The energy conditions for such a fluid
including the effects of anisotropy was obtained in [24] (see
also [23]) by generalising a method developed in [26] for
isotropic cases. This essentially relies on the fact that the
eigenvalues of the energy momentum tensor should be real,

4 Note that Eq. (17) holds only for non-zero α. For α = 0, the method
of its derivation becomes redundant.

and the resulting conditions on the fluid are given by

(i) |ρ + pr − 2ησ11| − 2|q| ≥ 0,

(ii) ρ − pr + 2pθ + � + 2η (σ11 − 2σ22) ≥ 0

(iii) ρ − pr + 2pθ + � + 2η (σ11 − 2σ33) ≥ 0 (18)

where we have defined

q = − T01√−gtt grr
, � =

√
(ρ + pr − 2ησ11)2 − 4q2. (19)

In addition, the weak, dominant and strong energy conditions
(WEC, DEC and SEC) are to be satisfied, and these are given
respectively as

(iv) ρ − pr + � + 2ησ11 ≥ 0 (WEC)

(v) ρ − pr + 2ησ11 ≥ 0 (DEC1)

(vi) ρ − pr − 2pθ + � + 2η (σ11 + 2σ22) ≥ 0 (DEC2)

(vii) ρ − pr − 2pθ + � + 2η (σ11 + 2σ33) ≥ 0 (DEC3)

(viii) 2pθ + � − 2η (σ22 + σ33) ≥ 0 (SEC) (20)

where the DEC consists of three separate conditions labeled
DEC1, DEC2 and DEC3. For convenience, we record the
above conditions in the case of vanishing shear, and they
read,

I. |ρ + pr | − 2|q| ≥ 0, II. ρ − pr + 2pθ + � ≥ 0. (21)

III. ρ − pr + � ≥ 0, IVA. ρ − pr ≥ 0,

IVB. ρ − pr − 2pθ + � ≥ 0, V. 2pθ + � ≥ 0. (22)

Finally, all the conditions above will need to be supple-
mented by the junction conditions in f (R) models [19,20].
Recall that in GR, the standard Darmois–Israel junction con-
ditions [18] are valid, which amount to matching of the first
and second fundamental forms at the time-like hypersurface
� : r = r0. These are defined, with a, b denoting the indices
on the hypersurface, as,

gab = gαβe
α
a e

β
b ,

Kab = 1

2
LN gab = 1

2

(
gab,cN

c + gcbN
c
,a + gacN

c
,b

)
, (23)

where Nμ is the unit normal across the matching hypersur-
face. Here, eα

a = ∂xα

∂ya are tangents to the matching hypersur-
face, and LN gab is the Lie derivative of the induced metric
with respect to the normal vector to the hypersurface. For
f (R) collapse, the additional requirements are the continuity
of the Ricci scalar and its first derivative across this hyper-
surface [19,20], so that the full set of matching conditions
across the collapsing time-like hypersurface separating ds2−
and ds2+ are

[gab] = 0, [Kab] = 0, [R] = 0, Nμ[∂μR] = 0, (24)

where [a] denotes the difference in the quantity a across the
hypersurface �. Therefore, in studying any model of f (R)

collapse, we will need to impose the junction conditions of
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Eq. (24), in addition to the energy conditions spelt out in
Eqs. (18) and (20).

The first two relations of Eq. (24) are fairly straightforward
to deal with. Since the analysis is standard, we will not go
into the details here, but simply state that these imply that the
Misner–Sharp mass function [27,28] given by

M(r, t) = Q

2

[
1 − e−2ψ

(
dQ

dr

)2

+ e−2ν

(
dQ

dt

)2
]

, (25)

equals the Schwarzschild mass when evaluated at the bound-
ary �. From a fairly straightforward analysis, it is known that
these also imply, from the metrics of Eqs. (1) and (2) that

Q

2
e−(ν+ψ)

[
2
Q̇′

Q
− 2

Q̇

Q

ψ̇

ψ
− 2

ν′

ν

Q̇

Q

+e(ψ−ν)

(
2
Q̈

Q
− 2

Q̇

Q

ν̇

ν
+ e2ν

Q2 + Q̇2

Q2

−e2(ν−ψ)

(
Q′2

Q2 − 2
ν′

ν

Q′

Q

))]∣∣∣∣
�

= 0 (26)

Equivalently, the junction conditions imply that [21]

Nμ
[
Tμν

] = 0, (27)

which is a familiar condition in GR. The other two relations
of Eq. (24) are the essential new ingredients in this analysis.
In summary, our task is to study collapse in f (R) gravity,
that are restricted by eight conditions mentioned in Eqs. (18)
and (20) in addition to the four junction conditions spelt out
in Eq. (24). Indeed, this seems to be a formidable task, espe-
cially in cases with shear, but as we elaborate upon below,
some simple solutions can nonetheless be found by utilising
the constraints of Eq. (24).

3 Separable interior solutions

The extra junction conditions in f (R) gravity are in fact
quite strong, and can potentially exclude several well known
collapse solutions in GR. For example, the Oppenheimer–
Snyder solution is not an admissible collapsing solution in
modified gravity scenarios [20]. As another concrete exam-
ple, suppose we assume that the interior metric is of the
Lemaitre–Tolman–Bondi (LTB) form [29–31] given by

ds2− = −dt2 + X2 (r, t) dr2 + Q2 (r, t) d�2 (28)

where X (r, t) and Q(r, t) are functions of the co-moving
radial coordinate and time, and d�2 is the metric on the
unit two-sphere. The special case of the homogeneous
Friedmann–Robertson–Walker metric is obtained from Eq.
(28) by writing

X (r, t) = a(t)√
1 − kr2

, Q(r, t) = a(t)r (29)

with k being a suitable constant. Also, the Einstein equa-
tions of GR can be shown to imply, for the general metric of
Eq. (28),

X (r, t) = A(r)Q′(r, t), (30)

withA(r) being an arbitrary function of the co-moving radial
coordinate.5 We will consider these two cases separately.

We first consider a separable solution for the interior met-
ric, of the form given in Eq. (29), and assume that in co-
moving coordinates, this is

ds2− = −dt2 + a(t)2

h(r)
dr2 + a(t)2r2dθ2

+ a(t)2r2 sin2 θdφ2, (31)

Since we are in co-moving coordinates we choose uμ =
(1, 0, 0, 0) and nμ = (0,

√
h(r)/a(t), 0, 0), so that the heat

flux is along the radial direction, i.e qμ = qnμ. With this
metric, for the model described the Lagrangian density R +
f (R) = R+αR2 (where α is a constant) we can write down
the energy momentum components:

ρ = (1 + F)G00 − αR2

2

− 1

2ra2

(
2rhF ′′ + (4h + rh′F ′) − 6raȧ Ḟ

)
,

a2

h
pr = (1+F)G11+ a2

h

αR2

2
+ 2F ′

r
− a

h

(
aȧ Ḟ+aF̈

)
,

a2r2 pθ = (1 + F)G22 + αR2

2
a2r2

− r

2

(
4aȧ Ḟ+2ra2 F̈−(2h+rh′)F ′ − 2rhF ′′) ,

a√
h
q = Ḟ ′ − ȧ

a
F ′. (32)

The Ricci scalar of the interior metric is calculated to be

R(r, t) = 2

a2

(
1 − h − rh′

r2

)
+ 6

(
ȧ2 + aä

)
a2 . (33)

In order that the Ricci scalar matches smoothly to the col-
lapsing co-moving boundary at all co-moving times, we will
therefore require that ȧ2 + aä = 0 (since the second term
on the right hand side of Eq. (33) is a function of time only),
in which case the first term of Eq. (33) can be appropriately
solved in order to fulfil the requirement that R is continu-
ous across the matching hypersurface. However, to satisfy
Eq. (27), one finds after a straightforward calculation, using
the unit normal vector Nμ = (

0,
√
h(r)/a(t), 0, 0

)
, the con-

dition

h(r) − 1 − r2(ȧ2 + 2aä) = 0. (34)

5 Here and otherwise, a prime will refer to a derivative with respect to
the radial coordinate.
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In order to satisfy this for all times, one thus requires ȧ2 +
2aä = 0 which naturally implies that this cannot be satisfied
in conjunction with the criterion for a continuous Ricci scalar
across the boundary, at all co-moving times. In conclusion,
what we have here is a no go scenario, namely that a simple
separable form of the metric given in Eq. (31) is unsuitable
for describing collapse in f (R) gravity.

The assumption of a separable solution of the form in
Eq. (31) is possibly an over-simplification. We will next con-
sider another separable form of the interior metric given by

ds2− = −A(r)2dt2 + 2a(t)2 (∂r A(r))2 dr2

+a(t)2A(r)2d�2, (35)

with the energy momentum tensor having the same form as in
Eq. (6). We will match this with an external Schwarzschild
solution. This metric was originally considered in [32] to
the study the collapse of a shear-free radiating spherically
symmetric star in GR. As we elaborate below, this ansatz
offers considerable simplifications in the study of collapsing
stars in f (R) gravity.

To this end, we first note that the Ricci scalar here is given
by

R = −1 − 6
(
ȧ(t)2 + a(t)ä(t)

)
a(t)2A(r)2 (36)

Using Eqs. (4) and (6), the relevant physical quantities are
obtained for the metric of Eq. (35) as

A(r)2ρ = (1 + F)

(
1 + 6ȧ2

2a2

)
+ αA2R2

2

−
(
A

(
(2A′2 − AA′′)F ′ + AA′F ′′) − 6aȧ A′3 Ḟ

2a2A′3

)
,

2a2A′2 pr = (1 + F)

(
A′2(1 − 2ȧ2 − 4aä)

A2

)

+αa2A′2R2 −
(
A′ (2aA′(2ȧ Ḟ + aF̈) − 3AF ′)

A2

)
,

a2A2 pθ = (1 + F)

(
1 − 2ȧ2 − 4aä

2

)
+ αR2a2A2

2
− a(2ȧ Ḟ

+aF̈) −
(
A

(
(AA′′ − 2A′2)F ′ − AA′F ′′)

2A′3

)
,

−√
2aAAq = (1 + F)

2ȧ A′

aA
+ A′ Ḟ

A
+ ȧF ′

a
− Ḟ ′. (37)

Now, from the metric of Eq. (35), it can be checked via
Eq. (37) that the pressure anisotropy is given by

pθ − pr = −8α
[
1 − 6

(
ȧ(t)2 + a(t)ä(t)

)]
a(t)4A(r)4 ≡ − 8α

a2A2 R

(38)

Importantly, if we demand that the pressure anisotropy van-
ishes identically, then it necessarily implies that α = 0, in

which case the solution reduces to one in GR. We are there-
fore naturally constrained to consider situations with pressure
anisotropy in f (R) scenarios.

It is then seen that in order for the Ricci scalar and its
derivative to be continuous across the matching hypersurface
(which we choose without loss of generality to be r = 1), it is
enough for us to choose A(r) = (1−r)−n with n ≥ 1, so that
continuity of the Ricci scalar and its derivative is guaranteed
at the boundary. The function a(t) is unspecified at this stage.
In order to simplify the computations, we will have to make
a choice, and to this end we will choose ȧ(t)2 + a(t)ä(t) =
0. To summarise, our ansatz for a solution of the metric of
Eq. (35) is (with b and n being constants),

a(t) = √
1 − 2bt, A(r) = 1

(1 − r)n
, n ≥ 1, b > 0. (39)

We will henceforth choose for simplicity, the constants b =
1/2 and n = 2 so that R = − (1 − r)4 / (1 − t) and satisfies
both the conditions on the Ricci scalar mentioned in Eq. (24)
at the boundary, arbitrarily close to the time of collapse. In
this notation, the collapse starts at t = 0 and a singularity
forms at t = 1 where the scale factor a(t) goes to zero and
the Ricci scalar diverges although all co-moving observers
see an apparent horizon at t = 1/2, as we elaborate in a
while. As usual, our interior solution is matched to an external
Schwarzschild metric at r = 1.

Now, using the fact that the hypersurface normal is given
by the vector

Nμ =
(

0,
1√

2a(t)A′(r)
, 0, 0

)
, (40)

it can be immediately seen that the condition Nμ
[
Tμν

] = 0
is satisfied at all times. Now upon using Eqs. (36) and (39),
we finally obtain the very simple expressions,

ρ = (1 − r)4 (
5 − 7t + 2t2 + 2α(1 − r)4(4 − t)

)
4 (1 − t)3 ,

pr = (1 − r)4
(
3 − 5t + 2t2 + 2α(1 − r)4(14 − 11t)

)
4 (1 − t)3 ,

pθ = (1 − r)4
(
3 − 5t + 2t2 − 2α(1 − r)4(2 − 5t)

)
4 (1 − t)3 ,

q = − (1 − r)4
(
t − 1 − 6α(1 − r)4

)
√

2(1 − t)5/2
. (41)

It is clearly seen from Eq. (41) that all the components of
the stress tensor vanish at the boundary r = 1, and that the
pressure and density are positive for all values of the co-
moving radius, at all co-moving times.6 This situation thus
corresponds to the realistic collapse of a dense star in f (R)

gravity.

6 These diverge at the time of formation of the singularity, as expected.
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Fig. 1 Condition I

Fig. 2 Condition II

This last statement requires some clarification. From our
discussion above, it follows that the collapse reaches a sin-
gularity in co-moving time t = 1, when a(t) = 0 and the
Ricci scalar diverges at all co-moving radii. This is a shell
focusing singularity, which happens simultaneously for all
co-moving observers. In order to determine whether the sin-
gularity is naked or not, we have to investigate the formation
of trapped surfaces during the collapse process. These are
the compact two-dimensional space-like surfaces such that
both families of ingoing and outgoing null geodesics orthog-
onal to them necessarily converge. Mathematically one can
find out such locations from the expansion parameter  of
the outgoing future-directed null geodesics. We consider a
congruence of outgoing radial null geodesics having the tan-
gent vector (ut , ur , 0, 0). If such geodesics terminate at the
singularity in the past with a definite tangent vector, then at
singularity we have  > 0. When such curves do not exist it
means that an event horizon has formed earlier than singular-
ity, thus forming a blackhole as the end stage of the collapse
process.

Now recall that for a spherically symmetric metric such as
the one we are considering, the co-moving time of formation

Fig. 3 Condition III

Fig. 4 Condition IVA

Fig. 5 Condition IVB

of an apparent horizon is given from the equation

gμν∂μQ(r, t)∂νQ(r, t) = 0 (42)

Using Eq. (35) and the ansatz of Eq. (39), it is then checked
that the co-moving time formation of the apparent horizon
for all co-moving observers is t = 1/2. Hence, the end state
of the collapse process is a black hole in this case. This is also
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Fig. 6 Condition V

obtained by computing the boundary redshift for an observer
at infinity, which diverges at the formation time of the black
hole. This is obtained by writing the external Schwarzschild
solution of Eq. (3) in terms of retarded time and computing
the junction conditions, and the co-moving time for our col-
lapsing scenario at which the redshift at infinity diverges is
[23,24]

1√
2

− 1

2
√

1 − t
= 0, (43)

which yields the same result t = 1/2.
It remains to check the validity of the energy conditions

listed in Eqs. (21) and (22). This is most conveniently done
numerically, since analytical expressions for these conditions
become cumbersome. In this analysis,we choose α = 10−3.
In Figs. 1, 2, 3, 4, 5, 6, we show that all the energy condi-
tions are indeed satisfied. In all these figures, the solid red,
dotted blue and dashed black curves indicate the co-moving
observer at r = 0.1, 0.5 and 0.9, respectively. We have shown
the validity of the energy conditions from t = 0 the t = 1,
although it is to be noted that as we have discussed, the appar-
ent horizon forms at t = 1/2 for this model.

Here, the four-velocity, and the unit vector in the radial
direction are

uμ =
(
(1 − r)2, 0, 0, 0

)
, nμ =

(
0,

(1 − r)3

2
√

2
√

1 − t
, 0, 0

)

(44)

These will satisfy the conditions uμuμ = −1 and nμnμ = 1,
along with those mentioned after Eq. (6). The shear tensor
is identically zero in this case, as is generally true for sepa-
rable solutions of the form that we consider here. It is also
straightforward to check that the expansion scalar for a time-
like congruence is given by

 = −3 (1 − r)2

2 (1 − t)
, (45)

Also, using Eq. (44), it can be checked that for our metric of
Eq. (35), the condition of Eq. (15) is satisfied with

E = − (1 − r)4

(1 − t)
, 
 = −8α (1 − r)8

(1 − t)2 . (46)

With these inputs, it can be checked that Eq. (16) is indeed
satisfied in this case, with σ = 0, and so is Eq. (17).

Note that here the pressure anisotropy goes to zero at
the matching hypersurface as it should, but does not van-
ish at the origin (r = 0). Interestingly, this is an artefact
of f (R) gravity, as the anisotropy vanishes identically with
α = 0, as follows from Eq. (38) or (46). In this context, we
note that anisotropy in static situations (for example in com-
pact stars) have been studied extensively (see, e.g. [34,42]).
It is well known that in such static situations, the pressure
anisotropy must vanish at the center, and that a non-zero
central anisotropy implies that the density at the center van-
ishes [35]. These conditions need not be satisfied in non-
equilibrium situations that we are considering here. In this
context, observe from Eq. (17) that since the shear is identi-
cally zero in this case, the anisotropy at the center is forced to
be non-zero, since none of the terms in that equation vanish
identically at r = 0. This seems to be a generic feature of
f (R) collapse.

4 Non-separable interior solutions

We will now consider matching of Ricci scalar and its
derivatives with a non-separable spherically symmetric met-
ric of the form given in Eq. (30). For convenience, we write
A(r) = (1 − h(r))−1, and thus we have our ansatz for the
interior metric

ds2 = −dt2 + Q′2

1 − h(r)
dr2 + Q2(r, t)d�2, (47)

where Q(r, t) is the co-moving radius of the collapsing mat-
ter, and h(r) is function of r only. This metric has the form
of a general LTB solution. We can calculate the Ricci scalar
as

R(r, t) = 1

Q2Q′
d

dr

[
2Q

(
Q̇2 + QQ̈ + h(r)

)]
. (48)

Since we want to match Ricci scalar and it’s derivative across
a junction, as the simplest choice, we put

Q̇2 + QQ̈ = 0. (49)

Then, the Ricci scalar takes the simple form

R(r, t) = 1

Q2Q′
d

dr
(2Qh) . (50)

The solution of Eq. (49) is

Q(r, t) = r
√
g(r) − 2b f (r) (t − t0), (51)
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where b > 0 is a constant and f (r) and g(r) are two (pos-
itive) function of r , which we have to choose. Without loss
of generality, we will henceforth set b = 1/2, along with
t0 = 0, so that our collapse process begins at the origin of
the co-moving time.

Also we need to take h(r) in such a way that both Ricci
scalar and it’s derivative are continuous across the junction
at r0. We will make a simple choice here, and set

h(r) = (r0 − r)2, g(r) = (r0 − r)−4 ,

f (r) = (r0 − r)−2 . (52)

With this choice, from Eq. (50), the Ricci scalar reads,

R = 2 (r0 − r)7 [
1 − (

2r2 − 3rr0 + r2
0

)
t
]

r2
[
r + r0 − (r − r0)

2 (r + 2r0) t + (r − r0)
4 r0t2

] .

(53)

It is then seen that continuity of the Ricci scalar and its deriva-
tive is guaranteed across the co-moving boundary, which for
simplicity we will now choose as r0 = 1. Note that at t = 0,
there is an initial singularity at the origin, and the Ricci scalar
diverges as R ∼ 1/r2. We will however concentrate on the
singularity that forms due to the collapse process, in which
case R ∼ 1/r3 near the origin, at the time of formation of
the central singularity. However, we note that the process
described in this section may not correspond to the realis-
tic collapse of a dense star, contrary to the analysis of the
previous section.

To this end, note that this singularity forms along the curve
t = ts(r) defined by

Q(ts(r), r) = 0 i.e. ts(r) = 1

(1 − r)2 , (54)

and the co-moving time for the formation of the apparent
horizon tah(r) is given by

tah(r) = 8 − 5r

4 (2 − r) (1 − r)2 (55)

This implies that in the reference frame of a co-moving
observer (at fixed r ), the singularity formation is not simulta-
neous (note that it was simultaneous in the case of separable
solutions), rather it is a curve in the t − r plane which starts
at (t, r) = (1, 0). If the apparent horizon starts forming at
a co-moving time that is earlier than that of singularity for-
mation, then the event horizon can fully cover the singularity
and the end stage is a black hole. On the other hand, if trapped
surfaces form after the singularity, then it is possible that a
non-space-like geodesic might come out of the singularity to
reach an external observer, and in that case the final singular-
ity will be visible, i.e the fate of the collapse will be at least
a locally naked singularity.

In Fig. 7, we show the apparent horizon curve of Eq. (55)
as a function of time. This is shown in red, and the dotted

Fig. 7 ρ vs t

Fig. 8 Q(r, t) vs t

Fig. 9 σ vs t

blue line is the time of formation of the central singularity,
i.e ts(r = 0) = 1. Clearly, all co-moving observers will
see the formation of the central singularity first, and there-
fore conclude that the collapse results in a singularity that is
locally naked. In Fig. 8, we show the logarithm of Q(r, t) as
a function of time. Here, the thick red, dotted blue, dashed
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Fig. 10 ρ vs r

Fig. 11 pθ − pr vs r

black and dot-dashed brown curves correspond to r = 0.001,
0.002, 0.01 and 0.02, respectively.

The expansion scalar for a time-like geodesic congruence
is calculated to be

 = 3(r − 1)4t − (r − 1)2(r + 3)

2
(
(r − 1)4t2 − (r + 2)(r − 1)2t + r + 1

) ,

i.e 
∣∣
r→0 = − 3

2(1 − t)
, (56)

showing the central divergence at ts(r = 0) = 1. Also, we
record the expression for the shear,

σ = r(1 − r)2[1 + r − t (1 − r)2(2 + r) + t2(1 − r)4]−1

(57)

In Fig. 9, we show the behaviour of σ as a function of r for
t = 0 (thick red), 0.1 (dotted blue), 0.5 (dashed black) and
0.9 (dot dashed brown). Clearly, as the collapse progresses
in co-moving time, the shear which was initially regular at
the center increases near the origin, and diverges as σ ∼ r−1

at the origin for t → 1, as can be seen from Eq. (57).
In Figs. 10, 11 and 12, we show the density ρ, the

anisotropy 
 = pθ − pr and the heat flux q as a func-

Fig. 12 q vs r

Fig. 13 Conditions (i), (ii), (iv) at t = 0.001

Fig. 14 Conditions (i), (ii), (iv) at t = 0.5

tion of r , for t = 0.001 (thick red), 0.5 (dotted blue) and
0.99 (dashed black), respectively. These are computed from
Eq. (6) and we have set η = 10 and α = 10−3.

It remains to check whether the conditions listed in
Eqs. (18) and (20) are satisfied during the collapse process.
Without loss of generality, we will make a further choice
θ = π/2 here, so that σ22 = σ33 and hence we have to look
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Fig. 15 Conditions (i), (ii), (iv) at t = 0.99

Fig. 16 Conditions (v), (vi), (viii) at t = 0.001

Fig. 17 Conditions (v), (vi), (viii) at t = 0.5

at the conditions (i), (ii) of Eq. (18) and (iv), (v), (vi) and (viii)
of Eq. (20). Snapshots of the logarithms of the relevant quan-
tities on the left hand side of the corresponding equations at
t = 0.001, t = 0.05 and t = 0.99 are shown in Figs. 13,
14, 15, 16, 17, 18. In Figs. 13, 14 and 15, the thick red, dot-
ted blue and dashed black lines represent the logarithms of

Fig. 18 Conditions (v), (vi), (viii) at t = 0.99

conditions (i), (ii) and (iv) and in Figs. 16, 17 and 18,these
represent the logarithms of conditions (v), (vi) and (viii). We
find that all the required conditions are indeed satisfied. It
is also checked that Eq. (16) is identically satisfied in this
case as well. As a remark, we note that the shear vanishes at
the center (vide Eq. (57)). Moreover, the anisotropy diverges
at the origin (due to the singular nature of the solution at
t = 0) at all times during the collapse. However, Eq. (17) is
identically satisfied in this case, as can be checked.

The solution discussed above collapses into a locally
naked singularity, as we have said. We mention in passing
that it is also possible to generate black hole solutions from
the generic class of non-separable metrics that we consider
here. For example, one simply needs to tune the parameter b
in Eq. (51) to b = 2 (instead of b = 1/2 used in the previous
example) to see that close to the center, the apparent horizon
forms earlier than the singularity (at t = 0.25). Again, one
can check that all the energy conditions can be satisfied by
suitably tuning the parameters α and η. However, we will not
go into the details here, as these are entirely similar to the
situation that we have considered.

5 Nature of the collapsing fluid for separable solutions

The solutions presented in the previous sections indicate col-
lapse in f (R) gravity to black holes or to singularities that
are locally naked, while obeying all the energy conditions. A
natural question in this context is the physical nature of the
fluids, namely if they follow an equation of state (EOS). The
lack of this analysis is a drawback in many studies of gravi-
tational collapse in f (R) theories that appear in the literature
till date. In this context, note that the EOS of collapsing stars
is well studied especially in the non-relativistic limit, start-
ing from the pioneering work of [36]. In the context of f (R)

collapse, such a study is somewhat difficult to envisage, but
clearly we can see from Eq. (41) that there is a priori no sim-
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ple EOS that our co-moving observer will see, even in the
simple case of the separable solutions presented in Sect. 3.
We will concentrate only on this class of solutions in this
section, since the solution is Sect. 4 does not correspond to
realistic collapse of a dense star, as already mentioned.

First, we note that if we set the f (R) parameter α to zero,
we have here

pr
ρ

∣∣∣∣
α→0

= pθ

ρ

∣∣∣∣
α→0

= 1 − 2

5 − 2t
. (58)

Hence, at t = 0, the matter follows a barotropic equation of
state with pr = pθ = γρ (remember that there is no pressure
anisotropy with α → 0 as we have commented on at the end
of Sect. 3), with γ = 3/5. As the collapse proceeds, the
barotropic index reduces in this case, and approaches 1/3 for
t → 1. Hence, at the end of the collapse, with α → 0, the
matter reduces to pure radiation.

In the general case, the situation is more complicated.
Here, we have, from Eq. (41),

pr
ρ

∣∣∣∣
t→0

= 3 + 28α (r − 1)4

5 + 8α (r − 1)2 ,

pθ

ρ

∣∣∣∣
t→0

= 3 − 4α (r − 1)4

5 + 8α (r − 1)2 ,
pr
ρ

∣∣∣∣
t→1

= pθ

ρ

∣∣∣∣
t→1

= 1.

(59)

It is therefore seen that for small values of α (we have used
α = 10−3 in Sect. 3), at the beginning of the collapse, the
system is close to a barotropic fluid with γ = 0.6, but the
effect of α is to increase the barotropic index to unity at the
time of formation of the singularity, and at this time the speed
of sound equals the speed of light. However, the latter fact is
true strictly at the singularity formation time, before which
the barotropic index is always less that unity. We mention in
passing that a related question is whether one can envisage a
situation where the fluid in question consists of two simple
fluids, each of which possibly follow an equation of state.
This is usually achieved for cases without shear or heat flow,
by rotating the coordinate basis of the co-moving observer.
This has been a popular topic in the literature, starting from
the work of [37] (see also [38] for applications in the cosmo-
logical context). It can be checked for our model that this is
not possible in the presence of heat flux. The intuitive rea-
son for this is that a dissipative effect cannot be un-done by
a rotation of the coordinate basis (unless there is a specific
form of an equation of state which also involves the heat flux,
see e.g [39]).

It is also of interest to consider the heat transport equa-
tion in our non-equilibrium collapsing scenario, following
the pioneering work of [40]. The simplicity of the solutions
derived in Eq. (41) in the separable metric case, allows for
explicit computations of the quantities appearing in the evo-

lution equation of the heat flux, which reads [40] (see also
[41,42])

τnμh
μνqν;σ uσ + q = −κnμh

μν
(
T,ν + Taν

)

−1

2
κT 2q

(
τuμ

κT 2

)
;μ

. (60)

Here, T is the local equilibrium temperature, κ is the thermal
conductivity, and τ the relaxation timescale, and all these
quantities must be positive, from physical conditions. Fur-
ther, aμ is the acceleration vector defined after Eq. (8). In
order to solve Eq. (60), a number of assumptions is nec-
essary, since κ and τ are temperature dependent quantities.
There is a vast amount of literature on the topic, and we do
not go into the known details here, but will simply use the
results of [43,44] (see also [45]) and assume that

κ = γ T 3τc, τ =
(

βγ

α1

)
τc, τc =

(
α1

γ

)
T−σ1 , (61)

where β, γ , α1 and σ1 are non-negative constants, with the
case β = 0 being the non-causal case (see, e.g [41] for an
excellent exposition). For simplicity, we will restrict our-
selves to cases with σ1 ≤ 4.

Although Eq. (60) is in general difficult to solve, the sim-
plicity of the form of the energy-momentum tensor for the
separable solution considered in Sect. 3 allows us to obtain
analytic solutions at least in some approximations. First of
all, let us consider the non-causal case, and set β = 0. Then,
we obtain the formal solution of Eq. (60) as

T 4−σ1 = − (1 − r)2 (σ1 − 4)

α1 (1 − t) (σ1 − 3)
− α

6 (1 − r)6 (σ1 − 4)

α1 (1 − t)2 (σ1 − 1)

+ (1 − r)8−2σ1 F (t) (β = 0) , (62)

where F(t) is an a priori undetermined function of the co-
moving time. The special cases σ1 = 1, 3, 4 need to be solved
separately. The results are

T 3 = − 3 (1 − r)2

2α1 (1 − t)
+ α

36 (1 − r)6 log (1 − r)

α1 (1 − t)2

+ (1 − r)6 F(t) (β = 0, σ1 = 1) ,

T = (1−r)2 2 log (1−r)

α1 (1 − t)
+α

3 (1−r)6

α1 (1 − t)2 +(1 − r)2 F(t)

(β = 0, σ1 = 3) ,

T = Exp

[
(1 − r)2 (

1 − t + 2α (1 − r)4)
α1 (1 − t)2

]
(1 − r)2 F(t)

(β = 0, σ1 = 4) , (63)

where we have generically denoted an arbitrary function of
the co-moving time by F(t). Equations (62) and (63) are the
full set of solutions for the non-causal case, and the role of the
f (R) parameter α can be readily identified, and the increase
in the core temperature as a function of time is clearly seen.
In particular, we see from Eq. (62) that the role of α is to

123



Eur. Phys. J. C (2020) 80 :902 Page 13 of 15 902

decrease the temperature (compared to the α = 0 case) for
σ1 < 1 and σ1 > 4, while it increases the temperature for
1 < σ1 < 4. Also, from the first two equations of Eq. (63),
it is clear that close to the center, the effect of α vanishes for
σ1 = 1 and dominates for σ1 = 3 with the term independent
of α vanishing in the latter case. No further conclusions can
be reached without the knowledge of the arbitrary function
F(t).

However, we can make the following observation from
Eq. (62). Close to the boundary, i.e as r → 1, one can always
make the last term on the right hand side of this equation arbi-
trarily close to zero at a given co-moving time of the collapse,
for σ1 < 3. The fall-off of this term with r being faster than
the first term on the right hand side of Eq. (62) indicates that
in such cases, there will exist a domain of the co-moving
radius where the temperature will not be real (since α is pos-
itive). In order to avoid this, we require 3 < σ1 < 4 and the
other values of σ1 are ruled out in the class of models that we
consider. Note also that the solutions for σ1 = 3 and σ1 = 4
do not suffer from this pathology, and hence our final set of
admissible values of σ1 is 3 ≤ σ1 ≤ 4.

Note that in cases where the interior solution is matched
with an external Vaidya metric, the arbitrary function F(t)
can be determined by relating the temperature at the bound-
ary to the luminosity there, and then equating this with the
luminosity as seen by an observer at infinity, via the red-shift
factor. This is not possible here, as we have matched with an
external Schwarzschild solution, for which the temperature
and luminosity at the boundary are automatically zero, as is
evident by taking the r → 1 limit in the solutions above.
F(t) can thus be determined in principle if we specify the
behaviour of the core temperature as a function of time, along
with the condition 3 ≤ σ1 ≤ 4 discussed above.

Finally, we make some comments about the non-causal
case. Here, the analysis becomes cumbersome, and analytic
solutions to the heat flow equation of Eq. (60) seem difficult
to obtain. As a somewhat crude approximation (used in [43–
45]), if we ignore the last term on the right hand side of
Eq. (60), then with Eq. (61), we obtain as a solution for
σ1 = 0,

T 4 = −4 (1 − r)2 (1 − t) + 9β (1 − r)4

3α1 (1 − t)2

+α
24 (1 − r)6 [

t − 1 + 5β (1 − r)2 log (1 − r)
]

α1 (1 − t)3

+ (1 − r)8 F(t), (64)

where again the arbitrary function of time can be constrained
if we assume a time profile of the core temperature.

The analysis in this section was related to the separable
solutions that we have used in Sect. 3. For the non-separable
solutions of Sect. 4, such analyses become quite tedious, and

will not provide much physical insight, as should be evident
from the comments made at the beginning of that section.

6 Description in the Einstein scalar theory

It is well known that the action of the metric f (R) gravity

S = 1

2

∫
d4x

√−g[R + f (R)] + S(mat), (65)

can be mapped to that of the scalar tensor theory with the
scalar field φ = R (see, e.g., [4])

S = 1

2

∫
d4x

√−g[�(φ)R − V (φ)] + S(mat), (66)

with the identifications

�(φ) = 1 + f ′(φ), V (φ) = [φ f ′(φ) − f (φ)]. (67)

Here S(mat) denotes the matter part of the action. Varying the
action of Eq. (66), one can see that the condition φ = R is
satisfied. The field equations derived from (66) can be shown
to be given by

Gμν = 1

�

[
T (mat)

μν − 1

2
U (�)gμν + Dμν�

]
, (68)

and,

3�� + 2U (�) − �
dU (�)

d�
= T (mat), (69)

where U (�) = V [φ(�)] and T (mat)
μν , T (mat) denotes the

matter part of the energy momentum tensor and it’s trace
respectively.

Here we are interested in the special case of f (R) = αR2.
Then we have �(φ) = 1+2αφ and V (φ) = αφ2. In this case
the equation for the scalar field (φ) obtained from Eq. (69)
simplifies to

6α�φ − φ = T (mat). (70)

Taking trace of the field Eq. (4) of f (R) gravity, one can
check that this is the same as the resulting equation for R,
as expected. Now for our collapse model with the separable
solution of Eq. (35) along with the ansatz of Eq. (39), we see
that the above equation is satisfied with φ(r, t) = R(r, t).
Thus we have an equivalent scalar-tensor theory description
in Jordan frame with the potential V (φ) = αφ2. We also note
that the kinetic term of the scalar field is zero.7

Now, we turn to the description of the junction condi-
tions in the Jordan frame description of scalar tensor theory,
with corresponding ones of f (R) gravity listed in Eq. (24).
Recently in [46], the authors have extensively studied the
junction conditions of a wide class of scalar-tensor theories

7 The Brans–Dicke parameter of the Brans–Dicke theory in this case
is zero.
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(in both the Jordan and Einstein frames) for non-null and null
hypersurfaces. We only mention the relevant results here, and
refer the reader to [46] for details.

The first junction condition indicates a continuity of the
induced metric on the hypersurface and the scalar field

[gab] = 0, [φ] = 0. (71)

The first and third conditions in Eq. (24) imply that the above
conditions are satisfied by the collapsing solution we have
that constructed.

The second junction condition gives the discontinuity of
the derivative of the scalar field across the hypersurface �,
and the value of the surface energy momentum tensor as,

Z = 2� ′(φ)[K ], and

Sab = −2�(φ) ([Kab] − [K ]gab) + 2Z� ′(φ)gab, (72)

in terms of a scalar field Z = Nμ[∇μφ]. Since � ′(φ) �= 0 at
the hypersurface, for a for a smooth matching across � the
necessary and sufficient conditions are Z = 0 and Sab = 0.
The requirement Sab = 0 can be satisfied with only one the
following three cases listed below (see proposition 2 of [46])8

1. [Kab] = Z = 0,
2. � ′(φ)� = �(φ)� = Z = 0, or
3. 6� ′(φ)2

� + 2�(φ)� = 0, 3[Kab] − [K ]hab = 0.

We can prove these relations by taking the trace of Sab = 0
at �. We thus arrive at two conditions: (a) [K ] = 0, or (b)
6� ′(φ)2

� + 2�(φ)� = 0. Now, [K ] = 0 in turn implies
Z = 0 and this in conjunction with Sab = 0 implies [Kab] =
0. This is the case 1 above. On the other hand when (b) is
satisfied, the second junction condition gives cases (2) and
(3). Note that for cases 1 and 2, the condition Z = 0 is
satisfied whenever Sab = 0, and hence both criteria of smooth
matching is fulfilled. Though for case 3, we have to make sure
Z vanishes along with Sab.

Let us now compare these conditions with the ones in GR
and the extra conditions of f (R) theories for our collapsing
solutions. Here, for the f (R) = αR2 model, � ′(φ) is a con-
stant (= 2α), thus [Kab] = 0 automatically implies Z = 0,
and hence the condition of case 1 is satisfied. However by
the same token, � ′(φ)� = �(φ)� �= 0, and hence the con-
ditions for cases 2 and 3 are not satisfied. Thus as mentioned
above, only one of the three given conditions is satisfied.
Nevertheless as one can see, the two conditions 2 and 3 are
somewhat “special” in the Jordan frame description of scalar
tensor theory. Case 1, along with the first junction condition
is just one would expect from Eq. (24), in terms of the scalar
field. But in case 2 for example, we have no condition on

8 The assumption used to derive these are that �(φ) is a C1 regular
function, and that the first and second junction conditions are satisfied.

the extrinsic curvature Kμν [46]. This is a big advantage in
the sense that one can obtain regular solutions of the f (R)

gravity only by looking at the Ricci scalar.
Since in this paper we have essentially obtained our col-

lapsing solutions by demanding that an interior solution of
f (R) gravity can be matched with the outside Vaidya met-
ric through a timelike hypersurface, the cases 2 and 3 can
give rise to many interesting solutions. For example using
the mapping in Eq. (67) we can readily see that any solution
of R + αRn, α > 0 gravity matched with outside Vaidya
solution, cannot be made to satisfy the condition of case 3.
The simplest such theory can be pure cubic (R3) gravity with
R� = (Nμ∇μR)� = 0. Construction of such new solutions
is left for a future work.

7 Discussions

Gravitational collapse in metric f (R) theories of gravity are
greatly restricted due to the extra junction conditions that
have to be invoked, and involve the continuity of the Ricci
scalar and its derivatives across a time-like hypersurface on
which an internal collapsing metric is matched with an exter-
nal solution. This is the R-matching method commonly used
in f (R) scenarios. In fact, there are a total of twelve condi-
tions that will generically need to be satisfied, and are given
in Eqs. (24), (18) and (20). It is indeed a formidable task
to compute explicit collapsing solutions while satisfying all
these conditions and not many exact solutions are available
in the literature.

In this paper, we have constructed novel examples of
f (R) collapse, by using the extra junction conditions to
explicitly solve for the collapsing metric. This was done in
f (R) = αR2 theories of gravity in two cases, one in which
we assumed a separable form of the internal metric, and the
other in which this assumption was relaxed. We showed that
by suitably choosing some reasonable forms of a few arbi-
trary functions, new examples of collapse in modified gravity
can be constructed. In the latter context, we have described
a collapse situation that includes the effects of shear vis-
cosity. The generic relation between the shear viscosity and
the anisotropy in our f (R) models has been derived here.
We have demonstrated by explicit examples the formation
of black holes or naked singularities, while satisfying all the
energy conditions.

The separable solution constructed by us allows for analyt-
ical forms of the components of the energy momentum tensor.
Using these, we are also able to obtain analytical solutions to
the evolution equation of the heat flux. Here, the simplicity
of the expressions involved allows us to focus on the effect of
the f (R) parameter α, with certain reasonable approxima-
tions. As mentioned in the text, this situation corresponds to
a realistic collapse of a dense star, with the pressures remain-
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ing positive at all times. It would be interesting to understand
the evolution of the entropy in this non-equilibrium situation.

Our analysis in this paper relies on a number of explicit
choices that we have made, and these have been highlighted
in Sects. 3 and 4. Indeed, these choices are arbitrary and serve
as examples of more general cases than what we study here,
and functions different from what we have chosen should
generate more physical examples of collapse scenarios in
modified gravity. Further, our analysis here is limited to mod-
els with f (R) = R2. It should be interesting to apply this to
more generic situations. Finally, it will be very interesting to
study the new solutions arising from the junction conditions
discussed in Sect. 6. We hope to report on this in a future
work.
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