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Abstract Using a joint statistical analysis, we test a four-
dimensional FLRW model embedded in a five-dimensional
bulk based on the Nash-Greene embedding theorem. Per-
forming a Markov Chain Monte Carlo (MCMC) modelling,
we combine observational data sets as those of the recent
growth data, the best-fit Planck2018/ΛCDM parameters on
the Cosmic Microwave Background (CMB), the Baryon
Acoustic Oscillations (BAO) measurements, the Pantheon
Supernovae type Ia and the Hubble parameter data. From
linear Nash-Greene fluctuations of the metric, we show the
related perturbed equations in longitudinal Newtonian gauge
to obtain the evolution of growth matter. A mild alleviation
may be obtained from the degeneracies on the model parame-
ter analyzing theσ tension between the growth amplitude fac-
tor and the matter content in the plane (σ8-Ωm) on the obser-
vations from CMB and Large Scale Structure (LSS) probes.
The Akaike Information Criterion (AIC) is also applied and
we find a relative statistical consistence of the present model
with both ΛCDM and wCDM models lower than 1% of per-
centage difference at early times on the evolution of the Hub-
ble function H(z). We also apply the Om(z) diagnosis to dis-
tinguish the present model from ΛCDM and wCDM models.

1 Introduction

The true mechanism behind the accelerated phase of the uni-
verse still remains an open question. After more than 20
years since the very first evidences of the cosmic acceler-
ated expansion, one of the pivotal directions of investigation
is about to unravel whether the dark energy equation of state
(EoS), with the main fluid parameter w(z), is restricted to the
value w0 = −1, as suggested by observations [1], in confor-
mity with the very popular ΛCDM model in the context of
general relativity (GR), or if there exists any deviations from
that value leading to dynamical dark energy models. Even
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though its success, the ΛCDM model lacks of an underlying
physical understanding, since the Cosmological constant Λ

and the Cold dark matter (CDM) are problems of their own
nature [2–8].

The theoretical background of this paper relies on the pos-
sibility that the universe may be embedded in a larger space
and the dark energy problem may be explained as a geometric
outcome from the extrinsic curvature to amplify the gravi-
tational strength of Einstein’s gravity. Most of these extra
dimensional models have been Kaluza–Klein or/and string
inspired, such as, for instance, the Arkani–Hamed, Dvali and
Dimopolous (ADD) model [9], the Randall–Sundrum model
[10,11] and the Dvali–Gabadadze–Porrati model (DPG) [12]
commonly referred as braneworld models. Differently from
these models and variants, we investigate how the embedding
can be regarded as a prior mathematical structure well suited
for construction of a physical theory, keeping no relation
with brane or string proposals. Several authors have been
explored this possibility in many contexts [13–29]. More-
over, a cosmological model is proposed based on previous
works at background level [15,19,22,23] and in this paper we
proceed further to obtain the related cosmological perturbed
equations.

This paper aims at investigating the σ8 tension revealed by
the notorious cryptic discrepancy of the data inferred from
Planck CMB radiation probe and the Large Scale Structure
(LSS) observations with the ΛCDM model as a background,
and possible explanations may come from modified gravity
[30–36]. The σ8 denotes the r.m.s amplitude of matter density
at a scale of a radius R ∼ 8h.Mpc−1 within a enclosed mass
of a sphere.

We perform the Markov Chain Monte Carlo (MCMC)
sample technique with a modified version of the available
publicly code [37,38] written in MathematicaTM software
using the joint likelihood of kinematical probes as of the Cos-
mic Microwave Background (CMB) Planck 2018 [1] datasets
of TT,TE,EE+lowE on 68% interval of the related cosmolog-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-020-08441-6&domain=pdf
mailto:abecapistrano@gmail.com


898 Page 2 of 13 Eur. Phys. J. C (2020) 80 :898

ical parameters, the largest dataset Pantheon SnIa [39] with
redshift ranging from 0.01 < z < 2.3, the Hubble parame-
ter a function of redshift H(z) [40] and Baryonic Acoustic
Oscillations (BAO) from points of the joint surveys 6dFGS
[41], BOSS DR12 [42], SDSS DR7 MGS [43], eBOSS DR14
[44], BOSS DR12 Lyα forest [45] and BOSS DR11 Lyα for-
est [46]. A comparison with the ΛCDM and wCDM [47,48]
models is presented with analysis on the growth density evo-
lution and Om(z) diagnosis [49]. In addition, we apply the
Akaike Information Criterion [50] on the resulting contours
confidence regions. In the final section, we conclude with our
final remarks and prospects.

2 The theoretical framework

2.1 The D-dimensional equations

We start with a summary of the main elements of a gravita-
tional model based on the mathematical background of the
theory of dynamical embeddings [14–16]. The first mecha-
nism is defined by the gravitational action functional. Thus, in
the presence of confined matter fields on a four-dimensional
space with thickness l embedded in a D-dimensional ambient
space (bulk), we define

S = − 1

2κ2
D

∫ √|G |RdDx −
∫ √|G |L ∗

md
Dx , (1)

where κ2
D is the fundamental energy scale on the embedded

space, R denotes the Ricci scalar of the bulk and L ∗
m is the

confined matter lagrangian. The normal radii l are the small-
est values of the curvature radii obtained from the relation

det (gμν − lakμνa) = 0 . (2)

In a geometrical sense, the term la represents a displacement
of the embedded space along the extra-dimensions. The mat-
ter energy momentum tensor occupies a finite hypervolume
with constant radius l along the extra-dimensions. The vari-
ation of Einstein–Hilbert action in Eq. (1) with respect to the
bulk metric GAB leads to the Einstein equations for the bulk

RAB − 1

2
GAB = α�TAB , (3)

where α� = 8πG∗ is energy scale parameter and G∗ is the
bulk “gravitational constant”. The tensor TAB is the energy-
momentum tensor for the bulk [15,16,19]. To generate a
thick embedded space-time is important to perturb the related
background. It can be done using the confinement hypoth-
esis that depends only on the experimentally founded four-
dimensionality of the space-time [51–53], even though any

gauge theory can be mathematically constructed in a higher
dimensional space.

In order to obtain a more general theory based on embed-
dings to elaborate a physical model, Nash’s original embed-
ding theorem [54] used a flat D-dimensional Euclidean space,
later generalized with independent orthogonal perturbations
to any Riemannian manifold including non-positive signa-
tures by Greene [55]. This choice of perturbations facili-
tates to obtain a differentiable smoothness of the embedding
between the manifolds, which is a primary concern of Nash’s
theorem and satisfies the Einstein–Hilbert principle, where
the variation of the Ricci scalar is the minimum as possi-
ble. Accordingly, it guarantees that the embedded geometry
remains smooth (differentiable) after smooth (differentiable)
perturbations.

With all these concepts, let us consider a Riemannian
geometry V4 with a non-perturbed metric ḡμν being locally
and isometrically embedded in a D-dimensional Riemannian
geometry Vn . The embedded space-time V4 is endowed with
the local coordinates xμ = {x0, . . . , x3} whereas the extra-
dimensions in the bulk space can be defined with the coor-
dinates xa = {x4, . . . , xD−1} and D = 4 + n. Hence, the
bulk local coordinates can be denoted by the set {xμ, xa}.
All these definitions allow us to construct a differentiable
and regular map X : V4 → Vn satisfying the embedding
equations

X A
,μX

B
,ν GAB = ḡμν , (4)

X A
,μη̄B

a GAB = 0 , (5)

η̄A
a η̄B

b GAB = ḡab , (6)

where the set of X A(xμ, xa) : X A = {X 0 . . .X D−1}
denotes the non-perturbed embedding function coordinates,
the metric GAB denotes the metric components of VD in arbi-
trary coordinates and η̄A

a denotes a non-perturbed unit vector
field orthogonal to V4. Concerning notation, capital Latin
indices run from 1 to n. Small case Latin indices refer to
the extra dimension considered. All Greek indices refer to
the embedded space-time counting from 1 to 4. Those sets
of equations represent, respectively, the isometry condition
in Eq. (4), the orthogonality between the embedding coor-
dinates X and η̄ in Eq. (5), and also, the vector normaliza-
tion η̄A

a and ḡab = εaδab with εa = ±1 in which the signs
represent the signatures of the extra-dimensions. Hence, the
integration of the system of equations in Eqs. (4), (5) and (6)
assures a correct configuration of the embedding map X .

The non-perturbed extrinsic curvature k̄μν of V4 is, by
definition, the projection of the variation of η̄ onto the tangent
plane :

k̄μν = −X A
,μη̄B

,νGAB = X A
,μν η̄

BGAB , (7)

where the comma denotes the ordinary derivative.
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If one defines a geometric object ω̄ in V4, its Lie flow for
a small distance δy is given by Ω = Ω̄ + δy£η̄Ω̄ , where
£η̄ denotes the Lie derivative with respect to η̄. In partic-
ular, the Lie transport of the Gaussian veilbein {X A

μ , η̄A
a },

defined on V4 gives straightforwardly the perturbed coordi-
nate Z A(xμ, ya) := Z A such as

Z A
,μ = X A

,μ + δya £η̄X
A
,μ = X A

,μ + δya η̄A
a,μ , (8)

ηA
a = η̄A

a + δyb [η̄a, η̄b]A = η̄A
a . (9)

It is worth mentioning that Eq. (9) shows that the normal
vector ηA does not change under orthogonal perturbations.
However, from Eq. (7), we note that in general η,μ �= η̄,μ.
Hence, to describe the perturbed embedded geometry, we set
a perturbed coordinates Z A that are needed to satisfy the
embedding equations similar to Eqs. (4), (5) and (6) as

Z A
,μZ

B
,νGAB = gμν, Z A

,μηB
b GAB = gμb, ηA

a ηB
b ,GAB = gab ,

(10)

where gab = εaδab with εa = ±1.
If we take Eq. (10) and rewrite Eq. (5) as

gμb = Z A
,μηB

b GAB = δya Aμab . (11)

Then, Eq. (11) results from a generalization of the Gauss–
Weingarten equations

ηA
a,μ = Aμacg

cbηA
b − k̄μρa ḡ

ρνZ A
,ν , (12)

that leads to

Aμab = ηA
a,μηB

b GAB = η̄A
a,μη̄B

b GAB = Āμab . (13)

Likewise the unchanged normal vector in Eq. (9), it also
happens that the torsion vector, Aμab, does not change under
orthogonal perturbations. In geometric language, the pres-
ence of a torsion potential tilts the embedded family of sub-
manifolds with respect to the normal vector ηA

a . If the bulk
has certain killing vectors then Aμab transforms as a compo-
nent of gauge fields under the group of isometries of the bulk
[14,27,56]. It is worth noting that the gauge potential can
only be present if the dimension of the bulk space is equal or
greater than six (n ≥ 2) in accordance with Eq. (13) since the
torsion vector fields are antisymmetric under the exchange
of extra coordinate a and b. Thus, with the Eq. (10) and using
the definition from Eq. (7), one obtains the perturbed metric
and extrinsic curvature of the new geometry written as

gμν = ḡμν − 2yak̄μνa

+δyaδyb
[
ḡσρ k̄μσak̄νρb + gcd Aμca Aνdb

]
, (14)

and the related perturbed extrinsic curvature

kμνa = k̄μνa − δyb
(
gcd Aμca Aνdb + ḡσρ k̄μσak̄νρb

)
. (15)

Taking the derivative of Eq. (14) with respect to y coordinate,
one obtains Nash’s deformation condition

k̄μνa = −1

2

∂ ḡμν

∂ya
. (16)

The meaning of this expression is twofold. It can be under-
stood in a pictorial view under the basic theory of curves, i.e.,
one gets a congruence of curves (or orbits) orthogonal to the
embedded space V4. Moreover, the parameter y is time-like
or not, and it is irrelevant the sign of its signature. A simi-
lar expression was obtained years later in the context of the
ADM formulation by Choquet-Bruhat and York [57]. In fact,
the physical interpretation of Eq. (16) means that it localizes
the matter in the embedded space-time imposing on it a geo-
metrical confinement. In other words, it holds true for any
perturbations resulting from n-parameter families of embed-
ded submanifolds denoted by the set of ya coordinates, and
the matter remains confined to the resulting perturbed met-
ric that can bend and/or stretch without ripping the manifold
(embedded space-time), which may be a valuable feature for
a quantization process and cosmology [16].

In addition, the integrability conditions for equations in
Eq. (10) are given by the non-trivial components of the
Riemann tensor of the embedding space expressed in the
Gaussian frame {Z A

μ , ηA
a } known as the Gauss–Codazzi–

Ricci equations. This guarantees to reconstruct the embedded
geometry and to understand its properties from the dynam-
ics of the four-dimensional embedded space-time. Conse-
quently, we can define a Gaussian coordinate system in the
new perturbed coordinates {Z A

,μ, ηA
a } in the vicinity of V4

that allows to write the metric of the bulk in a general way
as

GAB =
(
gμν + gab Aμa Aνb Aμa

Aνb gab

)
, (17)

where the perturbed metric gμν is given by Eq. (14). The
expression in Eq. (17) is the metric of the bulk with at least
two extra-dimensions, i.e., D ≥ 6. This resembles the non-
Abelian Kaluza–Klein metric and the quantity Aμa plays the
role of the Yang–Mills potentials where Aμa = xb Aμab. We
emphasize that for just one extra-dimension, the torsion vec-
tor does not exist and for two extra-dimensions it turns into
the usual Maxwell field, which means that the non-Abelian
part of Aμa is lost in a six dimensional bulk. This means that
the resulting force is the ordinary electromagnetic one in the
case of two extra dimensions [17,18,27,28].

As proposed in Refs. [14–16,26,29], one obtains the
induced field covariant equations of motion taking Eq. (3) in
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the frame defined in Eq. (17) at background level. Thus, the
background of a four-dimensional observer in the embedded
space is set by the following equations

Ḡμν + Q̄μν = 8πGT̄μν , (18)

where the quantity T̄μν denotes the stress energy tensors for
ordinary intrinsic matter (including Yang–Mills fields). The
second equation involves relations with extrinsic terms k̄αβa

and Aμab

∇∗
ν k̄a − ∇∗

μk̄
μ
aν = 8πGT̄aν , (19)

where the term ∇∗
μk̄αβa denotes ∇∗

μk̄αβa := k̄αβa;μ −
Aμabk̄bαβ and the semicolon denotes the covariant derivative.
Moreover, the third equation is denoted as

R + k̄μνmk̄
μνm − k̄a k̄

a = −16πGηabT̄ab , (20)

where ηab = εaδab with εa = ±1. The quantities G,
T̄aν , T̄ab denote the induced gravitational Newton’s con-
stant, the stress energy tensors projections of the correspond-
ing energy-momentum tensor of the bulk TAB on the cross
and normal directions of the space-time, respectively. This
set of equations results from the integrability conditions of
the embedding given by the Gauss–Codazzi–Ricci equa-
tions. From the Nash-Greene theorem, the solutions of these
equations were obtained by a differentiable process [14–
16,19,21–26,28]. The first of the two equations are known,
respectively, by the gravi-tensor equation (a modified Ein-
stein’s equations by the appearance of the extrinsic curva-
ture) as in Eq. (18) and the gravi-vector equation as in Eq.
(19). In summary, they reflect the meaning of a dynamical
embedding: the pseudo-Riemann curvature of the embedding
space acts as a reference for the pseudo-Riemann curvature
of the embedded space-time. Moreover, the projection of the
Riemann tensor of the embedding space along the normal
direction is given by the tangent variation of the extrinsic cur-
vature as shown by Eq. (19) that is the trace of the Codazzi
equations composed by the extrinsic terms k̄αβa, Aμab. The
last equation is known as gravi-scalar equation and serves as
a constrain on the torsion vector fields Aμab.

The quantity Q̄μν is denoted by

Q̄μν = ḡcd
(
ḡρσ k̄μρck̄νσd − k̄μνd ḡ

αβ k̄αβc
)

−1

2

(
k̄λφck̄

λφ
d ḡαβ k̄αβd ḡγ δ k̄γ δc

)
ḡμν , (21)

is an independently conserved quantity in the sense of
Noether’s theorem with Qμν ;ν = 0. It means that this geo-
metric new term does not exchange gravitational energy with
ordinary matter. The conservation of Qμν also holds true for
perturbed quantities of gμν and kμνa .

2.2 The background cosmological model

To the present cosmological application, we consider a four-
dimensional metric embedded in a five-dimensional bulk to
make a proper comparison with the most common cosmo-
logical models in recent literature. In this framework, the set
of field equations is quite simplified. The torsion vector Aμab

does not exist in five-dimensions and Eq. (19) turns into a
homogeneous equation. Moreover, Eq. (20) provides only
a relation of consistence between Ricci scalar and extrinsic
scalar quantities (no a priori information is gained).

To obtain the embedded four-dimensional equations, one
can take Eq. (18) written in the Gaussian frame embedding
veilbein {X A

μ , ηA}. This reference frame is composed by
a regular and differentiable coordinate {X A

μ } and a unitary
normal vector {ηA}. Accordingly, one can obtain the set of
the embedded four-dimensional field equations

Rμν − 1

2
Rḡμν + Q̄μν = 8πGT̄μν , (22)

k̄ ρ

μ;ρ − h̄,μ = 0 , (23)

where the semi-colon denotes a covariant derivative. The T̄μν

tensor is the four-dimensional energy-momentum tensor of
a perfect fluid, expressed in co-moving coordinates as

T̄μν = ( p̄ + ρ̄)UμUν + p̄ ḡμν, Uμ = δ4
μ ,

whereUμ is the co-moving four-velocity. Moreover, the non-
perturbed deformation tensor Q̄μν is now written as

Q̄μν = ḡρσ k̄μρ k̄νσ − k̄μν h̄ − 1

2

(
K̄ 2 − h̄2

)
ḡμν , (24)

where we denote h̄ = ḡμν k̄μν that gives the definition of the
Gaussian mean curvature h̄2 by the product h̄2 = h̄.h̄. The
term K̄ 2 = k̄μν k̄μν denotes the related Gaussian curvature.
Straightforwardly, it follows that the conservation of Q̄μν

holds, i.e.,

Q̄μν ;ν = 0 . (25)

The related conservation equation for T̄μν is given by

ρ̄ + 3H (ρ̄ + p̄) = 0 , (26)

where ρ̄ and p̄ denote the non-perturbed matter density and
pressure, respectively. Moreover, we work with a spatially
Friedman–Lemaître–Robertson–Walker (FLRW) geometry
with the line element expressed in coordinates (r, θ, φ, t)
in such a way

ds2 = −dt2 + a2
[
dr2 + f 2

κ (r)
(
dθ2 + sin2 θdϕ2

)]
,

(27)
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where f (r)κ = sin r , r,sinh r . Since the FLRW geometry can
be locally embedded in five-dimensions, it can be regarded
as a four-dimensional hypersurface dynamically evolving in
a flat five-dimensional bulk whose Riemann tensor RABCD

is

RABCD = 0 , (28)

where GAB denotes the bulk metric components in arbitrary
coordinates. Hence, with a flat dimensional bulk, concerning
our cosmological applications, we are not considering the
appearance of the cosmological constant Λ.

In the following, we summarize the background results
obtained in previous works [15,19]. Using Eq. (27), one
obtains a solution for Eq. (23) that is given by

k̄i j = b

a2 ḡi j , i, j = 1, 2, 3, k̄44 = −1

ȧ

d

dt

b

a
,

where the extrinsic bending function b(t) = k11 is function
of time. The dot symbol denotes an ordinary time derivative.
This arbitrariness follows from the confinement of the four-
dimensional gauge fields, which produces the homogeneous
equation as shown in Eq. (23).

Denoting the usual Hubble parameter by H = ȧ/a and
the extrinsic parameter B = ḃ/b, one obtains

k̄i j = b

a2 ḡi j , k̄44 = − b

a2

(
B

H
− 1

)
, (29)

K̄ 2 = b2

a4

(
B2

H2 − 2
B

H
+ 4

)
, h̄ = b

a2

(
B

H
+ 2

)
, (30)

Q̄i j = b2

a4

(
2
B

H
− 1

)
ḡi j , Q̄44 = −3b2

a4 , (31)

Q̄ = −(K̄ 2 − h̄2) = 6b2

a4

B

H
, (32)

where in Eq. (31), we have denoted i, j = 1 . . . 3, with no
sum in indices. For the sake of notation, we denote the expan-
sion parameter as a(t) = a and the bending function as
b(t) = b.

Since the dynamics equations for the extrinsic curvature
are not complete in five-dimensions, motivated by the lack of
uniqueness of the function b(t), and being the extrinsic cur-
vature independent rank-2 field, one can derive the Einstein–
Gupta equations [19,58] in a form

Fμν = 0 , (33)

where they are defined as a copy (concerning its structure)
of the usual Riemannian geometry. Hence, once can define a
“f-Riemann tensor”

Fαβμν = ∂μΥανβ − ∂νΥαμβ + ΥαμλΥ
λ
νβ − ΥανλΥ

λ
μβ ,

Υμνσ = 1

2

(
∂μ fσν + ∂ν fσμ − ∂σ fμν

)
,

Υμν
λ = f λσ Υμνσ .

that were constructed from a “connection” associated with
kμν and

fμν = 2

K
kμν, and f μν = 2

K
kμν , (34)

in such a way that the normalization condition f μρ fρν = δ
μ
ν

holds.

2.3 The modified Friedmann equation

From the results of Eqs. (22), (23) and (25) by means of
calculating Qμ

μ,i = 0, the Friedmann equation modified by
the extrinsic curvature can be written as

(
ȧ

a

)2

= 8

3
πGρ̄ + α0a

2β0−4eγ ±(t) , (35)

where α0 denotes an integration constant originated from the
influence of the extrinsic curvature. We point out that when
α0 → 0, we obtain the standard result of GR. Concerning the
total energy ρ̄, we denote ρ̄ = ρmat + ρrad , which is com-
posed by the matter density ρmat and the radiation energy
density ρrad , respectively. The γ -exponent in the exponential
function in Eq. (35) is defined as γ ±(t) = ±√|4η0a4 − 3|∓√

3 arctan
(√

3
3

√|4η0a4 − 3|
)

and the relation of expansion

scale factor with redshift is given by a = 1
1+z . The param-

eter η0 results from the information gained from Eq. (33)
calculated in the spatially flat FLRW space-time given by
the metric in Eq. (27). By means of background cosmog-
raphy tests [22,23,25], it was shown that the parameter β0

tunes the magnitude of the deceleration parameter q(z) and
the parameter η0 adjusts the width of the transition phase red-
shift from a decelerating to accelerating phase. Moreover, we
can write Friedman equations as

H(z) = H0

√
Ωm(z) + Ωrad(z) + Ωext (z)e±γ (z) , (36)

where H(z) is the Hubble parameter in terms of redshift
z and H0 is the current value of the Hubble constant. The
matter density parameter is denoted by Ωm(z) = Ω0

m(1 +
z)3, Ωrad(z) = Ω0

rad(1 + z)4 with Ω0
rad = Ω0

mzeq and the
term Ωext (z) = Ω0

ext (1 + z)4−2β0 γ̃0 stands for the density
parameter associated with the extrinsic curvature and γ̃0 is
an integration constant. The upper script “0” indicates the
present value of any quantity. The equivalence number for
the expansion factor aeq given by

aeq = 1

1 + zeq
= 1

(1 + 2.5 × 104Ωmh2(Tcmb/2.7)−4)

(37)
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where zeq is the equivalence redshift. As a reference, we
adopt the value of the CMB temperature Tcmb = 2.7255K
and the dimensionless Hubble parameter h = 0.672.

The complete form for Hubble parameter as in Eq. (36)
has been investigated in a sequence of studies [19,21–23,25]
but at perturbation level, the Hubble function in Eq. (36) is
not continuous for any arbitrary redshift z or, equivalently,
for the expansion factor a. To obtain a stable solution, we
analytically expand H(a) by using a Mclaurin-Puiseux series
with η0 → 0 for an asymptotic limit a → 0 truncating

at second order, i.e, eγ (x(a)) ∼ 1 +
√

3
3 x(a)3/2 + O(x5/2).

Considering only the linear order, it gives roughly in terms
of redshift eγ (z) ∼ (z + 1)−4. The convergence of eγ (a) is
in compliance with the Walsh theorem on the convergence
of analytic approximations [59]. For a flat space, the current
“extrinsic contribution” Ω0

ext is given by the normalization
condition for redshift at z = 0 that results in

Ω0
ext = 2

η0

(
1 − Ω0

m − Ω0
rad

)
. (38)

Hence, we can write the dimensionless Hubble parameter
E(z) = H(z)

H0
as

E2(z) = Ω0
m(1 + z)3 + Ω0

rad(1 + z)4

+
(

1 − Ω0
m − Ω0

rad

)
(1 + z)−2β0 . (39)

To facilitate referencing, we call, for short, the proposed
model as β-model. We point out that when β0 = 0, the
expansion history are the same as that of the ΛCDM model,
i.e., H(z)β = H(z)ΛCDM .

3 Matter evolution equations in conformal Newtonian
gauge

In longitudinal conformal Newtonian gauge, the metric in
Eq. (27) is given by

ds2 = a2[(1 + 2Φ)dη2 − ((1 − 2Ψ )δi j dx
i dx j ] , (40)

where Φ = Φ(x, η) and Ψ = Ψ (x, η) denote the Newtonian
potential and the Newtonian curvature, respectively. The con-
formal time η is related with physical time as dt = a(η)dη.

The perturbed field equations of Eqs. (22) and (23) can be
written as

δGμν + δQμν = 8πGδTμν , (41)

δkμν;ρ = δkμρ;ν . (42)

To obtain the explicit form for perturbed field equations
in Eqs.(41) and (42), we need to determine both perturbed
metric δgμν and perturbed extrinsic curvature δkμν . Using

the main result of the Nash-Greene theorem [54,55], one can
use the relation

δgμν = −2k̄μνδy , (43)

where δy denotes an infinitesimal displacement of the extra
dimension y in the bulk space. Thus, the linear perturbations
of a new geometry gμν is given by gμν = ḡμν + δgμν that
can be written as

gμν = ḡμν − 2δyk̄μν , (44)

and the related perturbed extrinsic curvature

kμν = k̄μν − 2δy ḡσρ k̄μσ k̄νρ , (45)

where we can identify δkμν = ḡσρ k̄μσ k̄νρ . Using the Nash
relation δgμν = −2k̄μνδy, we obtain

δkμν = ḡσρ k̄μσ δgνρ . (46)

The perturbation of the deformation tensor Qμν can be
made from its background form in Eq. (24) and the resulting
kμν perturbations from Nash’s fluctuations in Eq. (46). Thus,
one obtains

δQμν = −3

2
(K̄ 2 − h̄2)δgμν . (47)

Likewise Eq. (25), the perturbed deformation tensor is inde-
pendently conserved in a sense that δQμν;ν = 0. It is worthy
noting that due to the Nash fluctuations in Eq. (44), we notice
that the Codazzi equations in Eq. (42) and the Einstein–Gupta
equations in Eq. (33) are invariant under the Nash perturba-
tions and also are confined to the background (in the sense
that they maintain their same background form). Then using
the background relations in Eqs. (29), (30), (31), and (32),
we can determine the components of δQμν

δQi
j = γ0a

2β0−2Ψ δij , (48)

δQi
4 = 0 , (49)

δQ4
4 = γ0a

2β0−2Φδ4
4 . (50)

where γ0 is a constant term that merges all integration con-
stants and also carries an extrinsic curvature constant from
integration of the bending function b(t) which means that if
γ0 is zero, the usual GR configuration is restored if all terms
originated from extrinsic curvature vanish accordingly.

For a perturbed fluid with pressure p and density ρ, one
can write the perturbed components of the related stress-
tensor

δT 4
4 = δρ , (51)

δT 4
i = 1

a
(ρ0 + p0)δu‖i , (52)
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δT i
j = −δp δij , (53)

where δu‖i denotes the tangent velocity potential. Hereon, the
quantities ρ0 and p0 denote the non-perturbed components
of density and pressure, respectively.

Moreover, we adopt the simplest condition for perturba-
tions Ψ = Φ and obtain the following set of equations in the
wave-number k-space of Fourier modes as

k2Φk + 3H
(
Φ

′
k + ΦkH

)
= −4πGa2δρk + γ0a

2β0Φk ,

(54)

(aΦk)
′ = −4πGa2(ρ0 + p0)θ , (55)

Φ
′′
k + 3H Φ ′

k + (H 2 + 2H ′)Φk − γ0a
2β0Φk

= 4πGa2c2
s δρk , (56)

where the conformal Hubble parameter is H ≡ aH , cs
denotes the sound speed and θ = ik jδu‖ j denotes the diver-
gence of fluid velocity in k-space. Hence, from Eqs.(54), (55)
and (56), one obtains the gravitational potential formula in
k-space:

Φ
′′
k + 3(1 + c2

s )H Φ ′
k +

[
k2c2

s + (1 + 3c2
s )H

2
]
Φk

= γ0a
2β0(1 + c2

s )Φk − 2H ′Φk . (57)

As a matter of consistence, we point out when γ0 → 0 in
Eq. (57), the standard GR correspondence is obtained. Thus,
one recovers the subhorizon approximation with k2 >> H 2

or k2 >> a2H2 and Eq. (57) turns the Newtonian formula
Φk ∼ δρk

k2 .
After a Fourier transform, we perform the definition of

the “contrast” matter density δm ≡ δρ
ρ0

. For a pressureless
matter and a null anisotropic matter stress, we use Eq. (54)
and obtain a relation of Φk and δm given by

k2Φk = −4πGef f a
2ρ0δm , (58)

where Gef f is the effective Newtonian constant and is given
by

Gef f (a, k) = G

1 − γ0
k2 a2β0

, (59)

where G is the Newtonian gravitational constant.
The corresponding equation of evolution of the contrast

matter density δm(η) in conformal longitudinal Newtonian
frame can be written as

δ′′
m + H δ′

m − 4πGef f a
2ρ0δm = 0 , (60)

where the prime symbols denote derivatives with respect to
conformal time η. And, in terms of the expansion factor a(t),

we obtain the contrast matter density δm(a) accordingly

δ̈m(a) +
(

3

a
+ Ḣ(a)

H(a)

)
δ̇m(a) − 3Ωm0Gef f /G

2(H2(a)/H2
0 )

δm(a) = 0 ,

(61)

where the dot symbols denote derivatives with respect to scale
factor a.

4 Observational constraints: analysis and results

4.1 Cosmological data

The methodology used to handle the data relies on the
Markov Chain Monte Carlo (MCMC) technique based on
the Metropolis-Hasting algorithm with a modified version
of the original available publicly MathematicaTM code from
refs. [37,38]. We apply our χ2-statistics to the joint likeli-
hood of the 1107 data points. We have 1048 points from the
Pantheon SNIa observations [39], 3 points from the CMB
Planck 2018 release [1] and 15 points from BAO surveys
[60]. Concerning specifically to BAO surveys, we point out
that the BAO points of [42] were augmented by the f σ8

points shown in Table 1 of [61] along with the full covariance
matrix [42]. Moreover, the most up-to-date H(z) compila-
tion is summarized in Table 1 from [40] resulting in 31 points
added to the analysis and also the available independent f σ8

values in Table 3 of Ref.[61] with 10 points of the growth-
rate data. Moreover, we used the background parameter vec-
tors for the β-model as {Ωm0,Ωb0h2, β0, h, σ8} and also for
the ΛCDM and wCDM models as {Ωm0,Ωb0h2,−1, h, σ8}
and {Ωm0,Ωb0h2, w, h, σ8}, respectively. Specifically, the
β-model priors were {(0.001, 1), (0.001, 0.08), (−0.3, 1),

(0.01, 0.5), (0.1, 1.8)}. To implement the MCMC chains, the
joint analysis is defined by the product of the particular like-
lihoods L for each data set

Ltot = LPantheon .LBAO .LCMB .LH(z).LGrowth , (62)

and the sum of individual χ2 to get the related total χ2

χ2
tot = χ2

Pantheon +χ2
BAO +χ2

CMB +χ2
H(z) +χ2

Growth . (63)

For the growth analysis, we use the σ8 parameter that mea-
sures the growth of r.m.s fluctuations on the scale of 8h−1Mpc
by defining the quantity

f σ8(a) ≡ f (a).σ8(a) , (64)

where f (a) = ln δ
ln a is the growth rate and the growth factor

δ(a). The data dependence from the fiducial cosmology and
another cosmological survey must be compatibilized. It can
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be done by rescaling the growth-rate data by the ratio r(z) of
the Hubble parameter H(z) and the angular distance dA(z)
by the relation

r(z) = H(z)dA(z)

H f (z)D f A(z)
, (65)

where the subscript “f ” corresponds to a quantity of fiducial
cosmology. Moreover, the angular distance dA(z) is defined
as

dA(z) = c

(1 + z)

∫ 0

z

1

H(z′)
dz′ . (66)

Likewise, the general regulation of the χ2 statistics is given
by

χ2(Ωm0, w, β0, σ8) = V iC−1
i j V j , (67)

where V i ≡ f σ8,i − r(zi ) f σ8(zi ,Ωm0, w, β0, σ8) denotes
a set of vectors that goes up to i th-datapoints at redshift
zi for each i = 1...N . The term N is the total number of
datapoints of a related collection of data and from theoretical
predictions.

For the CMB data, we used the Planck 2018 release data
[1] with χ2 statistics

χ2
CMB = XT

Planck2018C
−1
CMB XPlanck2018 , (68)

where the covariant matrix for the parameters for R, lA,Ωb0h2

is given by

XPlankc2018 =
⎛
⎝ R − 1.74451
lA − 301.76918
ωb − 0.022483

⎞
⎠ (69)

where ωb = Ωb0h2. The quantities R and lA are the shift
parameters defined as the scale distance and acoustic scale,
respectively, as

R =
√

Ωm0

c
dA(zCMB)(1 + zCMB) , (70)

lA = πdA(zCMB)(1 + zCMB)

rs(zCMB)
, (71)

where the angular distance dA is given by Eq. (66) and the
related redshift at recombination zcmb is given by

zCMB = 1048[1+0.00124(Ωb0h
2)−0.738][1+g1(Ωm0h

2)g2 ] ,

(72)

and the parameters (g1, g2) are defined as

g1 = 0.0783(Ωb0h2)−0.238

1 + 39.5(Ωb0h2)0.763 ; g2 = 0.560

1 + 21.1(Ωb0h2)1.81 .

(73)

The comoving sound horizon rs(z) is given by

rs(z) = c
∫ ∞

z

cs(z′)
H(z′)

dz′ , (74)

and the related sound speed cs

cs(z) = 1√
3(1 + R̄b/(1 + z))

, (75)

with R̄b = 31500Ωb0h2(TCMB/2.7K )−4. Moreover, the
inverse of the covariant matrix C−1

CMB for the parameters for
R, la,Ωb0h2 is given by C−1

CMB = σiσ jC , with σi = (0.093,
0.0051, 0.00016) for the normalized covariance matrix given
by

C = 10−8

⎛
⎝ 2556.7782 23212.222 −57.345815

23212.222 830122.02 −628.56261
−57.345815 −628.56261 2.5300094

⎞
⎠

(76)

The BAO datasets are summarized in Table 1 of ref. [61]
from the conjunction of probes on BOSS DR12 [42], SDSS
DR7 MGS [43], eBOSS DR14 [44], BOSS DR12 Lyα forest
[45] and BOSS DR11 Lyα forest [46]. The total correlated
BAO is given by

χ2
BAO = (dobs − dth)C

−1
BAO(dobs − dth)

T . (77)

where dobs denotes the observable distance and dth is theo-
retical distance, respectively. The full covariant matrixCBAO

can be found in [42].
For the Pantheon supernova type Ia data the theoretical

distance modulus μth(z) is given by

μth(z) = 5 log10(dL(z)) + μ0, (78)

where μ0 = 42.38 − 5 log10 h. The luminosity distance dL
related to Hubble expansion rate is given by

dL(z|s, μ0) = (1 + z)
∫ z

0

du

E(u|s) , (79)

where s denotes the model parameters. As a prior, we adopt
the density parameter value of visible baryonic matter Ωb0 =
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Table 1 A compilation of 31 datapoints of the Hubble function H(z) data used in the current analysis as shown in Table 2 of [40]. The relative
error points are denoted by the σH column.

Redshift H(z) σH Redshift H(z) σH

0.07 69 19.6 0.593 104.0 13.0

0.09 69.0 12.0 0.68 92.0 8.0

0.12 68.6 26.2 0.781 105.0 12.0

0.179 75.0 4.0 0.875 125.0 17.0

0.199 75.0 5.0 0.88 90.0 40.0

0.2 72.9 29.6 0.9 117.0 23.0

0.27 77.0 14.0 1.037 154.0 20.0

0.28 88.8 36.6 1.3 168.0 17.0

0.352 83.0 14.0 1.363 160.0 33.6

0.3802 83.0 13.5 1.43 177.0 18.0

0.4 95.0 17.0 1.53 140.0 14.0

0.4004 77.0 10.2 1.75 202.0 40.0

0.4247 87.1 11.2 1.965 186.5 50.4

0.44497 92.8 12.9

0.4783 80.9 9.0

0.480 97.0 62.0

Table 2 A summary of best-fit values of the main cosmological parameters calculated by using MCMC chains. The χ2
b f denotes the χ2 best-fit

values from MCMC chains of each individual model.

Model Ωm0 100Ωb0h2 h σ8 Model parameters χ2
b f

ΛCDM 0.313± 0.008 2.240± 0.015 0.677± 0.006 0.689± 0.047 w = −1 1087.08

wCDM 0.308± 0.009 2.240± 0.015 0.684± 0.009 0.697± 0.048 w = −1.04± 0.033 1086.37

β-model 0.316± 0.008 2.240± 0.014 0.675± 0.006 0.693± 0.047 β0=0.002± 0.009 1087.24

Table 3 A summary of the mean values of the main cosmological parameters calculated by using MCMC chains of each model.

Model Ωm0 100Ωb0h2 h σ8 Model parameters

ΛCDM 0.315± 0.008 2.240± 0.015 0.675± 0.006 0.688± 0.047 w = −1

wCDM 0.311± 0.012 2.240± 0.017 0.679± 0.011 0.696± 0.060 w = −1.01 ± 0.040

β-model 0.316± 0.008 2.240± 0.015 0.673± 0.006 0.689± 0.047 β0=0.022± 0.014

2.236/100h2. Accordingly, the χ2 statistics is

χ2
SnIa(s|μ0) =

n∑
i=1

[
μth,i (s, μ0|zi ) − μobs,i (zi )

]
σ 2

μi

, (80)

wheren = 1048 is the number of events of the Pantheon SNIa
data [39], the distance modulus obtained from observations
is denoted by μobs,i (zi ), and σμi is the total uncertainty of
the observational data.

4.2 Results and discussions

The results of the MCMC chains of each model were sum-
marized in Tables 2 and 3, respectively. Error estimates were

calculated from the Fisher Matrices around the related best-
fit and mean values for each model. In Fig. 1, we present
the obtained 3σ -contour plots for the β-model. The black
points mark the obtained mean values from MCMC chains
and the open circles connote the CMB Planck 2018 data of
TT,TE,EE+lowE on 68% intervals for a flatΛCDM model for
the related cosmological parameters (Table 2 of Ref.([1])).
The left panel presents a (σ8 − Ωm) contour that shows a
persistence of the tension at 3-σ in comparison with the 3-σ
tension from CMB Planck 2018 between low redshift data
H(z) and the Planck probe. This tension is mildly reduced
to 2-σ contour when only considering TE+lowE at 68% lim-
its. In the right panel, it is shown the (Ωb0h2 − Ωm) plane
that pinpoints a good accommodation of the baryonic lumi-
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Fig. 1 Contour regions at 1-σ ,
2-σ and 3-σ at 68.3%, 95.4%
and 99.7% C.L, respectively, of
the (σ8 − Ωm) and
(Ωb0h2 − Ωm) planes. The
black points represent the mean
values of the parameters in the
MCMC chains of the β-model.
The open circles represent the
Planck 2018 data of
TT,TE,EE+lowE on 68%
interval with
σ8 = 0.8120 ± 0.0073 and
Ωb0h2 = 0.02236 ± 0.00015.

nous matter parameter with the values from Planck 2018
data within the 1-σ contour. An important matter is shown
in Fig. 2 that exhibits the PDF behaviour of the main con-
sidered cosmological parameters for the β-model. The ver-
tical dashed lines indicate the values of CMB Planck 2018
of TT,TE,EE+lowE on 68% interval for (Ωm0,Ωb0h2, σ8).
The degeneracies found in the marginalization of β0 may
decrease the obtained 3-σ tension of σ8 to 2-σ contour.

In Fig. 3 is shown the behaviour of the growth-rate
evolution of the β-model (Eq. 61) in comparison with
the ΛCDM and wCDM models. The adopted values were
extracted from the mean values of the MCMC chains for
each model as shown in Table 3. In the left panel, it
is shown that the resulting curves from the three mod-
els are indistinguishable. On the other hand, a relative

comparison by ratio δm i/δmΛCDM (a) (where the index i
denotes i = β-model, wCDM), between the models is
shown the right panel that exhibits a clear difference on the
behaviour of growth-rate of ΛCDM as compared with β-
model and wCDM. Thus, δm β−model/δmΛCDM (a) (blue dot-
ted line) shows a higher growth as compared with ΛCDM
(black solid line) and the ratio δm wCDM/δmΛCDM (a).
Also, both curves of δm β−model/δmΛCDM (a) and the ratio
δm wCDM/δmΛCDM (a) start to deviate from ΛCDM around
a ∼ 0.2−0.3. This is corroborated in the following different
analysis.

In the Fig. 4 we obtain the percentage relative difference
between the aforementioned models in what concerns the
evolution of Hubble function. In the left panel, it shows in
linear scale that the percentage difference between the β-

Fig. 2 One-dimensional PDF likelihood of the main cosmological parameters for the β-model used in this study. The vertical dashed lines connote
the values of CMB Planck 2018 of TT,TE,EE+lowE on 68% interval for Ωm0,Ωb0h2, σ8. The last right panel also shows the degeneracies for the
β0 parameter.

Fig. 3 Numerical solutions of
the matter density evolution of
each model. The left panel
shows the comparison between
ΛCDM, wCDM and β-model
with the mean values of each
model calculated from the
MCMC chains as summarized
in Table 3. The right panel
shows a better visualization in
logarithm scale of the
comparison with these models
by the ratio δm i/δmΛCDM .
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model with ΛCDM and wCDM. The percentage difference
between β-model and wCDM reaches values lower than 1%
in early times and tends to close equivalence in present time.
In comparison with ΛCDM, the percentage difference is
lesser (around ∼ 0.2%) at early times but present a mild fluc-
tuation around a ∼ 0.2−0.3 and reaches a top a ∼ 0.6−0.8
with 0.3% of percentage difference. This fluctuation is clearer
in the central panel with the spike in the black solid curve due
to the degeneracies on the β0 parameter that leads to a mild
signature on the baryonic luminous matter. It is important
to point out that these differences may be amplified when
considering anisotropic matter stresses.

Moreover, to reinforce the phenomenological distances
between the models, we apply the Om(z) diagnosis [49] as a
null test, by using the formula

Om(z) = E(z)2 − 1

(1 + z)3 − 1
. (81)

The right panel shows in the black dashed line the same val-
ues for Om(z) for any redshift as expected for ΛCDM. The
blue and red solid lines indicate Om(z) values higher (β-
model) and lower (wCDM), respectively, like that of evolv-
ing dark energy models. The resulting Om(z) diagnosis is in
compliance with the results of the MCMC chains and former
H(z) percentage difference between the models exhibiting a
close similarity at early universe with a departure that begins
around a ∼ 0.2 − 0.3. We expect that a large percentage
difference may be obtained with higher orders of Mclaurin-
Puiseux series to provide a control on growth-rate density.

Another useful tool to analyse the constraining on the
parameters from MCMC chains for the model comparisons
refers to the level of statistical correlation between compet-
ing models. Adopting the errors being as Gaussian, we use
AIC systematic to classify the fit-to-data for small samples

Table 4 A summary of the obtained values of AIC for the studied
models. The ΛCDM model is adopted as a reference.

Model AIC ΔAIC Evidence against the model

ΛCDM 1095.12 0 Null

wCDM 1096.42 1.31 Weak

β-model 1097.29 2.18 Substantially weak

sizes [62,63]

AIC = χ2
b f + 2k + 2k(k + 1)

N − k − 1
, (82)

where χ2
b f is the best-fit χ2 of a model, k represents the

number of the free parameters and N is the number of the
data point in the adopted dataset. The difference |ΔAIC | =
AICmodel 2 − AICmodel 1 obeys the Jeffreys’ scale [64] that
measures the intensity of tension between two competing
models due to the lost information from the related fitting. In
general, the preferred model is that one with lesser values for
AIC. In comparison, higher values of AIC denote a higher
statistical distance and may indicate a statistically disfavor-
ing model. In Jeffreys’ scale for |ΔAIC ≤ 2| tells that the
models are statistically consistent with a certain good level of
empirical support. For 4 < ΔAIC < 7 indicates a positive
tension against the model with a higher value of AIC. For
|ΔAIC ≥ 10| defines a strong empirical evidence against a
model with a higher AIC. Accordingly, we obtained the AIC
and ΔAIC values shown in Table 4 that indicates some weak
evidence against β-model with a ΔAIC roughly ∼ 2. This
result reinforces the previous ones and leads to the conclu-
sion that the β-model is favored by its statistical consistency
with ΛCDM and wCDM models at present time with mild
fluctuations at perturbation level.

Fig. 4 The percentage relative difference %diff(Hi − Hj ) in linear (left panel) and logarithm (central panel) scales between the β-model, ΛCDM
and wCDM models for their mean values as shown in Table 3. In the right panel, it is also shown Om(z) diagnosis.
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5 Remarks

In this paper, we discussed the dark energy problem with a
proposal of a geometric model in a search of explanation of
some aspects of the accelerated expansion. By construction,
we used the Nash-Greene theorem to propose a geometric
model with a resulting modified Friedman equation from the
influence of the extrinsic curvature thought as a complement
to Einstein’s gravity, and we call, for short, β-model. From
background level, an asymptotic solution valid in the range
a = [0, 1] was obtained using a Mclaurin-Puiseux series of
the Hubble function H(z) of the model due to the fact the
parameter η0 → 0. At perturbation level, we obtained the
perturbed equations in the longitudinal Newtonian gauge.

In this paper, the β-model was compared with the well-
known models in the literature as the ΛCDM and wCDM
models. With a different motivation, the β-model proposes
a complement to the general concept of curvature adding
an extrinsic Gaussian curvature to the Riemannian geome-
try. This was made by the embedding of geometries with
the Nash-Greene theorem and as consequence we obtained a
modification of the geometrical part of induced (embedded)
Einstein equations. Hopefully, throughout this mechanism a
new information may be added to Einstein’s gravity making,
a priori, no necessity, e.g., of quintessence fields nor any
modification of cosmic fluids to model the missing energy.

As a test, from the MCMC analysis of each considered
models, we obtained the resulting contours for the β0 model
from the analysis on (σ8 − Ωm) plane that shows a persist-
ing 3-σ tension. In the (Ωb0h2) − Ωm plane, we obtained
well accommodated points as compared with the Planck
2018 data of TT,TE,EE+lowE values. In addition, the related
PDF 1-dimensional plot of the β-model parameters shows
the degeneracies on the β0 parameter and may improve the
aforementioned σ8 tension. Such possibility does not allow
to happen in the ΛCDM and wCDM usual contexts. From
numerical solutions on growth-rate and H(z) evolutions, it
was shown a certain compatibility between the β-model with
the ΛCDM and wCDM models with a percentage difference
lower than 1% at early times. This small difference appears to
be limited only to the second Maclaurin-Puiseux expansion
order. Moreover, we applied the AIC classifiers that favour
the ΛCDM model but with a statistical compatibility with
β-model with ΔAIC roughly ∼ 2. We reinforce that these
differences may be amplified when considering anisotropic
matter stresses to the β-model perturbed equations. As future
prospects, we intend to investigate how the β-model may
inflict changes in the Integrated Sachs–Wolfe (ISW) contri-
bution in comparison with the one as predicted to ΛCDM
with a lower peak of the second CMB peak. Also, to inves-
tigate the behaviour of the viscosity parameter and growth
index rate resulting from the β-model in a search of a more

realistic context. This process is in due course and will be
reported elsewhere.
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