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Abstract We investigate the shadows and photon spheres
of the four-dimensional Gauss–Bonnet black hole with the
static and infalling spherical accretions. We show that, for
both cases, there always exist shadows and photon spheres.
The radii of the shadows and photon spheres are independent
of the profiles of accretion for a fixed Gauss–Bonnet con-
stant, implying that the shadow is a signature of the spacetime
geometry and it is hardly influenced by accretion. Because of
the Doppler effect, the shadows of the infalling accretion are
found to be darker than in the static case. We also investigate
the effect of the Gauss–Bonnet constant on the shadow and
photon spheres, and we find that the larger the Gauss–Bonnet
constant is, the smaller the radii of the shadow and photon
spheres will be. In particular, the observed specific intensity
increases as the Gauss–Bonnet constant grows.

1 Introduction

The Event Horizon Telescope (EHT) Collaboration has
recently obtained an ultra high angular resolution image of
the accretion flow around the supermassive black hole in
M87* [1–6]. The image shows that there is a dark interior
with a bright ring surrounding it. The dark interior is called
a black hole shadow while the bright ring is called a pho-
ton ring. The shadow of a black hole is caused by gravita-
tional light deflection [7–11]. Specifically, when light emit-
ting from the accretion passes through the vicinity of the
black hole toward the observer, its trajectory will be deflected.
The intensity of the light observed by the distant observer dif-
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fers accordingly, leading to a dark interior and bright ring.
So far, the shadows of various black holes have been investi-
gated. It is generally known that the shadows of spherically
symmetric black holes are round and those of rotating black
holes are not precisely round but deformed.

Since the release of the image and data by EHT, its vari-
ous implications have been explored. For instance, the extra
dimensions could be determined from the shadow of M87*
[12,13], where a rotating braneworld black hole was consid-
ered. The shadows of high-redshift supermassive black holes
may serve as the standard rulers [14], whereby the cosmo-
logical parameters can be constrained. The black hole com-
panion for M87* can also be constrained through the image
released by EHT [15]. Moreover, the information given by
EHT can be used to impose constraints on particle physics
via the mechanism of superradiance [16,17]. In particular,
for the vector boson, it may constrain some of the fuzzy
dark matter parameter space. In addition, dense axion cloud
can also be induced by rapidly rotating black holes through
superradiance [18].

Accretion matter is apparently important for the shad-
ows of black holes, since many astrophysical black holes
are believed to be surrounded by accretion matter. The first
image of a black hole surrounded by thin disk accretion was
presented in [19]. For a geometrically and optically thick
accretion disk [20], it was found that the mass of the disk
would affect the shadow of the black hole, and as the mass
grows the shadow becomes more prolate. In particular, by
reanalyzing the trajectory of the light ray, the shadows of a
Schwarzschild black hole with both thin and thick accretion
disks have been clarified and detailed recently [21]. It was
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found that there existed not only the photon ring1 but also the
lensing ring. The lensing ring makes a significant contribu-
tion to the observed flux while the photon ring makes a little
contribution. In addition, the observed size of the central dark
area was found to be determined not only by the gravitational
redshift but also by the emission profile. When the accretion
matter is spherically symmetric, there is also a shadow for
the black hole [23]. The location of the shadow edge is found
to be independent of the inner radius at which the accreting
gas stops radiating [22]. The size of the observed shadow
can serve as a signature of the spacetime geometry, since it is
hardly influenced by the details of the accretion. This result
is different from the case in which the accretion is a disk [21].

In this paper, we intend to investigate the shadow of a four-
dimensional Gauss–Bonnet black hole with spherical accre-
tions [24]. The Gauss–Bonnet term in the Lagrangian is topo-
logically invariant in four-dimensional spacetime. Thus in
order to consider the dynamical effect of Gauss–Bonnet grav-
ity, one is generically required to work in higher dimensions
[25,26]. Very recently, Glavan and Lin have proposed Gauss–
Bonnet modified gravity in four dimensions by simply rescal-
ing the Gauss–Bonnet coupling constant α → α/(D − 4)

and taking the limit D → 4 [24]. However, as many authors
have pointed out, this theory is not well-defined with the ini-
tial regularization scheme [27–30]. Recently, the authors in
[31] have proposed a consistent theory of four-dimensional
Gauss–Bonnet gravity using the ADM decomposition of
the spacetime. They successfully found a four-dimensional
Gauss–Bonnet theory of two dynamical degrees of freedom
by breaking the temporal diffeomorphism invariance. Thus,
the cosmological and black hole solutions naively given in
[24] can be accounted as exact solutions in the theory of
[31]. Our background of the black hole solution indeed also
satisfies the well-defined theory of [31]. Many other char-
acteristics of the four-dimensional Gauss–Bonnet black hole
have been investigated; see for instance [32–47].

In particular, gravitational lensing by black holes in ordi-
nary medium and homogeneous plasma in four-dimensional
Gauss–Bonnet gravity have been studied in [48,49]. The
shadows cast by the spherically symmetric [32,50] and rotat-
ing [51] four-dimensional Gauss–Bonnet black hole have
also been studied. It will be more interesting to investigate
the corresponding light intensity of the shadow, which com-
prises the main issue of this paper. To be more precise, in this
paper, we are interested in spherical accretions, which can be
classified into static and infalling. On the one hand, we want
to explore how the Gauss–Bonnet constant affects the radii
of the shadow and photon sphere as well as the light inten-

1 Note that in this paper, the photon ring is defined by the light ray that
intersects the plane of the disk three or more times, which is different
from other references such as Ref. [22]. To distinguish them, we call
the photon ring in Ref. [22] the photon sphere in this paper.

sity observed by a distant observer. On the other hand, we
want to explore how the dynamics of the accretion affects the
shadow of the black hole. As a result, we find that the larger
the Gauss–Bonnet constant is, the smaller the radii of the
shadow and photon sphere will be, and the larger the inten-
sity will be. In addition, the shadow of the infalling accretion
are found to be darker than that of the static case because of
the Doppler effect.

The remainder of this paper is organized as follows. In
Sect. 2, we investigate the motion of the light ray near the
four-dimensional Gauss–Bonnet black hole and figure out
how it is deflected. In Sect. 3, we investigate the shadows
and photon spheres with the static spherical accretion. To
explore whether the dynamics of the accretion will affect the
shadow and photon sphere, the accretion is supposed to be
infalling in Sect. 4. Section 5 is devoted to the conclusions
and discussions. Throughout this paper, we set G = h̄ =
c = kB = 1.

2 Light deflection in the four-dimensional
Gauss–Bonnet black hole

Starting from the following Einstein–Hilbert action with an
additional Gauss–Bonnet term:

I = 1

16πG

∫ √−gd4x

×
[
R + α(RμνλδR

μνλδ − 4RμνR
μν + R2)

]
, (1)

by rescaling the Gauss–Bonnet coupling constant α →
α/(D − 4) and taking the limit D → 4, one can obtain
the four-dimensional spherically symmetric Gauss–Bonnet
black hole:

ds2 = −F(r)dt2 + dr2

F(r)
+ r2(dθ2 + sin2 θdφ2), (2)

with

F(r) = 1 + r2

2α

(
1 −

√
1 + 8αM

r3

)
, (3)

where M is the mass of the black hole. Note that the same
solution was already found previously in [52] by considering
the Einstein gravity with Weyl anomaly. Solving the equation
F(r) = 0, one can obtain two solutions,

r± = M ±
√
M2 − α, (4)

in which r+ and r− correspond to the outer horizon (event
horizon) and inner horizon, respectively. In order to ensure
the existence of a horizon, the Gauss–Bonnet coupling con-
stant should be restricted in the range − 8 ≤ α/M2 ≤ 1. For
the case α > 0 there are two horizons, while for the case
α < 0 there is only one single horizon.
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Table 1 The radius rph , impact parameter bph of the photon sphere and the event horizon r+ for different α with M = 1

α = − 7.7 α = − 5.5 α = − 3.3 α = − 1.1 α = 0.111 α = 0.333 α = 0.555 α = 0.777

rph 4.70134 4.36744 3.95844 3.40373 2.94939 2.83932 2.71357 2.56483

bph 6.7815 6.46004 6.07084 5.55557 5.15252 5.05903 4.95501 4.83671

r+ 3.94958 3.54951 3.07364 2.44914 1.94287 1.8167 1.66708 1.47223

In order to investigate the light deflection caused by the
four-dimensional Gauss–Bonnet black hole, we need to find
how the light ray moves around the black hole. As is well
known, the light ray satisfies the geodesic equation, which
can be encapsulated in the following Euler–Lagrange equa-
tion:

d

dλ

(
∂L
∂ ẋμ

)
= ∂L

∂xμ
, (5)

with λ the affine parameter, ẋμ the four-velocity of the light
ray and L the Lagrangian, taking the form

L = 1

2
gμν ẋ

μ ẋν

= 1

2

(
−F(r)ṫ2 + ṙ2

F(r)
+ r2

(
θ̇2 + sin2 θ φ̇2

))
. (6)

As in [7–9], we focus on the light ray that moves on the
equatorial plane, i.e., θ = π

2 and θ̇ = 0. In addition, since
none of the metric coefficients depends explicitly on time
t and azimuthal angle φ, there are two corresponding con-
served quantities, E and L . Combining Eqs. (3), (5) and (6)
together, the time, azimuthal and radial component of the
four-velocity can be expressed as

ṫ = 1

b
[
1 + r2

2α

(
1 −

√
1 + 8αM

r3

)] , (7)

φ̇ = ± 1

r2 , (8)

ṙ2 + 1

r2

[
1 + r2

2α

(
1 −

√
1 + 8αM

r3

)]
= 1

b2 , (9)

where we have redefined the affine parameter λ → λ/|L|,
and b = |L|

E , which is called the impact parameter. The +
and − in Eq. (8) correspond to the light ray traveling in the
counterclockwise and clockwise along azimuthal direction,
respectively. Equation (9) can also be rewritten as

ṙ2 + V (r) = 1

b2 , (10)

where

V (r) = 1

r2

[
1 + r2

2α

(
1 −

√
1 + 8αM

r3

)]
(11)

is an effective potential. The conditions for the photon sphere
orbit are ṙ = 0 and r̈ = 0, which can be translated to

V (r) = 1

b2 , V
′
(r) = 0, (12)

where the prime ′ denotes the first derivative with respect
to the radial coordinate r . Based on this equation, we can
obtain the radius rph and impact parameter bph for the photon
sphere, which are shown together with the size of the event
horizon r+ in Table 1 for different α. From this table, we
can see that the three parameters, i.e., rph , bph and r+ all
decrease as α increases.

Here we would like to take α = − 5.5, 0.555 as two exam-
ples with the corresponding effective potential depicted in
Fig. 1. We can see that at the event horizon the effective
potential vanishes. It increases and reaches a maximum at
the photon sphere, and then decreases as the light ray moves
outwards. As a light ray moves in the radially inward direc-
tion, the effective potential will affect its trajectory. In Region
1, the light will encounter the potential barrier and then be
reflected back in the outward direction. In Region 2, namely
b = bph , the light will asymptotically approach the photon
sphere. Since the angular velocity is non-zero, it will revolve
around the black hole infinitely many times. In Region 3, the
light will continue moving in the inward direction since it
does not encounter the potential barrier. Eventually, it will
enter the inside of the black hole through the event horizon.

Furthermore, the trajectory of the light ray can be depicted
according to the equation of motion. Combining Eqs. (8) and
(9), we have

dr

dφ
=± r2

√√√√ 1

b2 − 1

r2

[
1+ r2

2α

(
1 −

√
1 + 8αM

r3

)]
. (13)

By setting u = 1/r , we can transform (13) into

du

dφ
=

√√√√ 1

b2 − u2

(
1 − √

8αMu3 + 1

2αu2 + 1

)
≡ G(u). (14)

From Eq. (14) we can solve φ with respect to u. Employing
the ParametricPlot,2 we can plot the trajectory of the light
ray, which is shown in Fig. 2. The black, red and green line

2 In many references, such as in Ref. [22], the ray-tracing code is
employed to plot the trajectory of the light ray.
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(a) (b)

Fig. 1 The profiles of the effective potential for α = −5.5 (left panel) and α = 0.555 (right panel) with M = 1. For both panels, Region 2
corresponds to the red lines where V (r) = 1/b2

ph , while Region 1 and Region 3 correspond to V (r) < 1/b2
ph and V (r) > 1/b2

ph , respectively

(a) (b)

Fig. 2 The trajectory of the light ray for different α with M = 1 in
the polar coordinates (r, φ). The red line corresponds to b = bph , the
black line corresponds to b < bph , and the green line corresponds to

b > bph . The spacing in impact parameter is 1/5 for all light rays. The
black hole is shown as a solid disk and the photon orbit as a dashed red
line

correspond to b < bph , b = bph and b > bph , respectively.
As one can see, for the case of b < bph , the light ray drops all
the way into the black hole, which corresponds to Region 3
in Fig. 1. For the case of b > bph , the light ray near the black
hole is reflected back, which corresponds to Region 1 in Fig.
1. And for the case of b < bph , the light ray revolves around
the black hole, which corresponds to Region 2 in Fig. 1. Note
that, for b > bph , in order to plot the geodesic, we should
find a turning point, where the light ray changes its radial

direction. The turning point is determined by the equation
G(u) = 0, where G(u) has been defined in Eq. (14).

3 Shadows and photon spheres with rest spherical
accretion

In this section, we will investigate the shadow and photon
sphere of the four-dimensional Gauss–Bonnet black hole
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(a) (b)

Fig. 3 Profiles of the specific intensity I (b) seen by a distant observer for a static spherical accretion. We set M = 1 and take α = − 5.5 (left
panel), and α = 0.555 (right panel) as two examples

with static spherical accretion, which is assumed to be opti-
cally thin. To this end, we should find the specific inten-
sity observed by the observer (erg s−1 cm−2 str−1 Hz−1). The
observed specific intensity I at the observed photon fre-
quency νo can be found by integrating the specific emissivity
along the photon path [53,54],

I (νo) =
∫

γ

g3 j (νe)dlprop, (15)

where g = νo/νe is the redshift factor, νe is the photon fre-
quency of the emitter, dlprop is the infinitesimal proper length,
and j (νe) is the emissivity per unit volume measured in the
rest frame of the emitter.

In the four-dimensional Gauss–Bonnet black hole, g =
F(r)1/2. Concerning the specific emissivity, we also assume
that it is monochromatic with rest-frame frequency νr , that
is,

j (νe) ∝ δ(νe − νr )

r2 . (16)

According to Eq. (2), the proper length measured in the rest
frame of the emitter is

dlprop =
√
F(r)−1dr2 + r2dφ2

=
√
F(r)−1 + r2

(
dφ

dr

)2

dr, (17)

in which dφ/dr is given by Eq. (13). In this case, the specific
intensity observed by the infinite observer is

I (νo) =
∫

γ

F(r)3/2

r2

√
F(r)−1 + r2

(
dφ

dr

)2

dr. (18)

The intensity is circularly symmetric, with the impact param-
eter b of the radius, which satisfies b2 = x2 + y2.

Next we will employ Eq. (18) to investigate the shadow
of the four-dimensional Gauss–Bonnet black hole with static
spherical accretion. Note that the intensity depends on the
trajectory of the light ray, which is determined by the impact
parameter b. So we will investigate how the intensity varies
with respect to the impact parameter. For different α, the
numerical results of I (b) are shown in Fig. 3. From this fig-
ure, we see that the intensity increases rapidly and reaches a
peak at bph , and then drops to lower values with increasing b.
This result is consistent with Figs. 1 and 2. For b < bph , the
intensity originating from the accretion is absorbed mostly
by the black hole. And for b = bph , the light ray revolves
around the black hole many times, so the observed intensity
is maximal. Meanwhile, for b > bph , only the refracted light
contributes to the intensity of the observer. As b becomes
larger, the refracted light becomes less. The observed inten-
sity thus vanishes for large enough b. In principle, the peak
intensity at b = bph should be infinite because the light ray
revolves around the black hole infinite times and collect an
arbitrarily large intensity. However, because of the numeri-
cal limitations and the logarithmic form of the intensity, the
real computed intensity never goes to infinity, which has also
been well addressed in [21,22]. From Fig. 3, we can also
observe how the Gauss–Bonnet coupling constant affects the
observed intensity. For all the b, the larger the coupling con-
stant is, the stronger the intensity will be.

The shadow cast by the four-dimensional Gauss–Bonnet
black hole in the (x, y) plane is shown in Fig. 4. We can
see that outside the black hole shadow, there is a bright ring,
which is the photon sphere. The radii of the photon spheres
for different α have been listed in Table 1. Obviously, the
results in Fig. 4 are consistent with those in Table 1. That
is, the larger the Gauss–Bonnet constant is, the smaller the
radius of the photon sphere will be.
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(a) α = −5.5
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1.0

(b) α = 0.555

Fig. 4 The black hole shadows cast by static accretion for different α with M = 1 in the (x, y) plane. The bright ring is the photon sphere

Table 2 The net luminosity of the escaping rays for different α with M = 1

α = − 7.7 α = − 5.5 α = − 3.3 α = − 1.1 α = 0.111 α = 0.333 α = 0.555 α = 0.777

L∞ 0.169698 0.18729 0.215428 0.265181 0.323863 0.34006 0.359979 0.386447

Moreover, we can see that inside the shadow, the intensity
does not go to zero but keeps a small finite value. The reason is
that part of the radiation has escaped to infinity. For r > rph ,
the solid angle of the escaping rays is 2π(1+cos θ), while for
r < rph , the solid angle of the escaping rays is 2π(1−cos θ),
where θ is given by

sin θ = r3/2
ph

r

[
1 + r2

2α

(
1 −

√
1 + 8αM

r3

)]1/2

. (19)

By only counting the escaping light rays, we have the net
luminosity observed at infinity as

L∞ =
∫ rph

r+
4πr2 j (νe)2π(1 − cos θ)dr

+
∫ ∞

rph
4πr2 j (νe)2π(1 + cos θ)dr. (20)

For different α, the numerical results are listed in Table 2. We
can see that the net luminosity increases with increasing α.
For the Schwarzschild black hole, the net luminosity is found
to be L∞ = 0.32 [22]. Obviously, for the positive α, the net
luminosity in the four-dimensional Gauss–Bonnet black hole
is larger than that in the Schwarzschild black hole, while for
negative α, the net luminosity in this spacetime is smaller
than that in Schwarzschild black hole.

4 Shadows and photon spheres with infalling spherical
accretion

In this section, we allow the optically thin accretion to move
towards the black hole. This model is thought to be more real-
istic than the static accretion model since most of the accre-
tions are mobile in the universe. For simplicity, we assume
that the accretion shows free fall onto the black hole from
infinity. We still employ Eq. (18) to investigate the shadow
of the four-dimensional Gauss–Bonnet black hole.

Different from the static accretion, the redshift factor for
the infalling accretion should be evaluated by

g = kβu
β
o

kγ u
γ
e

, (21)

in which kμ = ẋμ is the four-velocity of the photon, uμ
o =

(1, 0, 0, 0) is the four-velocity of the distant observer, and
uμ

e is the four-velocity of the accretion under consideration,
given by

ute = 1

F(r)
, ure = −√

1 − F(r), uθ
e = uφ

e = 0. (22)

The four-velocity of the photon has been obtained previ-
ously in Eqs. (7)–(9). We know that kt = 1/b is a constant,
and kr can be inferred from kγ kγ = 0. Therefore,
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(a) (b)

Fig. 5 The profiles of the specific intensity I (b) seen by a distant observer for an infalling accretion. For both cases, we set M = 1

(a) (b)

Fig. 6 The shadow of the black hole cast by the infalling accretion for different α with M = 1 in the (x, y) plane. The brightest ring outside the
black hole is the photon sphere

kr
kt

= ± 1

F(r)

√
1 − b2F(r)

r2 , (23)

where the sign + (−) corresponds to the case that the photon
gets close to (away from) the black hole. With this equation,
the redshift factor in Eq. (21) can be simplified as

g = 1

ute + kr/keure
. (24)

In addition, the proper distance can be defined as

dlprop = kγ u
γ
e dλ = kt

g|kr |dr, (25)

where λ is the affine parameter along the photon path γ . We
also assume that the specific emissivity is monochromatic;
therefore, Eq. (16) can be used. The intensity in Eq. (15) thus
can be expressed as

I (νo) ∝
∫

γ

g3ktdr

r2|kr | . (26)

Now we will use Eq. (26) to investigate the shadow of
the black hole numerically. For different α, the intensities
with respect to b observed by the distant observer are shown
in Fig. 5. Similar to the static accretion, we find that, as b
increases, the intensity increases first, then reaches a maxi-
mum intensity at b = bph , and then drops away. We can also
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(a) (b)

Fig. 7 Profile of the specific intensity I (b) seen by a distant observer with different profiles of specific emissivity. For both cases, we set M = 1,
α = − 5.5

(a) (b)

Fig. 8 The shadow of the black hole cast by the infalling accretion with different profiles of specific emissivity in the (x, y) plane. We set α = − 5.5,
M = 1

observe the effect of α on the intensity from Fig. 5. That is,
the larger the value of b is, the larger the observed intensity
will be.

The two-dimensional image of the shadow and photon
sphere seen by a distant observer are shown in Fig. 6. We
can see that the radius of the shadow and the location of the
photon sphere are the same as those with the static accretion.
A major new feature is that in the central region, the shadow
with infalling accretion is darker than that with the static
accretion, which is well accounted for by the Doppler effect.
Nearer the event horizon of the black hole, this effect is more
obvious.

It has been argued that, in the universe, the accretion flows
do have inward radial velocity, and the velocity tends to be

large precisely at the radii of interest for shadow formation.
Therefore the model with radially infalling gas is most appro-
priate for comparison with the image of M87*.

In order to explore how the profile of the specific emis-
sivity affects the shadow of the black hole, we will choose
different profiles of j (νe). The corresponding intensities are
shown in Fig. 7. From this figure, we see clearly that the
intensity in these cases shows a behavior similar to the case
j (νe) = 1/r2. That is, the peak is always located at b = bph .
The difference is that the intensity decays faster for the higher
power of 1/r , which makes the peak more prominent. The
corresponding two-dimensional images of shadow and pho-
ton sphere are shown in Fig. 8.
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Our results in Figs. 7 and 8 show that although the profile
of the spherical accretion affects the intensity of the shadow, it
does not affect the characteristic geometry such as the radius
of the shadow, which is determined only by the geometry of
the spacetime.

5 Discussions and conclusions

In this paper, we have investigated the shadows and photon
spheres cast by the four-dimensional Gauss–Bonnet black
hole with spherical accretions. We first obtain the radius of
the photon sphere and critical impact parameter for different
Gauss–Bonnet constants, and find that the larger the Gauss–
Bonnet constant is, the smaller the radius of the photon sphere
and critical impact parameter will be, which is consistent with
the previous results [50,51]. It should be noted that a simple
approximation of the radius of the shadow was derived in Sec-
tion 5 of [32], in which the authors mainly studied the quasi-
normal modes and stability of the four-dimensional spherical
Gauss–Bonnet black hole. In the concise Section 5 of [32]
the authors analytically obtained a linear relation between
the Gauss–Bonnet constant α with respect to the radius of
the shadow, in the units of event horizon. This linear relation
indeed was only satisfied in the small α regime. In fact, from
the numerics in Table 1 in our paper we can check that in
the units of the event horizon, the radius of the shadow also
increases as α grows. However, for larger α’s this linear rela-
tion will be destroyed. Therefore, our numerical evaluations
actually go beyond the simple derivations in [32].

More importantly, we obtain the specific intensity I (νo)
observed by a distant observer, in which the accretion was
supposed to be either static or infalling. For both cases, we
find that the specific intensity increases with the increasing
Gauss–Bonnet constant. We plot the image of the shadows
in the (x, y) plane, and find that there is a bright sphere ring
outside the dark region. The interior region of the shadow
with the infalling accretion turns out to be darker than that
with the static accretion, due to the Doppler effect. We also
investigate the effect of the profile of the accretion on the
shadow. As a result, it is found that although the profile will
affect the intensity of the shadow, it does not affect the char-
acteristic of the geometry such as the radius of the photon
sphere. In Ref. [22], the emission originating from the accre-
tion was cut off at different locations; the size of the shadow
was found to be independent of the locations. Obviously, our
result is consistent with the observation in Ref. [22].

The EHT Collaboration has modeled M87* with the Kerr
black hole, and claimed that the observation supports gen-
eral relativity. In this paper, we did not consider the Kerr-
like black hole in the four-dimensional Gauss–Bonnet grav-
ity since the spherically symmetric black hole, in some cases,
may produce qualitatively similar results [53]. For example,

Fig. 9 The behavior of light rays as a function of the impact parame-
ter b. We treat (r, φ) as the Euclidean polar coordinates. The red lines,
blue lines and green lines correspond to the direct, lensed, and pho-
ton ring trajectories, respectively. The spacing in impact parameter is
1/5, 1/100, 1/1000 in the direct, lensed, and photon ring bands. The
black hole is shown as a solid disk and the photon orbit as a dashed line.
We set α = − 5.5, M = 1

the simplified spherical model captures the key features that
also appear in state of the art general-relativistic magnetohy-
drodynamics models [5], whether they are spinning or not.

In addition, the real accretion flows are generically not
spherically symmetric. The hot accretion flow in M87* and
most other galactic nuclei consists of a geometrically thick
and quasi-spherical disk. It will be more interesting to inves-
tigate the shadow with a thick disk accretion. Recently, Ref.
[21] has investigated the shadow with thin and thick accre-
tion. They reanalyzed the orbit of photon and redefined the
photon ring and lensing ring, in which the lensing ring is the
light ray that intersects the plane of the disk twice and the
photon ring is the one that intersects the plane three or more
times. They defined a total number of orbits as n ≡ φ/2π . In
this case, n > 3/4 corresponds to the light ray crossing the
equatorial plane at least twice, n > 5/4 corresponds to the
light ray crossing the equatorial plane at least three times, and
n < 3/4 corresponds to the light ray crossing the equatorial
plane only once. For the case of α = −5.5, the trajectory of
the light ray is shown in Fig. 9. Comparing it with Fig. 2, we
see that the photon ring is around the photon sphere, and the
lensing ring is around the photon ring. It will be interesting
to investigate the shadow, photon ring, and lensing ring with
a thin or thick disk in the four-dimensional Gauss–Bonnet
black hole. We leave this as future work.
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