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Abstract In this paper, we study λφ4 scalar field theory
defined on the unramified extension of p-adic numbers Qpn .
For different “space-time” dimensions n, we compute one-
loop quantum corrections to the effective potential. Surpris-
ingly, despite the unusual properties of non-Archimedean
geometry, the Coleman–Weinberg potential of p-adic field
theory has structure very similar to that of its real cousin.
We also study two formal limits of the effective potential,
p → 1 and p → ∞. We show that the p → 1 limit allows
to reconstruct the canonical result for real field theory from
the p-adic effective potential and provide an explanation of
this fact. On the other hand, in the p → ∞ limit, the theory
exhibits very peculiar behavior with emerging logarithmic
terms in the effective potential, which has no analogue in
real theories.

1 Introduction

A possible relevance of non-Archimedean geometry and p-
adic number theory within different contexts of theoretical
physics is being discussed for more than 30 years. Originally
p-adic concepts have been introduced in string theory [1–6] as
a model of spacetime beyond the Planck distance, where one
should not expect the Archimedean axiom to hold true. The
concept of ultrametric spaces and the corresponding mathe-
matical machinery percolated into other fields of knowledge
from high-energy [7–9] to condensed matter physics [10–13]
and biology [14,15], since they were appreciated for being a
natural language to describe hierarchical systems [16,17].

Recently, interest in p-adic quantum field theory has
revived due to the possible relations between geometry of
non-Archimedean number fields and the holographic corre-
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spondence [18]. The p-adic version of the AdS/CFT duality
with bulk geometry represented by Bruhat–Tits tree has been
introduced [18–21]. Since the boundary quantum field the-
ory in this case is defined over a p-adic number field (either
Qp or its unramified extension Qpn ), further development
of non-Archimedean holographic duality requires a deeper
insight into the structure of p-adic field theory. Among other
things, the Wilson renormalization group has been studied
perturbatively, and critical exponents were computed in hier-
archical bosonic and fermionic models [22–24], for large-N
models [25], and for scalar field theory defined over mixed
(p-adic/real) number fields [26]. In this note, we attempt to
make a step further in this direction and construct a non-
Archimedean analogue of the Coleman–Weinberg effective
potential [27]. The Coleman–Weinberg potential is an impor-
tant and illustrative concept which allows to incorporate
quantum effects on the level of theory action, and provides
a natural language to speak of symmetry breaking in inter-
acting field theory [28]. The renormalization group flow is
convenient to represent in terms of the effective potential
as well. For O(N ) nonlinear σ -model defined over Qp, the
effective potential in the large-N limit has been computed in
[29]. In this regard, our analysis can be viewed as a φ4 ana-
logue of this study but for a more general case of unramified
field extension Qpn .

In Rn scalar field theory, one can derive the renormaliza-
tion group by computing scattering amplitudes or integrat-
ing out UV momentum shells in the Wilsonian approach.
In p-adic field theory, coordinates/momenta and wave func-
tions take values in different number fields, making certain
construction normally used to describe RG flows (e.g. the
Callan–Symanzik equation) tricky to define. This gives an
additional motivation to study the non-Archimedean effec-
tive potential.

A critical issue that one almost unavoidably encounters
when trying to construct a quantum field theory over p-adic
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numbers is the lack of well-defined space-time signature that
makes the very concept of Lorentzian or Euclidean symmetry
poorly defined. Pragmatically speaking, it means that Wick
rotation cannot be used to bypass difficulties emerging in
the Lorentzian case by performing analytical continuation to
Euclidean time. For non-Archimedean AdS2/CFT1 holog-
raphy, this problem has been addressed in [30], where a pos-
sible approach to defining spacelike and timelike geodesics
in the p-adic bulk via constructing quadratic extension
Qp

[√
τ
]

of the number field, and expanding the original
“spacelike” Bruhat–Tits tree with a set of branches that are
postulated to be timelike. However, to a large extent this
problem remains unresolved, especially outside of the holo-
graphic context, and one has to cope with it to compute
observables in p-adic quantum field theory.

The Coleman–Weinberg potential is usually computed in
Euclidean signature, while its Lorentzian treatment leads to
appearance of certain pathological structures such as log-
arithmic divergences and imaginary terms in the potential
already in field theories defined over Rn . Since in the p-adic
case, there is no way to do analytical continuation, we take the
measure of the path integral e−S rather than ei S as a starting
point of our consideration.

We compute one-loop effective potential of a real-valued
λφ4 scalar field theory with quadratic dispersion defined on
Qpn space, mainly focusing on the n = 1 (“p-adic quantum
mechanics” [16]), n = 2 and n = 4 cases. The quantum
corrections to the potential are given by integrals over Qpn

that can be expressed as infinite (divergent) series. We find
a tractable approximation that allows to evaluate them and,
after renormalization, obtain an explicit expression for the
effective potential. In all considered dimensions, the resulting
potentials have very similar structure to their real analogues.
Moreover, in the formal p → 1 limit, an exact matching
occurs. A very peculiar behavior is observed in the opposite,
p → ∞ limit, where the potential acquires logarithmic term
ln

(
1 + λφ2

b/2
)
. However, given the fact that this takes place

in any dimension including n = 1, which is suspicious even
in the rather exotic non-Archimedean setting, we think that
this could either be an artifact of the one-loop approximation
or should be cured with renormalization group transforma-
tion of the potential.

The paper has the following structure. In Sect. 2, we define
the model, obtain a formal expression for the Coleman–
Weinberg potential, and perform its renormalization for three
particular cases, n = 1, 2, 4. In Sect. 3, we define the formal
p → 1 limit, and use it to relate the p-adic effective poten-
tial to its real cousin. In Sect. 4, we consider the p → ∞
limit. In Sect. 5, an alternative approach to computing the
effective potential via the Euler–Maclaurin formula is pro-
posed, and its validity limits are discussed. Section 6 briefly
summarizes the obtained results. Appendix A contains defi-
nition of the unramified extension Qpn . Appendix B proves

an identity relating integrals over Qpn and Rn . Appendix C
is to remind the standard Coleman–Weinberg calculation in
real field theory.

2 Coleman–Weinberg potential in p-adic field theory

We shall focus on the real-valued scalar field theory defined
over the unramified extension Qpn of p-adic number field:

S =
∫

Qpn

dkφ̃(−k)(|k|s)φ̃(k) + λ

4!
∫

Qpn

dxφ(x)4, x ∈ Qpn

(1)

Here | . | = | . |pn = | . |p is the norm on Qpn , k is the p-adic
“momentum”, and φ̃ is the Fourier transform of φ:

φ(x) =
∫

Qpn

dkχ(k)φ̃(kx), (2)

where χ(x) = exp 2π i {x} is the additive character on
Qpn . Dispersion s corresponds to the Vladimirov derivative
“power” in the configuration space:

Dsφ(x) = 1

Γp(−s)

∫
dy

φ(y) − φ(x)

|y − x |1+s
. (3)

Our aim is to compute the one-loop effective potential for the
theory given by (1) with p, s and n fixed. Here n plays the
role of space-time “dimension” as explained in [18], so one
can think of the n = 1 case as of p-adic quantum mechan-
ics, and n = 4 corresponds to four-dimensional scalar field.
Since φ is real-valued, derivation of the effective potential in
general follows the strategy of calculating of the conventional
Coleman–Weinberg potential but with a different propagator:

G(k) = 1

|k|s . (4)

As usual, we split φ in the background field φb and the
dynamical field (see Appendix C for the outline of the con-
ventional calculation), and sum all one-loop diagrams having
2m background field external legs each. Assigning (−λφ2

b/2)

factor to each vertex and taking into account symmetry factor
1/2m, we write

ΔΓ (φb) = Vpn
∑

m

∫
1

2m

(
−λφ2

b

2|k|s
)m

dk

= −Vpn

2

∫
ln

(

1 + λφ2
b

2|k|s
)

dk, (5)
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where Vpn is the (infinite) normalization constant corre-
sponding to the volume ofQpn . Thus the one-loop correction
to the effective action is given by

ΔV = −ΔΓ (φb)

Vpn
= 1

2

∫

Qpn

dk log

(

1 + λφ2
b

2|k|s
)

. (6)

This is a direct analogue of the conventional expression for
the Coleman–Weinberg potential. We should make a remark
that here we used (−λφ2

b/2) vertex factor from the very
beginning instead of taking iλφ2

b/2 and performing analyt-
ical continuation to Euclidean signature later on. The rea-
son for doing this is that, in the non-Archimedean case, the
notion of space-time signature is not well-defined, and the
Wick rotation cannot be performed to eliminate the loga-
rithmic singularity and imaginary contributions at small |k|.
Thus we mimic the Euclidean signature by using a prescrip-
tion for the vertex that corresponds to real measure in the
path integral of the theory.

Since the integrand in (6) depends only on the Qpn norm,
one can use the formula (see (A.3)):

∫

Qpn

f (|x |)dx = (1 − p−n)

∞∑

i=−∞
pni f (pi ), (7)

which leads to the formal expression for one-loop correction
to the effective potential:

ΔV (φb) = 1

2
(1 − p−n)

∞∑

i=−∞
pni ln

(

1 + λφ2
b

2psi

)

. (8)

This series is the starting point of our analysis. In a general
case, it is divergent, so we have to regularize it by imposing
a finite-scale cut-off by analogy with the real case:

ΔV (α) = 1

2
(1 − p−n)

M∑

i=−∞
pni ln(1 + αp−si ), (9)

where α = λφ2
b/2. One can think of number M as of a

logarithm of the corresponding ultraviolet momentum scale
|k|UV = Λ = pM .

A more subtle feature of ΔV is that, as a function of back-
ground field φb, it contains a set of logarithmic singularities
at φ2

b = 2psi/λ points if λ < 0. These points are concen-
trated around φb = 0 and φb = +∞. Since we deal with
finite φb, only the divergences around φb = 0 matter. These
singularities arise only for tachyonic expression λ < 0, while
the stable case λ > 0 leads to non-singular expression.

To proceed further, we split sum (9) into two parts. For
that, we introduce index Iα as

Iα = [ln |α|/s ln p], (10)

where the brackets denote integer part. If i > Iα and
|α|p−si < 1, logarithm in (9) can be expanded as a con-
vergent Taylor series, ln(1 + x) = x − x2/2 − . . . For
i < Iα , we rewrite and expand the logarithm as ln(1 + x) =
ln(x) + ln(1 + 1/x) = ln(x) + 1/x − 1/(2x2) − . . .

Summing these two parts after expansion we obtain an
expression that is valid everywhere except for the aforemen-
tioned singular points α = pis :

Pn = (1 − p−n), (11)

2ΔV (α) = −Pn

M∑

i=Iα

pni
∞∑

l=1

(−α)l p−sli

l

+Pn

Iα−1∑

i=−∞
pni ln(αp−si ) − Pn

Iα−1∑

i=−∞
pni

∞∑

l=1

psli

l(−α)l

−Pn

∞∑

l=1

(−α)l (p(M+1)(n−sl) − pIα(n−sl))

l(pn−sl − 1)

+Pn

[

− pn(Iα−1)

p−n − 1
ln(α) − pn(Iα−2) (Iα − 1)pn − Iα

(1 − p−n)2 s ln p

]

−Pn

∞∑

l=1

pIα(n+sl)

l(−α)l (pn+sl − 1)
. (12)

If α > 0, the series converges and no issues arise. If α < 0,
the series in the first line of (12) diverges, – this will be cured
by the renormalization procedure.

This sum can be approximated by neglecting integer part
operation in Iα and taking Iα = ln |α|/s ln p, so that pIα =
|α| 1

s . We obtain:

2ΔV (α) = −(1 − p−n)

l0∑

l=1

(−α)lΛn−sl

l(1 − psl−n)

+p−n |α| ns ln(sign α) + p−n

1 − p−n |α| ns s ln p

+(1 − p−n)|α| ns
∞∑

l=1

(−sign α)l

l

(
1

pn−sl − 1
− 1

pn+sl − 1

)
. (13)

Here we introduced l0 = [n/s] to separate the terms that
diverge as Λ → ∞. If l0 = n/s, a logarithmic term emerges:

2ΔV (α) = −(1 − p−n)

l0−1∑

l=1

(−α)lΛn−sl

l(1 − psl−n)

−(1 − p−n)
(−α)

n
s

l0s ln p
ln

Λs

−α

+p−n|α| ns ln(sign α) + p−n

1 − p−n
|α| ns s ln p
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+(1 − p−n)|α| ns
∞∑

l=1,l �=l0

(−sign α)l

l

1

pn−sl − 1

−(1 − p−n)|α| ns
∞∑

l=1

(−sign α)l

l

1

pn+sl − 1
. (14)

The singular terms can be removed by means of the standard
renormalization protocol. For α > 0, we need to take care
only of the terms dependent on Λ. For α < 0, we also need
to remove the divergent series (the last sum in (14)). In both
cases, the renormalization conditions are:1

V (4)
φb

(φ0) = λ,

V
′′
φb

(0) = m2
R = 0, (15)

where we introduced additional scale φ0 to step away from
the logarithmic singularity.

Let us now perform the renormalization procedure for
three concrete choices of n and s.

2.1 Case n = 1 s = 2

Series (13) converges for positive λ and contains no terms
dependent on Λ since l0 = 0, so we can readily evaluate it
without the need to renormalize:

ΔV = 1

2

√ |λ|
2

|φb|
[

p−1

1 − p−1 2 ln p + (1 − p−1)

×
∞∑

l=1

(−1)l

l

(
1

p1−2l − 1
− 1

p1+2l − 1

)]

. (16)

Convergence of the latter sum follows from the Leibniz cri-
terion.

If λ < 0, we add a counterterm A|φb| to (13) and impose
conditions2 (15). Then the counterterm exactly cancels the
bare terms, and ΔV becomes trivial. This makes the cases
of λ > 0 and λ < 0 qualitatively different. If λ > 0, a term
∼ |φb| adds to the effective potential, while for λ < 0 the
effective potential does not receive any one-loop corrections.

2.2 Case n = 2 s = 2

To perform renormalization, we need to modify conditions
(15) by shifting the mass renormalization condition to scale
φ0 as well

V
′′
φb

(φ0) = 0 (17)

1 Note, that in the case n = 2, s = 2 the renormalization conditions
are slightly different, see Sect. 2.2
2 Although two renormalization conditions for one counterterm seem
like an overdefined problem, they can be consistently resolved.

Solving then equations on Aφ2
b and Bφ4

b counterterms, we
arrive at:

ΔV = −λφ4
b

4t2 + (1 − p−2)λφ2
b

2 log p

(
−1 + t2

24
+ log t2

4

)
,

t = φb/φ0. (18)

This flow is the most non-trivial one among considered cases.
Depending on the dimensionless parameter t , the effective
potential can take different forms with renormalized coupling
constantλR = λ

(
1 − 6/t2

)
and mass acquiring both positive

and negative values.

2.3 Case n = 4 s = 2

Adding counterterms Aφ2
b and Bφ4

b and solving (15), we
obtain renormalized one-loop correction to the effective
potential of the following form:

ΔV = λ2φ4
b

32 log p

(
1 − 1

p4

) (

log
φ2
b

φ2
0

− 25

6

)

. (19)

Interesting to note that the p-adic one-loop corrections to
the effective potential have structure very similar to that of
their Rn cousins. Moreover, as we will show in the next sec-
tion, the Archimedean case can be reproduced from the non-
Archimedean one in the formal limit of p → 1.

3 The limit of p → 1

One of important reasons why physical theories defined over
p-adic number fields attract attention is their possible con-
nections to real-domain theories. There are different ways to
relate Archimedean and non-Archimedean physical models.
The most canonical approach is via adelic formulas, when
observables in real theory are decomposed into products over
their p-adic analogues at all possible values of p [31,32].
Recently, a construction employing Berkovich spaces was
suggested to relate energy spectra of p-adic and real quantum
mechanics [33]. Not widely discussed but elegant approach is
based onto p → 1 limit [34–36]. To proceed along this line,
one first obtains an explicit p-dependent expression (e.g.,
some observable) in non-Archimedean theory and then takes
the formal limit p → 1 treating p as a real number. The
approach was taken in [35] to relate p-adic string theory to
conventional string field theory.

To rigorously justify this limit, or to even explain why it
provides a connection to real space theories, might require
quite some effort [36]. However, in our particular case the
reason why this limit could lead to meaningful results is rather
transparent. Quantum corrections to the effective potential in
p-adic field theory are given by integrals of the form (7). For
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that kind of expression, the following identity can be proven3

(see Appendix B):

lim
p→1

∫

Qpn

f (|x |)dx = nΓ (n/2)

2πn/2 ·
∫

Rn
f (|x |)dx, n > 1,

(20)

lim
p→1

∫

Qp

f (|x |)dx =
∫

R

f (|x |)dx, n = 1, (21)

where r.h.s. integral is exactly what defines corrections to
the effective potential in real space field theory modulo the
overall volume factor, see e.g. (C.10). This gives us an exact
relation between the effective potentials of p-adic and real
field theories for arbitrary s and n.

To illustrate this statement, we shall go through the three
particular cases. First of all, let us make a comment on the
validity of Eqs. (16)–(19). Those were derived from (12)
under assumption that [ln |α|/s ln p] 	 ln |α|/s ln p which
is valid at the points |α|p−si = 1, i ∈ Z. In the limit p → 1,
such points form a dense set, and approximation (13)–(14)
becomes exact, which means that we can just take p → 1
limit of (16)–(19).

From that we readily obtain that for n = 1, s = 2:

ΔV (1,2)
p→1 = 1

2
θ(α) lim

p→1

[
p−1

1 − p−1 |α| 1
2 2 ln p

+ (1 − p−1)|α| 1
2

∞∑

l=1

(−1)l

l

(
1

p1−2l − 1
− 1

p1+2l − 1

)⎤

⎦

=
⎛

⎝2|α| 1
2 + |α| 1

2

∞∑

l=1

4(−1)l

1 − 4l2

⎞

⎠ θ(α)

= 1

2
π |α| 1

2 θ(α) = 1

2
π

√ |λ|
2

|φb|θ(λ), (22)

where we introduced Heaviside θ -function to highlight that
the one-loop correction is trivial at λ < 0. For n = 2, s = 2
we get

t = φb/φ0,

ΔV (2,2)
p→1 = −λφ4

b

4t2 + λφ2
b

(
−1 + t2

24
+ log t2

4

)
. (23)

and for n = 4, s = 2 after p → 1 limit we have

ΔV (4,2)
p→1 = λ2φ4

b

8

(

log
φ2
b

φ2
0

− 25

6

)

. (24)

Computing the corresponding one-loop corrections in real
space field theory, for n = 1 and n = 4 we conclude:

ΔV (1,2)
R

= 1

4

√ |λ|
2

|φb| = 1

2π
ΔV (1,2)

p→1 ,

3 To the best of our knowledge, for n = 1 it was first derived in [34].

ΔV (4,2)
R

= λ2φ4
b

256π2

(

log
φ2
b

φ2
0

− 25

6

)

= 1

32π2 ΔV (4,2)
p→1 = 2π2

(2π)44Γ (2)
ΔV (4,2)

p→1 . (25)

This looks like a nice evidence supporting our claim. At the
same time, the n = 2 case is more subtle. Before renor-
malization, the real Coleman–Weinberg potentials perfectly
matches its p-adic cousin obtained by means of the Euler–
Maclaurin integral approximation (see Sect. 5 for details,
and Eq. (40) in particular):

ΔṼ (2,2)
R

= − λφ2
b

16π

(

1 + ln(
2Λ2

λφ2
b

) − ln(−1)

)

= 1

4π
ΔṼ (2,2)

p→1 = 2π

2(2π)2Γ (1)
ΔṼ (2,2)

p→1 , (26)

where we use tilde to stress out that those are potentials before
renormalization. After renormalization a mismatch occurs.
The reason is that in two dimensions, we have to impose
mass renormalization condition at some scale φ0 �= 0. This
leads us to appearance of ∼ 1/t2 term in the renormalized
potential which comes with different relative coefficients in
p-adic and in real field theories:

ΔV (2,2)
p→1 = −λφ4

b

4t2 + λφ2
b

(
−1 + t2

24
+ log t2

4

)
,

ΔV (2,2)
R

= −λφ4
b

4t2 + λφ2
b

4π

(
−1 + t2

24
+ log t2

4

)
. (27)

If we assume φb 
 φ0, this term becomes negligible, and
the matching restores.

4 p → ∞ limit

Another limit which is instructive to consider is p → ∞. It
seems to exhibit very different behavior from what one can
see for any fixed finite p. In this case, Iα = [ln |α|/s ln p] =
0, and only the first sum in (12) survives:

2ΔV (α) = −(1 − p−n)

∞∑

l=1

(−α)l(p(M+1)(n−sl) − 1)

l(pn−sl − 1)
(28)

As before, introducing l0 = [n/s] to separate UV-divergent
terms from the rest, we can write

∞∑

l=1

(−α)l

l

p(M+1)(n−sl) − 1

pn−sl − 1

	
l=l0∑

l=1

(−α)l

l
[pM(n−sl) − 1] − ln(1 + α). (29)

Note that in contrast with Sect. 2, here we restrict our consid-
erations to |α| = |λ|φ2

b/2 < 1. Restoring Λ = pM notation,
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for the one-loop correction we obtain:

2ΔV (φb) = −
l=l0∑

l=1

(−λφ2
b)

l

l2l
[Λn−sl − 1] + ln

(

1 + λφ2
b

2

)

.

(30)

If n = sl0, it rather acquires the form:

2ΔV (φb) = −
l=l0−1∑

l=1

(−λφ2
b)

l

l2l
[Λn−sl − 1]

− (−λφ2
b)

l0

l02l0

[
ln Λ

ln p
− 1

]
+ ln

(

1 + λφ2
b

2

)

.(31)

Now we shall consider the three cases of interest discussed
before.

If n = 1, s = 2, (30) contains no divergent terms, and in
the p → ∞ the effective potential reduces to

V (1,2)

eff = λ

4!φ
4
b + 1

2
ln

(

1 + λφ2
b

2

)

(32)

If n = 2, s = 2, there is a logarithmic term we need to
renormalize. In that case, we do not need to make a shift to
some φ0 scale, and renormalization (15) conditions can be
imposed at φb = 0. Adding Aφ2

b and Bφ4
b counterterms, we

obtain

V (2,2)

eff = λφ4
b

4!
(

1 + 3

2
λ

)
− λφ2

b

4
+ 1

2
ln

(

1 + λφ2
b

2

)

. (33)

If n = 4, s = 2, there are both logarithmic and Λ2 terms.
However, after renormalization we obtain exactly the same
result:

V (4,2)

eff = λφ4
b

4!
(

1 + 3

2
λ

)
− λφ2

b

4
+ 1

2
ln

(

1 + λφ2
b

2

)

. (34)

A peculiar feature of the p → ∞ limit is the logarithmic
term in the effective potential for all “space-time” dimen-
sions. It does not have an analogue in the conventional real
field theory, but does not lead to any unusual or pathological
behavior causing neither symmetry breaking nor singulari-
ties in the potential if λ > 0.

5 Euler–Maclaurin estimate of the effective potential

While we managed to compute the effective potential by
evaluating series (13)–(14), relying on the assumption that
[ln α/s ln p] 	 ln α/s ln p, it is instructive to discuss another

possible approach to do that. Naively, a sum of that kind can
be approximated by a continuous integral:

M∑

j=−∞
f ( j) 	

∫ M

−∞
f (x) dx . (35)

That would be possible if the Euler–Maclaurin formula for
infinitely differentiable functions was valid:

M∑

i=m

f (i) =
∫ M

m
f (x) dx + f (M) + f (m)

2

+
∞∑

k=1

B2k

(2k)! ( f
(2k−1)(M) − f (2k−1)(m)), (36)

and the residual term was small enough.
Mildly speaking, applicability of this formula in our case is

questionable. However, we can plainly compute the integral
estimation and make an attempt to relate the outcome of the
evaluation to the previously obtained results.

If n = 1, s = 2, the integral converges as M → ∞ for
λ > 0 (the other case becomes trivial after renormalization),
and we get:

ΔV = 1

2
(1 − p−1)

∫ +∞

−∞
px ln

(

1 + λφ2
b

2p2x

)

dx

= (1 − p−1)|φb|
√|λ|π

2
√

2 ln p
(37)

versus the result of series summation (16):

ΔV =
√|λ|
2
√

2
|φb|N (p), (38)

N (p) = p−1

1 − p−1 2 ln p + (1 − p−1)

×
∞∑

l=1

(−1)l

l

(
1

p1−2l − 1
− 1

p1+2l − 1

)
. (39)

There is a clear discrepancy between these two expressions
for large values of p since:

lim
p→∞ N (p) = ln 2,

lim
p→∞

π(1 − p−1)

ln p
= 0.

On the other hand, for small p the Euler–Maclaurin estimate
has surprisingly good accuracy. For example, for p = 7:

N (7) 	 1.387,

π(1 − 7−1)

ln 7
	 1.384.
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If n = 2, s = 2, the integral approximation gives:

ΔV = − (1 − p−2)λφ2
b

8 ln p

(

1 + ln(
2Λ2

λφ2
b

)

)

, (40)

which after renormalization with conditions V ′′(φ0) = 0,
V (4)(φ0) = λ, becomes

t = φb/φ0,

ΔV = −λφ4
b

4t2 + (1 − p−2)λφ2
b

2 log p

(
−1 + t2

24
+ log t2

4

)
.

(41)

Finally, for n = 4, s = 2:

ΔV = 1

2

(
1 − p−4

) ∫ M

−∞
p4x ln

(

1 + λφ2
b

2p2x

)

dx

= 1 − p−4

8 ln p

(
Λ4 ln

(

1 + λφ2
b

2Λ2

)

+ λφ2
b

2
Λ2 − λ2φ4

b
4

ln

(

1 + 2Λ2

λφ2
b

))

	 1 − p−4

8 ln p

(

λφ2
bΛ2 + λφ2

b
2

− λ2φ4
b

4

(

ln
2Λ2

−λφ2
b

))

, Λ → ∞
(42)

where we restored Λ = pM notation. Renormalization of
(42) with conditions (15) leads to

ΔV = λ2φ4
b

32 log p

(
1 − 1

p4

) (

log
φ2
b

φ2
0

− 25

6

)

, (43)

Contra to the n = 1 case, for n = 2 and n = 4, there is no
difference between the Euler–Maclaurin estimate and the dis-
creet sum. Technically this happens because the coefficients
in front of logarithmically divergent terms ln(2Λ2/λφ2

b) are
the same in sum (14) and in the Euler–Maclaurin estimate
(42). These terms define the form of renormalized potential,
while the terms that do not depend on Λ and the divergences
of higher order are eliminated by renormalization completely.
It can be shown that this kind of perfect matching between
the Euler–Maclaurin and series expressions for the effective
potential always takes place if n/s ∈ N.

6 Summary and discussion

We have studied one-loop effective potential in the real-
valued scalar field theory over unramified extension Qpn of
p-adic numbers. Typically, by computing the effective poten-
tial one can easily gain information on quantum behavior of
field theory, since it provides a transparent representation

of such concepts as symmetry breaking and renormalization
group flow.

In the conventional textbook case, the Feynman diagrams
contributing to the effective potential are usually computed in
Euclidean signature. In p-adic field theory, the Wick rotation
is not well defined, hence we have to change the measure
of the path integral, simulating Euclidean behavior of the
partition function.

For arbitrary fixed p, the effective potential is given by a
formal series that can be evaluated approximately. In all stud-
ied dimensions (n = 1, 2, 4), the analytical structure of the
potential is very similar to that in Archimedean theory, and
all the results regarding vacuum stability in conventional λφ4

theory hold true in the non-Archimedean case. Moreover, in
the p → 1 limit, the effective potential of real field theory can
be exactly reproduced from the p-adic one. At first glance,
this correspondence seems surprising, given the huge dif-
ference between real and p-adic geometries, and deserves a
more detailed discussion. First, an interesting analogy can be
drawn with deformations of quantum mechanics. As shown
in [37], in some cases, q-deformation of quantum mechanics
is related to p-adic quantum mechanics with p = q−1. It
can be possible that the observed similarity between real and
p-adic effective potentials indicates that the quantum field
theory over p-adic field can be interpreted as a deformation
of the Archimedean one. At the same time, it might well be
that the similarity fades away once higher-loop corrections
are taken into account. On the level of one loop, the Coleman–
Weinberg potential is given by effectively one-dimensional
integral (B.5) that can be matched with its real analogue. If
there are more than one momentum running in the loops,
the real/p-adic correspondence can be destroyed, and p-adic
theory starts qualitatively deviating from its Rn cousin. We
find this aspect interesting and important to investigate.

Another limit we have considered is p → ∞. In contrast
with the finite p and p → 1 cases, it leads to a totally different
vacuum structure than in the real field theory. An unusual
logarithmic term emerges that survives the renormalization
procedure. If λ < 0, the potential has a singular minimum
at φb = √

2/|λ|. However, there is a high chance that it is
an artifact of either one-loop approximation or the fact that
this limit is singular (i.e. cannot be smoothly derived from
finite-p effective potential expression).

Our study leaves a number of open questions. Hopefully,
some of them can be answered by computing the next-order
quantum corrections which could shed light on what the main
difference between p-adic and real field theories is. Apart
from that, it seems essential to proceed further along the line
of studying objects that can be potentially used to clarify the
RG flows structure in p-adic theories, where one has to deal
with scaling transformations in two different number fields.
We hope to address these issues in the future.
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Appendix A: Definition of Q pn space

In order to describe higher-dimensional structures in p-
adic mathematical physics, one has to construct a non-
Archimedean analogue of Rn space. A direct way to do that
would be to simply take an external product Qn

p of n copies
of p-adic field and equip it with a structure of vector space.
In many cases this would be sufficient. However, bearing
in mind possible applications to the AdS/CFT correspon-
dence, it is desirable to have a space that admits a natural
holographic interpretation. Qn

p is not a field per se, and thus
does not possess a structure of the Bruhat-Tits tree which
would play a role of dual bulk geometry.

This issue can be resolved by using instead of Qn
p unram-

ified extension of the p-adic number field Qpn of degree
[Qpn : Qp] = n. As a vector space, Qpn is isomorphic
to Qn

p. To be an unramified extension, it must obey the fol-
lowing requirement. If L and K are two fields, and L is an
extension of K , we can consider quotients of these fields by
their maximal ideals 
 = L/mL , k = K/mK . Then k is a
field extension of 
, and if its’ degree is equal to the degree
of L , so that [
 : k] = [L : K ], L is an unramified exten-
sion. Explicitly, Qpn can be obtained from Qp by adjoining
a primitive (pn − 1)-st root of unity [38].

We also need to equip Qpn with a norm that satisfies the
requirement of ultrametricity and becomes the standard p-
adic norm for n = 1. It is also handy to assume that the
norm takes values in integer powers of p, since it induces a
branching structure that can serve as a skeleton of the Bruhat-

Tits tree. The natural choice is:

|x | = |N (x)|1/n
p , (A.1)

where N (x) is a determinant of a linear map induced by
multiplication in Qpn : f (a) = xa, a ∈ Qpn , that can be seen
as a linear operator acting on Qn

p.
Integration over Qpn is defined in the following way. As

demonstrated in [25], integral over a constant norm shell in
Qpn is

∫

|x |=Λ

dx = Λn

ζ(n)
, ζ(n) = 1

1 − p−n
. (A.2)

Then for a function that depends only on the norm of p-adic
argument, f (x) = f (|x |):
∫

Qpn

f (|x |)dx =
∑

Λ

∫

|x |=Λ

f (Λ)dx

=
∑

Λ

f (Λ)Λn (
1 − p−n)

= (
1 − p−n)

∞∑

j=−∞
p jn f (p j ), (A.3)

given |p j m
q | = p− j (everywhere here norm (A.1) is

assumed).

Appendix B: The p → 1 limit in the integral formula

Here we show that for a general function that depends on
the norm of its argument f (|x |), the following identity holds
true:

lim
p→1

∫

Qpn

f (|x |)dx = n

Ωn
·
∫

Rn
f (|s|)ds, (B.4)

where Ωn is the surface area of an n-dimensional unit sphere
in real space. The norms on the l.h.s and the r.h.s of (B.4)
are taken with respect to Qpn and Rn correspondingly. As
we have shown in the previous section:

∫

Qpn

f (|x |)dx = (1 − p−n)

∞∑

j=−∞
pnj f (p j ). (B.5)

The sum above is very similar to notion of Jackson integral
in q-analysis, which is a q-deformation of integral over reals
and becomes usual integral in the limit of q → 1 [39].

Having a series like (B.5) at hand, one can view p as a
formal parameter and continue it from the set of prime num-
bers onto reals. This makes possible to treat p as a continuous
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variable and define the p → 1 limit. This limit leads to uncer-
tainty in (B.5): volume element (1−p−n) goes to zero and the
series itself becomes divergent as an infinite sum of identical
constants f (1). To resolve it, we shall rewrite the series as a
Darboux sum. We set p = 1 + δp, so that (1 − p−n) 	 nδp.
The sum (B.5) would then be a Darboux sum for some inte-
gral, if the summand function were defined on an equidistant
lattice. Rewriting p j as

p j = (1 + δp) j = e j ln(1+δp) = e jδp,

we obtain:

lim
p→1

(1 − p−n)

∞∑

j=−∞
pnj f (p j )

= lim
δp→0

⎡

⎣n
∞∑

j=−∞
enjδp f (e jδp)δp + o(δp)

⎤

⎦

= n
∫ +∞

−∞
enx f (ex )dx, (B.6)

where the summation goes over equally spaced points jδp,
which makes the limit to continuous variable x = jδp pos-
sible. After a change of variables k = ex , we arrive at (B.4).

Let us illustrate this formula with a simple example of
f (k) = ks . Then the followng integral
∫ 1

0
kn−1ksdk = 1

n + s
,

corresponds to the sum

(1 − p−n)

j=0∑

j=−∞
pnj ps j = 1 − p−n

1 − p−(n+s)
,

which in the p → 1 limit gives

lim
p→1

(1 − p−n)

j=0∑

j=−∞
pnj ps j

= lim
δp→0

1 − (1 + δp)−n

1 − (1 + δp)−(n+s)
= n

n + s
,

and

lim
p→1

(1 − p−n)

j=0∑

j=−∞
pnj ps j = n

∫ 1

0
kn−1ksdk, (B.7)

which is a particular case of (B.4).

Appendix C: Coleman–Weinberg potential in conven-
tional scalar field theory

Here we give a short review of the conventional calculation
of one-loop Coleman–Weinberg potential in massless scalar
field theory:

S = −
∫ (

φ(x)∂μ∂μφ(x) + V (φ(x))
)
dnx,

V (φ(x)) = λ

4!φ
4(x), x ∈ Rn . (C.8)

The prescription is to expand the field ϕ(x) near some sta-
tionary background configuration φb(x) as

φ(x) = φb(x) + ϕ(x)

where ϕ(x) is dynamical field fluctuations, and then derive
the quantum corrected effective action for φb by integrating
out the dynamical fluctuations. To do that, we expand the
action in the path integral up to the second order in ϕ:

exp(iΓ [φb])
= C(φb)

∫
Dϕ exp

(
i
∫

dnx

(
−1

2
φ�φ − 1

2
ϕ2V ′′(φb)

)
,

C(φb) = exp

(
i
∫

dnx

(
−1

2
φb�φb − V (φb)

))
, (C.9)

where Γ [φb] is the effective action. The path integral can
be evaluated by summing up all one-loop diagrams carry-
ing different number of φb external legs. Each one-loop dia-
gram with 2 j background field legs comes with a prefactor
(− i

2λφ2
b)

j and j propagators carrying the same momentum.
Thus one has to sum a series of contributions S j that have
the form

S j = 1

2 j

∫
dnk

(2π)n

(
α

k2 + iε

) j

,

where we introduced shorthand notation α = λφ2
b/2, and

the 1/(2 j) factor is included to account for symmetry of the
diagram. Summation of all diagrams gives

iΔΓ = VT
∫

dnk

(2π)n

∑

j=1

1

2n

(
α

k2 + iε

) j

= −VT
1

2

∫
dnk

(2π)n
ln

(
1 − α

(k2 + iε)

)
(C.10)

where V and T are divergent normalization constants result-
ing from volume and time integration. The effective potential
is then ΔV = −ΔΓ/VT . Performing the Wick rotation and
introducing UV cut-off Λ, we get

ΔV = 1

2

Ω

(2π)n

∫ Λ

0
dkEk

(n−1)
E log

(

1 + α

k2
E

)

, (C.11)

with Ω = Ωn = 2π
n
2 /Γ ( n2 ) for n > 1, and Ω = 1 for

n = 1.
If n = 1, the integral converges as Λ → ∞, and

ΔV =
√

λ|φb|
4
√

2
. (C.12)

For n = 4, after renormalization with (15) we arrive at
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ΔV = λ2φ4
b

256π2

(

log
φ2
b

φ2
0

− 25

6

)

. (C.13)

In the case of n = 2, one has to slightly modify the renor-
malization conditions and use (17), which leads to

ΔV = −λφ4
b

4t2 + λφ2
b

4π

(
−1 + t2

24
+ log t2

4

)
, t = φb/φ0

(C.14)
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