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Abstract In this work, we investigate the quasinormal fre-
quencies of a class of regular black hole solutions which
generalize Bardeen and Hayward spacetimes. In particular,
we analyze scalar, vector and gravitational perturbations of
the black hole with the semianalytic WKB method. We ana-
lyze in detail the behaviour of the spectrum depending on
the parameter p/q of the black hole, the quantum num-
ber of angular momentum and the s number. In addition,
we compare our results with the classical solution valid for
p = q = 1.

1 Introduction

One of the most striking predictions of General Relativity
(GR) [1] is the existence of Black Holes (BHs), objects which
produce a region where not even light can escape. They can
be formed in the extreme final stages of the gravitational col-
lapse of stars. Such astrophysical objects are remarkably sim-
ple, being characterized by three parameters: mass, charge
and angular momentum, by virtue of the so-called “no-hair”
theorems [2–4]. Since gravitational radiation emitted by an
oscillating black hole can carry information about its inner
properties like mass and charge [5,6], this enables to use BHs
as a laboratory for studying gravity in strong regimes, where
quantum phenomena might take uttermost importance. Also,
after Hawking’s seminal papers where the radiation from the
black hole horizon was explained [5,6], black boles become
an excellent laboratory to study and also enhance our com-
prehension about quantum gravity. Naively, the Hawking
radiation is taken as black body radiation parametrized by
the hawking temperature TH . However, the latter is just
an approximated picture because emitted particles feel an
effective potential barrier in the exterior region. Such barrier
backscatters a percentage of the outgoing radiation back into
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the black hole [7]. Thus, the spectrum of the Hawking radi-
ation as seen by an asymptotic observer has not a complete
blackbody distribution: it is better described by a greybody
distribution. The greybody factor can obtained from the trans-
mission amplitude as the field modes pass from near horizon
region to an asymptotic observer through the effective poten-
tial induced by the spacetime geometry. Estimation of this
greybody factor is usually a difficult task and often one has to
resort to approximations, usually in low/high frequency lim-
its. There are monodromy methods [8,9] and computations
in a variety of scenarios [10–13], where one can also employ
numerical approaches to estimate them [14]. In particular, it
should be noticed that a considerable part of the literature
is dedicated to the case of black holes with singularities. In
order to fix that problem, it is expected that quantum ingredi-
ents play a dominant role. Thus, although a complete theory
of quantum gravity is still under construction, regular black
hole solutions can be obtained utilizing additional matter,
for instance, taking advantage of non-linear electrodynam-
ics, as was previously pointed out by Ayon-Beato and Garcia
[15]. Additionally, an interesting feature of the gravitational
collapse is that during the formation phase there is the emis-
sion of gravitational radiation, strong enough to be detected
by the gravitational wave detectors [16]. This connection
was strongly provided by the historical direct detection of
GWs by LIGO, that two binary merger objects can coalesce
into a super-massive black hole [17]. Moreover, recently was
reported the first image of the super-massive black hole at the
center of the giant elliptical galaxy Messier 87 (M87) by the
Event Horizon Telescope [18,19] which increased the inter-
est on the physics behind this class of intriguing objects.

In the framework of GR, gravitational radiation arises as
perturbations of spacetime itself. Due to the nonlinear nature
of Einsteins equations, it is often very hard to find closed
solutions, and usually one has to resort to perturbation the-
ory. such perturbations give rise to a set of damped vibrations
calledquasinormalmodes [20], complex numbers whose real
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part represents the actual frequency of the oscillation and the
imaginary part represents the damping. A simple example
of such oscillations are the oscillations of stars which are
damped by internal friction [21]. It is known that in general
relativity damping might occur even in frictionless scenar-
ios. This effect arises because energy may be radiated away
towards infinity by gravitational waves. As it was previously
pointed in Ref. [22], even linearized perturbations of black
holes exhibit quasinormal modes. QNMs are also important
in the investigation of the post-merger remnant of a binary
black hole (BBH), as it coalescence settles to a Kerr black
hole at a sufficiently late time after the merging phase. The
stationary state is reached when the perturbed BH remnant
emits gravitational waves (GWs) during a process known as
the ringdown (RD), and The GW corresponding to this phase
is described by the linear perturbation theory of a Kerr BH
[23,24].

As was previously said, the study of the quasinormal fre-
quencies is quite relevant, because they encode information
on how a black hole relaxes after it has been perturbed. Even
more, such frequencies depend on i) the geometry and ii)
the type of perturbations [25]. Along the years, the study of
QNM becomes more essential than ever, and certain semi-
nal works have been performed up to now, for instance see
[26–28] and more recent works [29–45].

One issue of the classical description of gravity is the exis-
tence of spacetime singularities [46]. Although the known
solutions of Schwarzschild, Kerr and Reissner–Nordstrom
have singularities protected by an event horizon [47], the pre-
diction that BHs emit radiation cause them to shrink until the
singularity if reached. This is still a conundrum, as singulari-
ties are generally regarded as an indicative of the breakdown
in the theory, requiring new Physics for a proper description.
It is a common belief that only a consistent quantum theory
of gravity could solve it properly [48]. Since there are no
consistent models yet, phenomenological models have been
proposed, and most of them are based on the avoidance of
the central singularity. Such non-singular solutions are called
regular black holes [25,49,50].

Given the increasing interest in gravitational wave astron-
omy and on QNMs of black holes, it would be interesting to
investigate the QNM spectra from regular BHs. In previous
works quasinormal modes of regular black holes were com-
puted by several authors, see e.g. [51–54]. In this paper we
propose to investigate the QNMs of a class of regular black
holes which generalize Bardeen and Hayward spacetimes. In
particular, we analyze scalar, vector and gravitational pertur-
bations of the black hole both with the semianalytic WKB
method and compute the greybody factor. Furthermore, it
is essential to note that there is a vast collection of works
where QNMs are calculated using the WKB approximation
(see [31,35,55–58] and references therein).

The work is structured as follows. In Sect. 2 we introduce
the spacetime background of regular black holes and how
to describe the field perturbations. In Sect. 3 we compute
the quasinormal frequencies employing the 6th order WKB
approximation, and in Sect. 4 we compute the greybody fac-
tor. Section 5 is devoted to the conclusions.

2 Gravitational background and field perturbations

2.1 Regular Black Holes

The class of regular BH solutions of interest in this work have
the line element of a static, spherically symmetric black hole

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2, (1)

where dΩ2 is the metric of the 2-sphere and the lapse func-
tion f (r) = 1 − 2m(r)/r explicitly depends on the matter
distribution. The particular mass function [59]

m(r) = M0

[1 + (r0/r)q ]p/q
, p, q ∈ Z (2)

ensures an asymptotically flat spacetime for positive p and
q. M0 and r0 can be interpreted as mass and length parame-
ters. The regular BH solutions proposed by Bardeen [60] and
Hayward [49] correspond to the choices (p, q) = (3, 2) and
(p, q) = (3, 3) in Eq. (2). The limit of large r is

m(r) ≈ M0

(
1 − p

q

(
r0

r

)q)
, (3)

the only restriction on (3) to obtain an asymptotically
Schwarzschild solution is to have q > 0. To compare our
results with results found for Bardeen and Hayward solu-
tions, we will restrict ourselves to the case p = 3 and q > 0.
The behaviour of some typical cases is shown in Fig. 1. Thus,
should be noticed that when the parameter q increases the
mass function m(r) tends to its constant value M0.

2.2 Field perturbations

This subsection is devoted to introduce the basic formalism
as well as the theoretical grounds regarding perturbations in
black holes in four dimensional spacetime. Thus, we will
focus on scalar, electromagnetic and gravitational field per-
turbations in the fixed background given by Eq. (1) and mass
function (2). Due to spherical symmetry, the fields can be
decomposed into spherical harmonics, and the equations of
motion can be reduced to the form

− ∂2Ψ

∂t2 + ∂2Ψ

∂r2∗
+ V (r∗)Ψ = 0, (4)
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Fig. 1 Mass function (2) with p = 3 and q > 0. The parameter r0 is
typically assumed to be microscopic (r0 � M0) and hence the exterior
region of the BH can be very close to the Schwarzschild space-time.
The q → ∞ case, as evidenced by the case q = 90, corresponds to
the usual matching between de Sitter and Schwarzchild solutions in the
interior region of the BH. The grey shaded region indicates the interior
region r < 2M0. In this graphic we have used r0/M0 = 10−1

Fig. 2 Effective potential (6) for the mass function (2) for gravitational
perturbations s = 2, multipole number � = 2 and p = 3 and q > 0.
The grey shaded region indicates the interior region r < 2M0. Notice
that in the exterior region the potential is always positive and peaked

where the tortoise coordinate r∗ is defined according to the
differential equation

dr∗
dr

= 1

f (r)
. (5)

and the effective potential is

V (r) = f (r)

(
�(� + 1)

r2 + 1 − s2

r
f ′(r)

)
, (6)

where � denotes the multipole number of the spherical har-
monics decomposition and s = 0, 1, 2 is the spin of the
perturbation. Its behavior is shown in Fig. 2.

From the behaviour showed in 2 we can see that in the
exterior region r > 2M0 the effective potential does not
varies sensibly for q > 1. Therefore, one should not expect
large differences in the perturbation oscillation frequencies in
the limit of large q. This can be futher inferred by observing

Fig. 3 Effective potential (6) for the mass function (2) for gravitational
perturbations s = 2, multipole number � = 2 and p = 3 and q > 1
with respect to the tortoise coordinate r∗

the behavior of the effective potential with respect to the
tortoise coordinate (5), as shown in Fig. 3.

Employing the stationary ansatz Ψ (t, r∗) ∼ eiωtψ(r∗),
Eq. (6) becomes

d2ψ

dr2∗
+

[
ω2 − V (r∗)

]
ψ = 0, (7)

which precisely takes the form of a Schrödinger-like equa-
tion. The frequencies of the temporal decomposition take the
form ω = ωR + iωI , where ωR is the oscillation frequency of
the QNM and ωI is the damping time. Therefore, any mode
with ωI < 0 is unstable.

3 QNMs of regular BHs in the WKB approximation

The QNMs can be computed by imposing proper boundary
conditions on (7), where the fields are purely ingoing at the
BH horizon and purely outgoing at the spatial infinity. With
such boundary conditions, the resulting frequencies are com-
plex. If the potential (6) is peaked and falls to a constant in
the asymptotic region, one can compute the QNM frequen-
cies from (7) employing the WKB approximation described
by Schutz, Iyer and Will [61–63] and posteriorly improved
by Konoplya [64]. With this last improvement the QNMs can
be computed by

iQ0√
2Q′′

0

−
p∑

i=2

Λi = n + 1

2
, n = 0, 1, . . . (8)

where the correction term Λi can be obtained for different
orders of approximation. n is the overtone number and Q(i)

0 is
the i-th derivative of Q = ω2 −V computed at the maximum
of the potential. It is worth to mention that the accuracy of
the WKB method is dependent of the multipole number and
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Table 1 Quasinormal frequencies of scalar perturbations for p = 3 and q > 1. for the regular Black Hole where r0/M0 = 0.1 and

� n q = 2 q = 3 q = 4 q = 10

0 0 0.110750−0.100666i 0.110475−0.100819i 0.110467−0.100818i 0.110467−0.100816i

1 0 0.293430−0.097648i 0.292921−0.097755i 0.292910−0.097761i 0.292910−0.097762i

1 1 0.265209−0.306075i 0.264491−0.306493i 0.264472−0.306517i 0.264471−0.306518i

2 0 0.484470−0.096654i 0.483660−0.096759i 0.483642−0.096766i 0.483642−0.096766i

2 1 0.464821−0.295251i 0.463871−0.295603i 0.463847−0.295626i 0.463847−0.295627i

2 2 0.431610−0.507945i 0.430418−0.508653i 0.430387−0.508698i 0.430386−0.508700i

Table 2 Quasinormal frequencies of electromagnetic perturbations for p = 3 and q > 1. for the regular Black Hole where r0/M0 = 0.1 and

� n q = 2 q = 3 q = 4 q = 10

1 0 0.248752−0.092567i 0.248207−0.092631i 0.248192−0.092637i 0.248191−0.092637i

1 1 0.215143−0.293803i 0.214324−0.294097i 0.214296−0.294117i 0.214295−0.294118i

2 0 0.458440−0.094907i 0.457613−0.095004i 0.457594−0.095011i 0.457593−0.095011i

2 1 0.437541−0.290373i 0.436560−0.290704i 0.436535−0.290727i 0.436534−0.290728i

2 2 0.402191−0.500999i 0.400942−0.501681i 0.400907−0.501726i 0.400906−0.501728i

3 0 0.658054−0.095510i 0.656925−0.095610i 0.656899−0.095617i 0.656898−0.095617i

3 1 0.643005−0.289388i 0.641767−0.289708i 0.641737−0.289730i 0.641737−0.289731i

3 2 0.615266−0.491421i 0.613826−0.492022i 0.613789−0.492062i 0.613788−0.492064i

3 3 0.579237−0.705454i 0.577529−0.706432i 0.577482−0.706495i 0.577481−0.706498i

Table 3 Quasinormal frequencies of gravitational perturbations for p = 3 and q > 1. for the regular Black Hole where r0/M0 = 0.1 and

� n q = 2 q = 3 q = 4 q = 10

2 0 0.374511−0.088768i 0.373643−0.088881i 0.373620−0.088890i 0.373619−0.088891i

2 1 0.347558−0.273042i 0.346340−0.273445i 0.346298−0.273478i 0.346297 − 0.273480i

2 2 0.300515−0.476533i 0.298601−0.477480i 0.298523−0.477555i 0.298520 − 0.477560i

3 0 0.600624−0.092598i 0.599471−0.092695i 0.599444−0.092702i 0.599443 − 0.092703i

3 1 0.583963−0.280957i 0.582676−0.281267i 0.582643−0.281289i 0.582642 − 0.281290i

3 2 0.553183−0.478417i 0.551639−0.479004i 0.551595−0.479045i 0.551594 − 0.479047i

3 3 0.513059−0.689431i 0.511160−0.690400i 0.511101−0.690465i 0.511099 − 0.690468i

4 0 0.810671−0.094060i 0.809213−0.094157i 0.809179−0.094164i 0.809178 − 0.094164i

4 1 0.798221−0.284008i 0.796670−0.284311i 0.796632−0.284333i 0.796631 − 0.284334i

4 2 0.774473−0.479311i 0.772741−0.479859i 0.772697−0.479898i 0.772695 − 0.479900i

4 3 0.741708−0.682982i 0.739721−0.683841i 0.739667−0.683899i 0.739665 − 0.683902i

4 4 0.703005−0.897121i 0.700708−0.898375i 0.700642−0.898456i 0.700641 − 0.898460i

overtone: in general the approximation is appropriate for � >

n and it is not applicable for � < n.
The results for the quasinormal modes are presented in

Tables 1, 2 and 3.
We can notice that all QNMs possess a negative imaginary

part, conferring therefore stability for the black hole. Also,
both real and imaginary parts of the QNMs do not seem to
be wildly sensible to the parameter q in the limit q → ∞,
indicating that the damping time is, with good approximation,
independent of it. However, we can observe a change the

case q ≤ 1, when the BH is smaller damping time than the
classical case.

4 Absorption cross section

Another interesting aspect for investigate the field perturba-
tions around a black hole spacetime is the amount of plung-
ing field which is absorbed by the black hole, the absorption
cross section. It embodies the likelihood of a particle to be
scattered/deflected by the black hole. Based on the quantum
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Fig. 4 Real and imaginary parts of the quasinormal mode (�, n) =
(2, 0) of scalar perturbations for p = 3 and q > 0. The dashed lines
correspond to the respective values of the real and imaginary parts of
the Classical Schwarzschild black hole

Fig. 5 Real and imaginary parts of the quasinormal mode (�, n) =
(2, 0)of electromagnetic perturbations for p = 3 andq > 0. The dashed
lines correspond to the respective values of the real and imaginary parts
of the Classical Schwarzschild black hole

Fig. 6 Real and imaginary parts of the quasinormal mode (�, n) =
(2, 0) of gravitational perturbations for p = 3 and q > 0. The dashed
lines correspond to the respective values of the real and imaginary parts
of the Classical Schwarzschild black hole

mechanics analogy, the cross-section can be written as

σs(ω) =
∞∑

�=0

σ (�)
s (ω), (9)

Fig. 7 The partial absorption cross section for a massless scalar wave
impinging upon a Bardeen Black Hole (p = 3, q = 2) for the first six
multipoles for r0/M0 = 0.1

where we defined the partial absorption cross section

σ (�)
s (ω) = π

ω2 (2� + 1)T�,s(ω), (10)

where T�,s(ω) is the transmission coefficient. To compute
the transmission coefficient we employ the transfer matrix
method, as described in [65].

The partial absorption cross sections versus M0ω for� = 0
to � = 3 are plotted in Fig. 7. One can notice that the � = 0
contribution is the largest, responsible for the non-vanishing
of the cross section in the small energy limit. We observe
how σ�/M2

0 decreases when the value of � increases, due to
the fact that the effective potential peak increases for larger
values of �.

5 Conclusion

In the present paper we have investigated the quasinormal
frequencies and the greybody factors of gravitational pertur-
bations around a class of regular black hole solutions. To
obtain the corresponding quasinormal frequencies, we per-
turbed the background and taking advantage of the symmetry
we are able to decompose the original function into spheri-
cal harmonics, writing down the differential equation of the
problem involved. Then we consider the sixth order WKB
approximation to obtain the QN frequencies. Further, as can
be observed in tables, our solutions reveal that the family of
black holes here analysed recover the classical behaviour for
q → ∞, and possess a stronger absorption section in the
microscopic regime. That means that BH regularity amends
the dissipative effect of the black hole on its neighborhood.
Finally, as can be observed in tables, for q > 1, the imaginary
part of the quasinormal frequencies are also negative. Thus,
our results indicate that all modes are found to be unstable.
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