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Abstract We present a rederivation of the baryon and lep-
ton numbers 1

2 of the SU (2)L S sphaleron of the standard
electroweak theory based on spectral mirror symmetry. We
explore the properties of a fermionic Hamiltonian under dis-
crete transformations along a noncontractible loop of field
configurations that passes through the sphaleron and whose
endpoints are the vacuum. As is well known, CP transforma-
tion is not a symmetry of the system anywhere on the loop,
except at the endpoints. By augmenting CP with a chirality
transformation, we observe that the Dirac Hamiltonian is odd
under the new transformation precisely at the sphaleron, and
this ensures the mirror symmetry of the spectrum, includ-
ing the continua. As a consistency check, we show that the
fermionic zero mode presented by Ringwald in the sphaleron
background is invariant under the new transformation. The
spectral mirror symmetry which we establish here, together
with the presence of the zero mode, are the two necessary
conditions whence the fermion number 1

2 of the sphaleron
can be inferred using the reasoning presented by Jackiw and
Rebbi or, equivalently, using the spectral deficiency 1

2 of the
Dirac sea. The relevance of this analysis to other solutions is
also discussed.

1 Introduction

In their seminal paper on the subject of charge fractionaliza-
tion, Jackiw and Rebbi studied the Dirac equation in classi-
cal bosonic backgrounds for a number of field theories [1].
Their key discovery was the existence of states with half-
integer fermion numbers in theories where all the fundamen-
tal fields have integer fermion numbers. As was pointed out
in [1–4], in order for a bosonic configuration to have half-
integer fermion numbers, the following two conditions must
be simultaneously satisfied:

a e-mail: mxm1289@case.edu
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1. The existence of a normalizable fermionic zero mode
precisely at the bosonic configuration;

2. Mirror symmetry of the entire fermionic spectrum, con-
sisting of the bound and continuum states, at the bosonic
configuration, or equivalently, the fermion number con-
jugation invariance of the system.

Since then, charge fractionalization has been widely stud-
ied and has found many applications in different areas, such
as particle physics [2–8], condensed matter physics [9–11],
polymer physics [12–14], quantum wires [15] and topologi-
cal insulators [16,17].

One class of solutions that can be found in certain field
theories are sphalerons, which are saddle-point solutions in
field configuration space [18,19]. An important member of
this class of solutions is the ‘S’ sphaleron [20] of the standard
electroweak theory. Its importance is due to the role that it is
believed to play in the early Universe, including the genera-
tion of the matter-antimatter asymmetry of the Universe [21–
23]. Following the discovery of this solution in hadronic mod-
els [24,25], it was rediscovered [18] in SU (2)L theory and
its properties and implications for cosmology were detailed
in [21].

In 1974 Dashen et al. not only constructed a sphaleron
solution as an extended model of hadrons, but also pre-
sented a framework for calculating the bound state energies of
fermions which couple to the SU (2) gauge field component
of the sphalerons [24]. The coupling of the fermions to the
Higgs component was represented as an explicit fermionic
mass term. Based on their work, the author of [26] showed
that in the classical SU (2) gauge field of the sphaleron, a
fermion has a single bound-state solution with zero energy.
In the standard electroweak theory, a single normalizable zero
energy solution of the Dirac equation in the sphaleron back-
ground was shown to exist for massless fermions in [27].
Shortly after, this result was extended by Ringwald to the
case of massive fermions [28].
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Later on, in the level-crossing picture for the SU (2)L the-
ory, the change in the bound state energy of fermions coupled
to the bosonic fields of the noncontractible loop (NCL) was
numerically determined [29]. There, it was shown that as
one traverses the NCL passing through the sphaleron, a sin-
gle negative eigenvalue of the Dirac Hamiltonian arises from
the Dirac sea, crosses the zero energy level precisely at the
sphaleron and enters the positive energy continuum as one
returns to the vacuum configuration. The numerical study of
[29] thus reconfirmed the existence of a zero energy bound
state in the sphaleron background.

It is well known that the baryon and lepton numbers of
the S sphaleron are 1

2 [21]. This can be seen by using the chi-
ral anomaly and integrating the temporal component of the
Chern-Simons current over one-point compactified 3-space
and obtaining the resultant Chern-Simons charge for the
sphaleron configuration, which is half-integer due to SO(3)

and reflection symmetries in the bosonic sector [19]. How-
ever, the use of the one-point compactification scheme cor-
responds to a gauge that breaks the reflection symmetry of
the bosonic fields of the NCL about the sphaleron [19,21].
On the other hand, the spectral flow for the Dirac Hamilto-
nian along the NCL and symmetries of the fermionic sector
are independent of the gauge, and constitute the core of this
paper.

The spectra of fermions coupled to the SU (2)L gauge-
Higgs fields of the NCL passing through the S sphaleron
have been studied in great detail over the past three decades
by various authors. In doing so, many of the symmetries of
the spectra have been pointed out and explored [19,21,29–
32]. However, a symmetry that seems to have not been fully
elucidated hitherto in the literature is a certain conjugation
symmetry precisely at the sphaleron. This manifests itself as
the mirror symmetry of the fermionic spectrum about E = 0.
Following the path of the bound state as the NCL is traversed,
this symmetry can be obviously seen to exist for the bound
state precisely at the sphaleron, where it crosses E = 0.
Now, the question is whether the entire fermionic spectrum,
including the continuum states, has mirror symmetry at the
sphaleron. As we shall show, this is indeed the case, and this
has an important implication which brings us to the subject
of this paper.

The main goal of this paper is to present a rederivation of
the half-integer fermion numbers of SU (2)L S sphalerons by
adopting an approach that is based on discrete symmetries.
To do this, we explicitly construct the transformation oper-
ator, which consists of the chiral and CP transformations,
under which the Dirac Hamiltonian at the sphaleron is odd.
Hence we show that the entire spectrum of the Dirac Hamil-
tonian has mirror symmetry in the presence of the sphaleron.
We then use the results presented by Jackiw and Rebbi [1]
to argue that the presence of the zero mode mandates half-
integer fermion numbers for the sphaleron.

We should mention that the relation between the results
of [1] and half-integer fermion numbers of sphalerons have
been claimed without proof in works such as [20,21,27,33].
However, as mentioned before, the necessary conditions to
make such a connection are the mirror symmetry of the entire
spectrum along with the invariance of the zero mode, both of
which we establish here, thereby completing the proof. Fur-
thermore, whereas some works have based their arguments
on a fermionic zero mode in the limit of vanishing fermion
mass [27,33], in this work we have used the Ansatz given by
[28], which is an extension to massive fermions within the
standard electroweak theory. In this case, the Higgs compo-
nent of the sphaleron plays a nontrivial and essential role,
which is beyond an explicit mass term.

The outline of this paper is as follows. In Sects. 2 and 3, we
briefly review the bosonic sector of the standard electroweak
theory and the sphaleron Ansatz of SU (2)L Yang-Mills-
Higgs theory in the limit of vanishing weak mixing angle. We
also revisit the standard derivation of the sphaleron’s fermion
numbers based on the chiral anomaly. In Sect. 4, we analyze
the behavior of the Dirac Hamiltonian operator under a CP
transformation for all configurations along the NCL. Then,
we augment CP to arrive at a suitable choice of conjugation
operator which reveals the spectral mirror symmetry at the
sphaleron. Then, in Sect. 5, we perform the symmetry trans-
formation on the zero mode given by Ringwald [28] in the
sphaleron background. In Sect. 6, we summarize our results
and present an outlook.

2 SU(2)L sphaleron

Consider the bosonic sector of the well-established elec-
troweak Lagrangian

L = −1

4
Ga

μνG
μν
a − 1

4
FμνF

μν + (
Dμ�

)†
Dμ�

− λ
(
�†� − η2

)2
, (2.1)

where the U (1) field strength tensor is given by

Fμν = ∂μAν − ∂ν Aμ, (2.2)

the SU (2) field strength tensor is given by

Ga
μν = ∂μB

a
ν − ∂νB

a
μ + gεabcBb

μB
c
ν , (2.3)

and the covariant derivative of the Higgs field is

Dμ� =
(

∂μ − ig
τ a

2
Ba

μ − ig′Y Aμ

)
�. (2.4)
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In the limit of vanishing mixing angle, the U (1) field
decouples and this allows for a spherically symmetric Ansatz
for the gauge and Higgs fields of the NCL. To this end, con-
sider the following map:

U : S1 ∧ S2 ∼ S3 → SU (2),

(μ, θ, φ) �→ U (μ, θ, φ) , (2.5)

where ∧ is the smash product1 and μ is the loop parameter.
A suitable representation is [18,20]

U (μ, θ, φ) = −iy1τ1 − iy2τ2 − iy3τ3 + y41, (2.6)

where

⎛

⎜⎜
⎝

y1

y2

y3

y4

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

− sin μ sin θ sin φ

− sin μ sin θ cos φ

sin μ cos μ (cos θ − 1)

cos2 μ + sin2 μ cos θ

⎞

⎟⎟
⎠ , (2.7)

and τ i are chosen to be the usual Pauli matrices while τ i/2
are the generators in weak isospace. Using the above map, the
Ansatz2 for the static gauge and Higgs fields of the SU (2)L
sphaleron barrier becomes [18]

B (μ, r, θ, φ) = − f (r)

g
dU (μ, θ, φ)U−1 (μ, θ, φ) ,

� (μ, r, θ, φ) = ηh (r)U (μ, θ, φ)

(
0
1

)

+ η [1 − h (r)]

(
0

e−iμ cos μ

)
,

(2.8)

where the radial functions have the following boundary con-
ditions:

lim
r→0

f (r)

r
= 0, lim

r→∞ f (r) = 1,

lim
r→0

h (r) = 0, lim
r→∞ h (r) = 1.

(2.9)

The field B is an SU (2)-valued one-form,

B (μ, r, θ, φ) = Brdr + Bθdθ + Bφdφ = Bidx
i , (2.10)

for which we impose the radial gauge condition Br = 0 [18].
We assume that in the radial gauge there exists a limiting field

�∞ (θ, φ) ≡ lim
r→∞ �(r, θ, φ) , (2.11)

1 For a definition, see [20].
2 It can be shown that, even when the Ansatz is not manifestly spheri-
cally symmetric, it can always be transformed to one that is [34,35].

such that |�∞| = 1 and

�∞ (θ = 0) =
(

0
1

)
. (2.12)

3 Standard derivation of Fermion number

In order to put our rederivation of the fermion number of the
sphaleron configuration in proper context, it is useful to first
review briefly its standard derivation based on anomalies. In
particular, this makes the motivation for our proposed spec-
tral symmetry operator, as well as the connection between
the two derivations, more clear. Consider the baryon current
for a single generation of quarks

jμB = 1

3

(
ūαγ μuα + d̄αγ μdα

)
, (3.1)

where α is the SU (3) color index. As a result of the Abelian
anomaly in the Standard Model [36], the non-vanishing diver-
gence of this current has an SU(2) contribution given by [21]

∂μ jμB = g2

64π2 εμνρσG
μν
a Gρσ

a . (3.2)

Furthermore, the right-hand side of Eq. (3.2) can be rewritten
as the total divergence of the gauge variant Chern-Simons
current given by

Kμ = g2

16π2 εμνρσ Tr

(
GνρBσ + 2

3
igBνBρBσ

)
, (3.3)

where

Gνρ = 1

2
τ aGa

νρ, Bν = 1

2
τ a Ba

ν . (3.4)

For gauge field configurations that tend to pure gauge
at infinity, the spatial integral of the Pontryagin density
P(x) = ∂μKμ measures the difference between Chern-
Simons charges of different vacua

�QCS =
∫

d3r K 0. (3.5)

When calculated in the correct gauge, namely one in which
the integral of 	K . 	dS over the surface of a sphere S at spatial
infinity vanishes, Eqs. (3.2–3.5) imply that the Chern-Simons
charge of the field configuration is equal to its baryon number
QB . Thus, for the SU (2)L sphaleron of YMH theory, if one
uses a one-point compactification for 3-space, starts from a
vacuum configuration with QCS set to zero and traverses the
NCL through the sphaleron, one finds that the sphaleron will
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have QB = QCS = 1
2 [21], while the neighboring vacuum

will have QCS = 1. Since the above argument also applies to
leptonic currents, the electroweak sphaleron’s lepton number
is also 1

2 .
A point that is worth mentioning here is that the Pontrya-

gin index is odd under CP. Thus, as in the case of Yang–
Mills instantons, in which a θ

∫
d4xP(x) term in the effec-

tive action signals CP violation, one can infer that CP alone
is not the proper symmetry transformation to be used when
applying the argument of Jackiw and Rebbi to the sphaleron.
Furthermore, the relation of the derivation given above to the
chiral anomaly suggests that the extension of CP that is nec-
essary in order to satisfy the conditions of Jackiw and Rebbi
should include a chiral transformation. In the next section,
we present the necessary augmentation of CP, thereby pro-
viding an alternative derivation of the fermion numbers of
the S sphaleron based on discrete symmetries reflected in the
spectral mirror symmetry of the Dirac Hamiltonian.

4 CP transformation along NCL

In this section we study the behavior of the Dirac Hamilto-
nian under discrete transformations including C and P in a
sphaleron background. When the weak mixing angle goes to
zero, we perform our analysis for arbitrary loop parameter
μ. For the SU (2)L × U (1)Y sphaleron, only the sphaleron
Ansatz has been constructed and not the full barrier. This
restricts our analysis to the sphaleron when θw = 0. Never-
theless, this strategy can be readily extended to the full barrier
once it is constructed.

Consider the Dirac Hamiltonian operator of the standard
electroweak theory at θw = 0 [20]

Ĥ = −iγ 0γ j D j + kγ 0
(
�

†
M PL + �M PR

)
, (4.1)

where the matrix �M contains the scalar fields of the Higgs
doublet and its charge-conjugated doublet and is given by

�M =
(

φ∗
2 φ1

−φ∗
1 φ2

)
, (4.2)

and the projection operators are defined as

PL = 1

2

(
1 − γ 5

)
, PR = 1

2

(
1 + γ 5

)
. (4.3)

We now use the Ansatz given in Eq. (2.8) to construct �M

shown in Eq. (4.2) and insert it into Eq. (4.1) to obtain the
expression for Ĥ along the NCL. The final expression for Ĥ
is shown in the appendix.

We use the following choice of Weyl representation for
our gamma matrices

γ 0 =
(

0 I2
I2 0

)
, γ i =

(
0 σ i

−σ i 0

)
, γ 5 =

(−I2 0
0 I2

)
.

(4.4)

In this representation, charge conjugation acts non-trivially
on scalars and spinors, both of which transform in the fun-
damental representation of SU (2), as

�(	x, t) C−→ iτ 2�∗ (	x, t) ,

� (	x, t) C−→ iτ 2γ 2�∗ (	x, t) , (4.5)

while under the combined transformation of C and P,

�(	x, t) CP−−→ iτ 2�∗ (−	x, t) ,

� (	x, t) CP−−→ iτ 2γ 2γ 0�∗ (−	x, t) . (4.6)

Therefore, the charge-conjugated, parity-inverted Hamilto-
nian becomes

ĤCP (	x, t, μ) = γ 2γ 0

(
−Ĥ∗

22 Ĥ∗
21

Ĥ∗
12 −Ĥ∗

11

)

(−	x,t,μ)

γ 0γ 2.

(4.7)

After inserting the explicit expressions for the matrix ele-
ments of Ĥ given in Eq. (A.2) into Eq. (4.7), we observe that
nowhere along the NCL is Ĥ odd under CP, except at the
trivial vacuum (μ = 0, π ). However, at μ = π

2 , there are
many cancellations and the even part reduces to

ĤCP
(
	x, t, μ = π

2

)
+ Ĥ

(
	x, t, μ = π

2

)

= 2kηh(r)γ 0

(
cos θ (PL + PR) − sin θeiφ (PL − PR)

sin θe−iφ (PL − PR) cos θ (PL + PR)

)
.

(4.8)

This reflects the fact that the pseudoscalar sphaleron con-
figuration breaks the CP invariance of the one-generation
electroweak theory that we have been considering. We now
define a new conjugation transformation, C̃ P , which con-
sists of CP and is augmented by an additional operation as
follows

C̃ P ≡ CPX , (4.9)

where X = e−iμγ 5
. By repeating the calculation leading to

Eq. (4.8) for the new operation, Eq. (4.9), we see that

ĤC̃ P
(
	x, t, μ = π

2

)
= − Ĥ

(
	x, t, μ = π

2

)
. (4.10)

123



Eur. Phys. J. C (2020) 80 :891 Page 5 of 7 891

The existence of a transformation under which Ĥ is odd
ascertains the spectral mirror symmetry. That is, under such a
transformation every eigenstate of Ĥ with energy E is trans-
formed into one with energy −E , the only exception being a
zero energy bound state which must then be invariant under
such a transformation. From the viewpoint of spectral defi-
ciency [7], this implies that as the NCL is traversed, spectral
deficiency D in the positive continuum caused by the bound
state starts to replenish, while deficiency starts to build up
in the Dirac sea. At μ = π

2 the fermionic bound state is at
E = 0, and the spectral deficiencies in both continua are [7]

D = μ

π
. (4.11)

Therefore, at μ = π
2 , the quantum field theoretic expectation

value of the fermion number operator is [4]

|〈N 〉| = 1

2
. (4.12)

This number can be interpreted as the fermion number of the
bosonic configuration.

In the next section, we check the invariance of the zero
mode presented by Ringwald (which is the one that is rele-
vant to our model) [28] under C̃ P . The fermion numbers 1

2
of the sphaleron then follow immediately from the reason-
ing presented by Jackiw and Rebbi or, equivalently, from the
spectral deficiency 1

2 of the Dirac sea. It is worth mention-

ing that at the trivial vacuum (μ = 0, π ), Ĥ is odd under
CP, showing that the spectrum has mirror symmetry there.
However, there are no bound states in the trivial vacuum.

5 The zero mode

Recall that in the original analysis of Jackiw and Rebbi, the
fermionic zero mode in the soliton background was fermion
number self-conjugate [1]. Thus, an important consistency
check on our symmetry transformation would be to operate
it on the fermionic zero mode that was given by Ringwald at
the electroweak S sphaleron [28]. To this end, consider the
zero-energy solution of the Dirac equation in the sphaleron
background. The Ansatz for the left-handed isodoublet of the
zero mode is given by [28]

� iα
0,L (	x, t) = εiαz(r), (5.1)

where i = 1, 2 is the weak isospin index, α = 1, 2 is the
spinor index and εi j is the Levi-Civita symbol (ε12 = +1).
The functional form of z(r) is obtained by solving the
radial part of the Dirac equation. Depending on whether the
fermions are massive or massless, z(r) will take on a differ-
ent form [28]. For a single generation of left-handed quarks,

denoted by

�α
0,L =

(
uα

0,L
dα

0,L

)
, (5.2)

this implies that

u0,L (	x, t) = z(r)

(
0
1

)
≡ z(r)| ↓〉,

d0,L (	x, t) = z(r)

(−1
0

)
≡ −z(r)| ↑〉. (5.3)

Thus, Eq. (5.1) can also be written as

�0,L (	x, t) = z(r)

( | ↓〉
−| ↑〉

)
. (5.4)

A CP transformation on Eq. (5.1) or, equivalently, Eq. (5.4)
yields

�CP
0,L (	x, t) = iγ 5�0,L (	x, t) , (5.5)

which shows that, as expected, the zero mode is not CP-
invariant. By noting that we are performing the symmetry
transformation at the sphaleron (μ = π

2 ), implementing the
additional factor of −iγ 5 required by a C̃ P transformation,
we obtain

�C̃ P
0,L (	x, t) = �0,L (	x, t) . (5.6)

Thus, we observe that the fermionic zero mode of Ringwald
in the sphaleron background is C̃ P-invariant.

6 Summary and discussion

In this paper, we have studied the behavior of fermions under
discrete transformations in a sphaleron background. For the
fields of the NCL passing through the S sphaleron, it is well
known that the system is not CP-invariant except at the vacua.
However, we have constructed a new transformation, denoted
by C̃ P , by augmenting a CP transformation with an addi-
tional operation that acts nontrivially in the Yukawa sector
and has the following important property. We see that for
field configurations along the NCL, the Dirac Hamiltonian is
odd under C̃ P precisely at the S sphaleron sitting at the top
of the barrier that begins and ends at the trivial vacuum. This
ensures that the spectrum has mirror symmetry. That is, for
every positive energy eigenstate there is a corresponding neg-
ative energy one and the zero mode, if any, is self-conjugate.

As an important consistency check, by performing the
symmetry transformation on the fermionic zero mode given
by Ringwald [28] in the sphaleron background, we observe
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that the zero mode is indeed C̃ P-invariant. This is closely
analogous to the analyses of [1,4]. There, fermion num-
ber conjugation symmetry of the spectrum including the
zero mode in the background of the classical solution was
an important condition that led to the derivation of the
half-integer fermion numbers of the background bosonic
fields. In the analyses of [1,4], fermion number conjugation
was charge conjugation. Our transformation operator is C̃ P
which reveals the spectral mirror symmetry at the sphaleron.
In this configuration, the spectral deficiency in the Dirac sea
is exactly 1

2 and one associates this to the fermion number
of the background field which is the sphaleron. This spectral
deficiency 1

2 is equivalent to the integrated anomaly in the
standard derivation.

Overall, this analysis offers a number of other poten-
tial advantages. At a basic level, it can provide a useful
consistency check for the numerous fractionally-charged
sphaleron Ansätze that have been discovered so far [37–44],
and helps place constraints on their functional forms. An
example of this can be seen in the Ansatz for the axially
symmetric sphaleron, where the arbitrary functions acquire
a z-dependence [45]. Furthermore, the analyses of [1,4]
required C-invariance, while the present analysis led to C̃ P-
invariance. It may be that other solutions require other novel
symmetry transformations for the fermionic sector to cor-
rectly explain their fractional charges. An important issue
that our study has not addressed is what happens when one
considers three generations of fermions, where CP symmetry
is violated through the CKM and PMNS mixing matrices in
the background of the even-parity Higgs field vacuum.

Finally, from a more practical perspective, one should bear
in mind that sphalerons currently play an omnipresent role
in physics and show up in many field theories, such as grav-
itation, electroweak theory and quantum chromodynamics.
Thus, it seems worthy to delve even deeper into their struc-
ture to see if new symmetries emerge. It may be that studying
these symmetries paves the way for a more systematic under-
standing of the topological properties of unstable solutions
in gauge field theories and their physical applications.
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7 Dirac Hamiltonian along NCL

In this section we give the explicit functional form of the
components of Eq. (4.1). As an SU (2)-valued 2 × 2 matrix,
Ĥ is

Ĥ =
(
Ĥ11 Ĥ12

Ĥ21 Ĥ22

)

. (A.1)

In the background of the gauge and Higgs fields of the NCL,
Eq. (2.8), the components of Ĥ are

Ĥ11 = −iγ 0γ j∂ j + f (r)rγ 0γ 3PL sin μ cos μ sin2 θ

− f (r)rγ 0γ 1PL sin μ sin θ

×(cos μ cos θ cos φ − sin μ sin2 θ sin φ)

− f (r)rγ 0γ 2PL sin μ sin θ

×(cos μ cos θ sin φ + sin μ sin2 θ cos φ)

+kηh(r)γ 0
[
e−iμ

(
cos μ

h(r)

+ i sin μ cos θ) PL + eiμ
(

cos μ

h(r)
− i sin μ cos θ

)
PR

]
,

(A.2a)
Ĥ12 = i f (r)rγ 0γ 1PLe

i(μ+φ) sin μ

×[cos θ cos φ (cos μ cos θ

− i sin μ) − i sin2 θ sin φ (cos μ − i sin μ cos θ)]
+ i f (r)rγ 0γ 2PLe

i(μ+φ) sin μ

×[cos θ sin φ (cos μ cos θ − i sin μ)

+i sin2 θ cos φ (cos μ − i sin μ cos θ)]
− i f (r)rγ 0γ 3PLe

i(μ+φ) sin μ sin θ (cos μ cos θ − i sin μ)

− kηh(r)γ 0 sin μ sin θeiφ (PL − PR) , (A.2b)
Ĥ21 = −i f (r)rγ 0γ 1PLe

−i(μ+φ) sin μ

×[cos θ cos φ (cos μ cos θ + i sin μ)

+i sin2 θ sin φ (cos μ + i sin μ cos θ)]
− i f (r)rγ 0γ 2PLe

−i(μ+φ) sin μ

×[cos θ sin φ (cos μ cos θ + i sin μ)

−i sin2 θ cos φ (cos μ + i sin μ cos θ)]
+ i f (r)rγ 0γ 3PLe

−i(μ+φ) sin μ sin θ (cos μ cos θ + i sin μ)

+ kηh(r)γ 0 sin μ sin θe−iφ (PL − PR) , (A.2c)
Ĥ22 = −iγ 0γ j∂ j − f (r)rγ 0γ 3PL sin μ cos μ sin2 θ

+ f (r)rγ 0γ 1PL sin μ sin θ

×(cos μ cos θ cos φ − sin μ sin2 θ sin φ)

+ f (r)rγ 0γ 2PL sin μ sin θ
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×(cos μ cos θ sin φ + sin μ sin2 θ cos φ)

+kηh(r)γ 0
[
e+iμ

(
cos μ

h(r)
− i sin μ cos θ

)
PL

+ e−iμ
(

cos μ

h(r)
+ i sin μ cos θ

)
PR

]
. (A.2d)
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