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Abstract In this paper, we perform the polar analysis of
the spinorial fields, starting from the regular cases and up to
the singular cases: we will give for the first time the polar
form of the spinorial field equations for the singular cases
constituted by the flag-dipole spinor fields. Comments on
the role of further spinor sub-classes containing Majorana
and Weyl spinors will be sketched.

1 Introduction

One of the most important building blocks in modern physics
is the spinor field. Originally constituted by the Dirac field
alone, it has been later recognized that Dirac spinors are only
one part of a more varied population of spinorial fields. The
Dirac spinor can in fact be defined as the spinor whose scalar
and pseudo-scalar bi-linear quantities are not both identi-
cally equal to zero. However, this leaves the door open for
an altogether different type of spinors having both scalar
and pseudo-scalar bi-linear quantities vanishing identically,
called singular [1,2].

Singular spinor fields, or flag-dipole spinor fields, may
be unusual but they still have many important things to tell
[3–10]. In fact, these spinors can be further split into sub-
classes, obtained when the axial-vector bi-linear quantity,
that is the spin, is zero, and in this case they are called flagpole
spinors, or when the antisymmetric tensor bi-linear quantity,
that is the momentum, is zero, and in this case they are called
dipole spinors. The flagpole and dipole spinors are impor-
tant because they respectively contain Majorana and Weyl
spinors. In particular, Majorana spinors have a considerable
relevance due to their double-helicity structure as it was dis-
cussed in [11–19].

This full classification of spinor fields points toward the
fact that it may be less and less wise to focus on just one class
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of spinors forgetting about the rest. From a mathematical
point of view, one would have to investigate all such classes
in order to decide which ones can be taken as basis for the
physical description of the nature we know.

One mathematical tool that has been recently investigated
is the so-called polar form of spinor. fields. The polar form of
spinor fields is merely the way we have to write spinor fields
in a form in which each component is expressed as a mod-
ule times a complex phase while still maintaining manifest
covariance. After such a transformation, the spinor field and
all the associated quantities are written in terms of real tensors
only. What is most important is the fact that in this polar form,
spinor fields exhibit the true degrees of freedom separated
from all other components, with the possibility to introduce
new tensors describing the background interactions, and to
write the polar form of the field equations too [20–22].

The polar form of the spinor field equations in the regular
case has been found in [23,24], but for the singular case
we only had partial analyses [25,26]. In the present paper,
however, we intend to straighten this situation by providing
the full polar decomposition of the spinor field equations in
the singular case, the flag-dipole case.

We will also discuss sub-cases, highlighting how flagpole
and dipole spinorial classes are extinguished by the Majo-
rana and Weyl spinors respectively. We shall also comment,
however, that these types of spinors are much more singular
than previously thought since they do not possess any true
degree of freedom after all.

2 General spinors

As a start, we recall that γ a are the Clifford matrices, from
which

[
γ a, γ b

] = 4σ ab and 2iσ ab = εabcdπσ cd are the def-
initions of the σ ab and the π matrices. This last is as a norm
indicated by a gamma with an index five, but in the space-time
this index has no meaning, and therefore we will use a nota-
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tion with no index. The former instead are complex matrices
that verify the Lorentz algebra, and as a consequence they
are the generators of the complex Lorentz group. Because
parameters are point-dependent, this group will be a gauge
group. Objects ψ transforming in terms of the transforma-
tions of this group are called spinor fields. We can define an
adjoint spinor field according to ψ = ψ†γ 0 because in such
a way we have that

2ψσ abπψ = �ab (1)

2iψσ abψ = Mab (2)

ψγ aπψ = Sa (3)

ψγ aψ = Ua (4)

iψπψ = � (5)

ψψ = � (6)

are all objects that transform in terms of the real Lorentz
transformations. For these bi-linear quantities, we have

�ab = −1

2
εabi j Mi j (7)

Mab = 1

2
εabi j�i j (8)

and

Mab� − �ab� = U j Skε jkab (9)

Mab� + �ab� = U[a Sb] (10)

together with

1

2
MabM

ab = −1

2
�ab�

ab = �2 − �2 (11)

1

2
Mab�

ab = −2�� (12)

UaU
a = −SaS

a = �2 + �2 (13)

UaS
a = 0 (14)

which are called Fierz re-arrangement identities.
There is a point we have to make now, and it is about

the adjoint defined by the ψ = ψ†γ 0 above. This adjoint, or
dual, can be proven to be uniquely defined, up to a re-naming
of all the bi-linear spinor quantities, if we assume that the
dualization be done universally. However, one might drop
this assumption and require that dualization be performed in
a momentum-dependent way [5].

From the metric, we define the symmetric connection as
usual with �σ

αν from which, with the tetrads, we define the
spin connection �a

bπ = ξν
b ξaσ (�σ

νπ − ξσ
i ∂πξ iν) from which,

with the gauge potential, we define the spinor connection

�μ = 1

2
�ab

μ σ ab + iq AμI (15)

in general. With it we can define

∇μψ = ∂μψ + �μψ (16)

as the spinorial covariant derivative.
We notice that there is no torsion in such a derivative,

which is therefore not the most general possible. Neverthe-
less, we can recover full generality by adding torsion as an
axial-vector potential in the dynamics.

For this we will take the Dirac equation

iγ μ∇μψ − XWσ γ σ πψ − mψ = 0 (17)

where Wν is the torsion axial-vector. Multiplying these on
the left by all Clifford matrices I, π , γ i , γ iπ , σ i j and the
adjoint spinor field, then splitting real and imaginary parts,
we obtain the following expressions

i

2
(ψγ μ∇μψ − ∇μψγ μψ) − XWσ S

σ − m� = 0 (18)

∇μU
μ = 0 (19)

i

2
(ψγ μπ∇μψ − ∇μψγ μπψ) − XWσU

σ = 0 (20)

∇μS
μ − 2m� = 0

i

2
(ψ∇αψ − ∇αψψ) − 1

2
∇μM

μα (21)

−1

2
XWσ Mμνε

μνσα − mUα = 0 (22)

∇α� − 2(ψσμα∇μψ − ∇μψσμαψ)

+2X�Wα = 0 (23)

∇ν� − 2i(ψσμνπ∇μψ − ∇μψσμνπψ)

−2X�Wν + 2mSν = 0 (24)

(∇αψπψ − ψπ∇αψ) − 1

2
∇μMρσ ερσμα

+2XWμMμα = 0 (25)

∇μSρεμραν + i(ψγ [α∇ν]ψ − ∇[νψγ α]ψ)

+2XW[αSν] = 0 (26)

∇[αU ν] + iεανμρ(ψγ ρπ∇μψ − ∇μψγ ρπψ)

−2XWσUρεανσρ − 2mMαν = 0 (27)

which are known as Gordon-Madelung decompositions.
Again, it must be noted that not all spinors are defined

dynamically in terms of the Dirac equations, as dual-helicity
spinors might obey Klein–Gordon equations [14].

This development is general. Now is time to perform the
classification of spinor fields, and for that we will closely
follow the Lounesto classification, based on the bi-linear
spinor fields [1–10]. Since all the bi-linear spinors are ten-
sors, such a classification, based on vanishing these tensors,
is manifestly generally covariant. As a start, we split the cases
obtained either when at least one between � or � is not iden-
tically zero and giving rise to the regular spinors or when
� = � ≡ 0 giving rise the singular spinors in general.
Regular spinors are what contains the Dirac spinors (general
cases are class-I, while � = 0 defines the class-II and � = 0
defines the class-III). Singular spinors can be further split in
three classes, according to whether Mab and Sa are not iden-
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tically zero giving the flag-dipole spinors (class-IV), or by
having Sa ≡ 0 giving the flagpole spinors (class-V, also con-
taining Majorana spinors) while Mab ≡ 0 gives the dipole
spinors (class-VI, also containing Weyl spinors). Notice that
Ua = 0 results into ψ = 0 and so the Lounesto classification
is proven to be exhaustive.

We will split these cases in the following sub-sections.

2.1 Regular spinors

Regular spinors are those defined in general when at least
one of the two scalars is non-zero.

In this case (13) tells that Ua is time-like, so that we can
always perform up to three boosts to bring its spatial compo-
nents to vanish. Then, it is always possible to use the rotation
around the first and second axes to bring the space part of Sa

aligned with the third axis. And finally, it is always possible
to employ the last rotation to bring the spinor into the form

ψ = φe− i
2 βπ S

⎛

⎜⎜
⎝

1
0
1
0

⎞

⎟⎟
⎠ (28)

where S is a general spinor transformation and this is what
is called polar form of regular spinor fields. In polar form
regular spinor fields are such that

�ab = 2φ2(cos βu[asb] − sin βu j skε
jkab) (29)

Mab = 2φ2(cos βu j skε
jkab + sin βu[asb]) (30)

showing that the antisymmetric tensors are written in terms
of the vectors

Sa = 2φ2sa (31)

Ua = 2φ2ua (32)

and the scalars

� = 2φ2 sin β (33)

� = 2φ2 cos β (34)

with constraints uaua = −sasa = 1 and uasa = 0 showing
that the velocity vector ua and spin-axial vector sa are fixed
and thus the scalar φ and the pseudo-scalar β are the only
degrees of freedom of the system, being called module and
Yvon-Takabayashi angle respectively [21].

With regular spinor fields in polar form it is not difficult
to see that S is generally given with the structure

S∂μS−1 = i∂μσ I + 1

2
∂μθi jσ

i j (35)

where σ is a generic complex phase and θi j = −θ j i are
the six parameters of the Lorentz group, so that we define

∂μθi j − �i jμ ≡ Ri jμ (36)

∂μσ − q Aμ ≡ Pμ (37)

which can be proven to be real tensors and therefore they
are called tensorial connection and gauge-invariant vector
momentum. With them

∇μψ = (∇μ ln φI − i

2
∇μβπ − i PμI − 1

2
Ri jμσ i j )ψ (38)

from which

∇μsi = R jiμs
j (39)

∇μui = R jiμu
j (40)

are valid as general geometric identities [22].
Finally, by substituting the polar form of spinorial covari-

ant derivative of regular spinor fields into the Gordon decom-
positions and setting

1

2
εμανιR

ανι = Bμ (41)

R a
μa = Rμ (42)

one can isolate the pair of independent field equations

Bμ − 2P ιu[ιsμ] − 2XWμ + ∇μβ + 2sμm cos β = 0 (43)

Rμ − 2Pρuνsαεμρνα + 2sμm sin β + ∇μ ln φ2 = 0 (44)

specifying all derivatives of both degrees of freedom, and
as it is possible to see they imply (17), so that (43, 44) are
equivalent to the Dirac spinorial field equations [23].

All this for regular spinors is now very well established
so we proceed to do the same analysis for singular spinors.

2.2 Singular spinors: flag-dipoles

Singular spinors are defined by � = � = 0 identically and
their polar decomposition was first studied in [25,26], so here
we plan to perform a full analysis.

In this case (11, 12) tell that if Mab is written in terms of
M0K = EK and MI J = εI J K BK then they are such that
E2 = B2 and E · B = 0 and employing the same reasoning
used above we have that we can always boost and rotate them
so to bring B and E aligned respectively with the first and
second axis. Then, the spinor field is

ψ = 1√
2
(I cos α

2 − π sin α
2 )S

⎛

⎜⎜
⎝

1
0
0
1

⎞

⎟⎟
⎠ (45)

with S a general spin transformation and this is called polar
form of singular spinor fields. In polar form singular spinors
verify the relationships
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Sa = − sin αUa (46)

with UaUa = 0 as well as MabMab = εabi j MabMi j = 0
and MikUi = εikabMabUi = 0 and therefore showing that
the pseudo-scalar α is the only degree of freedom we have.

With singular spinor fields in polar form and again

S∂μS−1 = i∂μσ I + 1

2
∂μθi jσ

i j (47)

we can still define

∂μθi j − �i jμ ≡ Ri jμ (48)

∂μσ − q Aμ ≡ Pμ (49)

as above. With them, for singular spinor fields we have

∇μψ =
[
−1

2
(I tan α + π sec α)∇μα

−i PμI − 1

2
Ri jμσ i j

]
ψ (50)

from which

∇μUi = R jiμU
j (51)

∇μM
ab = −Mab tan α∇μα − Ra

kμM
kb + Rb

kμM
ka (52)

are valid as general geometric identities.
Finally, by substituting the polar form of spinorial covari-

ant derivative of singular spinor fields into the Gordon
decompositions, then plugging the bi-linear spinorial quan-
tities, and diagonalizing the results, we get

(εμρσν∇μα sec α − 2P [ρgσ ]ν)Mρσ = 0 (53)

Mρσ (gν[ρ∇σ ]α sec α

−2Pμεμρσν) + 4m sin αU ν = 0 (54)

[(2XW − B)σ εσμρν + R[μgρ]ν
+gν[μ∇ρ]α tan α]Mηζ ε

μρηζ = 0 (55)

[(2XW − B)σ εσμρν + R[μgρ]ν
+gν[μ∇ρ]α tan α]Mμρ + 4mUν = 0 (56)

specifying all derivatives of the degree of freedom, and as
it turns out they are equivalent to the initial Dirac spinorial
field equations, as we are now going to demonstrate.

To see that, it will be easier to go in the frame where S = I

in which the bi-linear spinor quantities reduce to

M02 = cos α M23 = cos α (57)

U 0 = 1 U 3 = −1 (58)

in a form that is important for the field equations.

In fact, the above equations in this frame become

P0 = P3 (59)

R0 = R3 (60)

(B − 2XW )0 = (B − 2XW )3 (61)

(2XW − B)1 − R2 + 2P1 sin α + 2m cos α = 0 (62)

(2XW − B)2 + R1 + 2P2 sin α = 0 (63)

∇0α = ∇3α (64)

∇1α + 2P2 cos α = 0 (65)

∇2α − 2P1 cos α + 2m sin α = 0 (66)

showing that we do specify all derivatives of the degree of
freedom, and in this form it is also possible to see that they
imply the Dirac spinorial field equations in polar form in that
very frame. Because a spinor field equation valid in a frame is
also valid in every frame then they imply the Dirac spinorial
field equations in polar form, and thus they imply the Dirac
spinorial field equations in general. Thus we can conclude
that they are totally equivalent to the initial Dirac spinorial
field equations.

It would still be interesting to know why in this case, albeit
the equivalence is obtained, nevertheless the polar form of
the field equations displays such a redundancy in the number
of apparently independent field equations.

Solutions to these equations have first been found in ref-
erences [27,28] without employing methods involving the
polar form, and it is our belief that with the polar form the
quest for further solutions might be simplified.

There are two especially singular cases we also have to
split, and we are going to do it in the following.

2.2.1 Zero-spin flag-dipoles: the flagpoles (Majorana)

A first special sub-class of flag-dipoles is the one for which
α = 0 and in this case the spinor field reduces to

ψ = 1√
2
S

⎛

⎜⎜
⎝

1
0
0
1

⎞

⎟⎟
⎠ (67)

with

Sa = 0 (68)

having UaUa = 0 as well as MabMab = εabi j MabMi j = 0
and MikUi = εikabMabUi = 0 so that γ 2ψ∗ = ηψ with η

a constant unitary phase added for generality and which is
the well known case of the Majorana spinorial field.
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Conversely, condition γ 2ψ∗ = ηψ with η = ∓i gives

(I cos
α

2
+ π sin

α

2
)

⎛

⎜⎜
⎝

1
0
0
1

⎞

⎟⎟
⎠ = ±(I cos

α

2
− π sin

α

2
)

⎛

⎜⎜
⎝

1
0
0
1

⎞

⎟⎟
⎠

(69)

then α = π + 2πn or α = 2πn so that because of (46) we
necessarily have the zero-spin flag-dipole spinorial field.

As a consequence, zero-spin flag-dipoles, also known as
flagpoles, form a class that is exhausted by the Majorana
spinorial field (up to a local Lorentz transformation).

It is however important to notice that there remains no
degree of freedom in this very specific situation.

2.2.2 Zero-momentum flag-dipoles: the dipoles (Weyl)

Another special sub-class of flag-dipoles is the one for which
α = ±π/2 so that the spinor field reduces to

ψ = 1
2 (I ∓ π)S

⎛

⎜⎜
⎝

1
0
0
1

⎞

⎟⎟
⎠ (70)

that is

ψ = S

⎛

⎜⎜
⎝

1
0
0
0

⎞

⎟⎟
⎠ or ψ = S

⎛

⎜⎜
⎝

0
0
0
1

⎞

⎟⎟
⎠ (71)

with

Sa = ∓Ua (72)

that is

Sa = −Ua or Sa = Ua (73)

for the left-handed and right-handed chiral part respectively,
with UaUa = 0 as well as Mab = 0 so that the spinor has
become an eigen-state of the chiral projectors and this is the
well known case of the pair of left-handed and right-handed
Weyl chiral spinorial fields.

Conversely, to select eigen-spinors of the chiral projectors
it is necessary that

1√
2

(
I cos

α

2
− π sin

α

2

)
= 1

2
(I ∓ π) (74)

then we have cos α
2 = 1/

√
2 and sin α

2 = ±1/
√

2 and finally
α = ±π/2 + 2πn so that because of (57) we must have the
zero-momentum flag-dipole spinor field in general cases.

As a consequence, zero-momentum flag-dipoles, also
known as dipoles, form a class that is exhausted by the Weyl
spinorial field (up to local Lorentz transformations).

It is however important to notice that there remains no
degree of freedom in this very specific situation too.

3 Physical considerations

3.1 Regular case

Having presented the general geometry of spinor fields, it
is our next goal to take into account physical considerations
involving them, and we will split the two cases of regular
versus singular for easier comparison, starting with the reg-
ular case. In this case, the spinor is characterized by two
degrees of freedom, Yvon-Takabayashi angle and module,
whose interpretation is straightforward.

The module is in fact the same module we have in non-
relativistic limit and it measures the density of the material
distribution. The Yvon-Takabayashi angle is a measure of the
phase difference between the two chiral parts of the spinor,
and therefore it encodes the information about the internal
dynamics of the spinor itself.

This can be seen by going into the rest-frame of the spinor
and noticing that even there it would still be impossible to
have the non-relativistic limit if β does not identically vanish.
So relativistic effects taking place in rest-frame can only be
due to internal motions. As such the Yvon-Takabayashi angle
is intrinsically relativistic.

Computing the energy of the spinor would result into

i

2
(ψγ ν∇μψ − ∇μψγ νψ) = 2φ2

[
sν∇μβ/2

+uν Pμ + 1

4
ερασνsρRασμ

]

(75)

in which we see that apart from the usual term uν Pμ there
are two terms involving the contribution of the spin, one
of which being proportional to the covariant gradient of the
Yvon-Takabayashi angle giving the contribution of the inter-
nal dynamics. Notice that all is weighted by the module,
which for square-integrable solutions reduces the energy den-
sity to zero at the infinity of the space.

It is interesting at this point to speculate about some pos-
sible special values that the Yvon-Takabayashi angle can
assume. In case the Yvon-Takabayashi angle is constant the
energy density loses all internal contributions.

This is to be expected. In fact β = nπ corresponds to
the Lounesto class-II, which is made up by spinors whose
two chiral parts are equal, therefore without relative motions.
Instead β = π/2+nπ gives the Lounesto class-III, made up
by spinors that can be thought as some possible superposition
of spinors in the pure-particle state β = 0 plus spinors in the
pure-antiparticle state β = π [29,30].
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Thus, Lounesto classes II and III constitute some sort of
singular sub-classes within the regular classes.

3.2 Singular case—diverging quantities

The singular case is not so straightforward, however.
It amounts to a single degree of freedom because the mod-

ule is boosted away with a boost along the direction of the
motion. Thus, we should expect that the algebraic conserved
quantities fail to behave as densities.

In fact, for example, the velocity does not go to zero at
infinity, and in fact it even remains constant, creating the
problem that once integrated over the volume it would give
rise to divergent conserved quantities. This problem might be
overcome by requiring that such a quantity be unobservable,
that is that such a quantity be not related to any physical
source. If this has to be the case, then, we are in the situation
in which we cannot define a coupling to electrodynamics, or
at least not as usual. Similar considerations apply also to the
spin as source of torsion.

Different is the case of the energy since it is differentially
related to the field. Computing it gives

i

2
(ψγ ν∇μψ − ∇μψγ νψ) = U νPμ + 1

4
ερασνSρRασμ

(76)

in which all derivatives of α have disappeared. The lack of
a module weighting the energy density might indicate that
even for the energy there may be convergence problems after
volume integration. Its trace

i

2
(ψγ μ∇μψ − ∇μψγ μψ) = −1

2
sin αUρBρ (77)

is the only non-trivial scalar that is related to a conserved
quantity which can be computed in this model.

Notice that in the Lounesto classes V and VI, flagpole and
dipole spinors reduce to have zero energy trace, in the former
case due to condition sin α = 0 and in the latter case because
Weyl spinors are necessarily massless.

4 Comparing models

So far we have presented the way to perform the spinor field
polar decomposition, splitting regular and singular cases. The
most dramatic difference involving these cases is that while
regular cases are characterized by a module that may go to
zero at infinity fast enough to make the integrals over the
volume of all conserved quantities converge, singular cases
do not have such a module on which to rely for integrals of
conserved quantities to converge.

As such it may appear that singular spinors might be used
to build a physically meaningful theory only if the theory
itself displays some dynamical restrictions.

Another interesting question is whether it is possible to
find some mapping that would convert a regular spinor into
a singular spinor in general circumstances [31,32].

We are going to leave this question to a following work.

5 Conclusion

In this paper, we have considered the Lounesto classification
of spinors, separating regular spinor fields from the singular
spinor fields characterized by � = � = 0 called flag-dipole
spinors. And these are further split into sub-classes, one in
which also Sa = 0 called flagpole and containing Majorana
spinors and one in which also Mab = 0 called dipole and
containing two Weyl chiral spinors.

Of all classes, we provided the polar decomposition of the
field equations. The polar form of all the field equations for
regular spinors was already given in [23] and here we have
given the polar form of the field equations for the singular
flag-dipole. We have also discussed flagpole and dipole cases,
showing how in polar form it is easy to see that the former
extinguishes the class of Majorana spinors while the latter
extinguishes the class of Weyl spinors, and proving that nei-
ther has true degrees of freedom, as it was already anticipated
in [25].

Opportunities for further development may be found in
exploiting the polar form of field equations (53, 54, 55, 56) to
find more general solutions. Other works may involve finding
a way to map regular into singular spinors.

The last of these two problems is already being investi-
gated for an up-coming work.
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