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Abstract We study the collision of two uncharged spinning
particles around an extreme Kerr-Sen black hole and calcu-
late the maximal efficiency of the energy extraction from the
Kerr-Sen black hole via super Penrose process. We consider
the collision of two massive particles as well as collision
of a massless particle with a massive particle. We calculate
the maximum efficiency for all the cases, and found that the
efficiency increases as the Kerr-Sen black hole’s parameter
(b = 1 − a) decreases.

1 Introduction

Penrose process, a mechanism to extract rotational energy
from black hole, was first discovered by Penrose in 1969 with
Kerr black hole [1]. The original version of Penrose process
happened in the ergosphere, an object splits into two parts
while it falls toward Kerr black hole. The one falls into the
black hole with negative energy, while the other escapes to
infinity. The energy of escaped part is larger than the original
one. Therefore, rotational energy can be extracted from Kerr
black hole. For such a process, Wald obtain the maximum
efficiency ηmax = (output energy)/(input energy) ≈
1.21 [2]. After that, Piran et al. consider a different type of
collision Penrose process which two particles collide inside
the ergosphere, and found to be have similar energy contract-
ing efficiency with the original Penrose process [3].

In 2009, Bañados, Silk and West(BSW) proposed that
a rotating black hole can act as accelerators for non-spin
particles [4]. They show that the collision center-of-mass
energy can be arbitrarily high for extremal Kerr black hole
[4]. Inspired by this work, some authors suggest to construct
Penrose process based on the BSW mechanism [5–7]. These
collision process are called as super Penrose process since it
usually has far more higher energy contraction efficiency. For
example, Schnittman obtain the maximal efficiency is about
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13.92 when a massless and a massive particle collide near
the horizon [7]. Along this line, the super Penrose process
have been extended to various black holes [8–11].

Recently, the BSW mechanism has been generalized to
include the spinning particles [12–22]. It has been shown
[23–27] that the trajectory of a spinning test particle is no
longer a geodesic and therefore is more close to the real
particle. The corresponding super Penrose process also have
been investigated in many cases [8–11]. It worth to note that
in [28], the authors obtain some general result on the energy
in the center of mass frame for BSW mechanism. However,
this paper is devoted to the efficiency of Penrose process that
was not studied in [28].

On the other hand, the Kerr-Sen black hole is a rotating and
charged solution of the low-energy effective field theory for
heterotic string theory [29]. After it proposed, many aspects
of Kerr-Sen solution has been investigated [30]. This black
hole solution characterized by three parameters, which are
mass M , angular momentum a, and charge Q(b = Q2/2M).
It reduces to the Kerr black hole when the parameter b = 0.
As a grand unified theory, string theory is the most promis-
ing candidate of unified all the interactions, to this sense, the
expected rotating and charged black hole solution would be
the Kerr-Sen black hole rather than the Kerr-Newman one.
Therefore in this paper we investigate the issue of the max-
imal energy contraction efficiency of the super Penrose pro-
cess for spin particles in Kerr-Sen background. We provide a
deep analysis of the super Penrose process for spinning par-
ticles and investigate the dependence of the maximal energy
contraction efficiency with the Kerr-Sen black hole’s param-
eter.

This paper is organized as follows: after an introduction,
we discuss the equations of motion for spinning particles in
Kerr-Sen black hole in Sect. 2. While in Sect. 3, we study the
super Penrose collision of spinning particles in extreme Kerr-
Sen background. This section is divided into three cases and
calculate the the maximal efficiency with different parame-
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ters of extreme Kerr-Sen black hole. The summary and con-
clusion was given in Sect. 4. Through out the paper, we adopt
the geometrical unit (c = G = 1).

2 Basic equation

2.1 Equations of motion of a spinning particle

The equations of motion for spin particle in the curved space-
time can be described by Mathission–Papapetrou–Dixon
(MPD) equations [23–25]

Dpa

Dτ
= −1

2
Ra

bcdv
bScd (2.1)

DSab

Dτ
= pavb − pbva (2.2)

where

va =
(

∂

∂τ

)a

(2.3)

is the tangent vector of the center-of-mass world line, D
Dτ

is
the covariant derivative along worldline, and pa = mua is
the canonical 4-momentum of the spinning particles which
satisfy

pa pa = −m2. (2.4)

Moreover Sab is the particle’s antisymmetric spin tensor, and
its square turns out to be the spin of the particle as follows,

SabSab = 2S2 = 2m2s2 (2.5)

where s and m are the spin and mass of the given particle
respectively. In the following, for the convenient of the cal-
culation, we add a supplementary conditions between Sab

and Pa as follows

Sab pa = 0 (2.6)

Furthermore, we also normalize the affine paramenter τ

through

uava = −1 (2.7)

A detailed calculation shows a relation between va and ua as

va − ua = SabRbcdeucSde

2(m2 + 1
4 RbcdeSbcSde)

(2.8)

The Eq. (2.8) means that the 4-velocity and 4-momentum are
not always parallel. In addition, we can obtain the conserved
quantities for spin particles with Killing vector fields ξa as
follows:

Qξ = paξa + 1

2
Sab∇aξb (2.9)

2.2 Conserved quantities in the Kerr-Sen black hole

Here we will consider the Kerr-Sen background and we can
calculate the conserved quantities explicitly. In the Boyer–
Lindquist coordinates (t, r, θ, φ), the Kerr-Sen metric can be
written as

ds2 = −� − a2 sin2 θ

	
dt2 + 	

�
dr2 + 	dθ2

+
 sin2(θ)

	
dφ2 − 4Mra sin2 θ

	
dtdφ (2.10)

where 	 = r(r+2b)+a2 cos2 θ , � = r(r+2b)−2Mr+a2,

 = (a2 + r(2b + r))2 − �a2 sin2 θ and b = Q2/2M .

The nonvanishing components of the inverse metric gμν

read

gtt = − 
	

a2 sin2(θ)(4M2r2 − 
) + �


grr = gθθ� = �

	

gφφ = 	 csc2(θ)(� csc2(θ) − a2)

a2(4M2r2 − 
) + �
 csc2(θ)

gtφ = − 2aMr	

a2 sin2(θ)
(
4M2r2 − 


) + �

(2.11)

In order to simplify the equation, we introduce a tetrad basis
as

e(0)
a =

√
�

	

(
dta − a sin2 θdφa

)

e(1)
a =

√
�

	
dra

e(2)
a = √

	dθa

e(3)
a = sin θ√

	

(
−adta + (r2 + 2br + a2)dφa

)
(2.12)

There exist two Killing vectors in the Kerr-Sen geometry:

ξa =
(

∂

∂t

)a

; φa =
(

∂

∂φ

)a

(2.13)

Then the conserved quantities in Kerr-Sen background asso-
ciated to the above two Killing vectors can be written as

E = −Qξ t =
√

�

	
p(0) + a sin θ√

	
p(3)

−M
(
r2 − a2 cos2 θ

)
	2 S(01) + 2aMr cos θ

	2 S(23)

(2.14)

J = Qξφ = a sin2 θ

√
�

	
p(0) +

(
a2 + r(2b + r)

)
sin θ√

	
p(3)

−a sin2 θ

	2

(
b(2Mr + 	) + 2Mr2 + (r − M)	

)
S(01)
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−a
√

�cosθ sin θ

	
S(02) + (b + r)

√
� sin θ

	
S13

+cos θ

	2

((
a2 + r(2b + r)

)2 − a2� sin2 θ

)
S(23)

(2.15)

where E and J are the energy and angular momentum of the
particle respectively.

2.3 Equations of motion on the equatorial plane

When the particle’s spin is aligned with the spin of the black
hole, the spin s(a) can be show as follow:

s(a) = − 1

2m
ε(a)

(b)(c)(d)u
(b)S(c)(d) (2.16)

equivalently

S(a)(b) = mε(a)(b)
(c)(d)u

(c)s(d) (2.17)

where ε(a)(b)(c)(d) is the completely antisymmetric tensorn,
with component ε(0)(1)(2)(3) = 1. Furthermore, we consider
that the particle was confined in the equatorial plane(θ =
π/2) [31]. The non-zero components of spin tensor read

S(0)(1) = −sp(3), S(0)(3) = sp(1), S(1)(3) = sp(0) (2.18)

Combining Eqs. (2.14), (2.15), and (2.18), the equations of
momentum can be written as

p(0) = 	

D1

(
− J

(
a	

√
	 + Mr2s

)

+E
(
	

√
	

(
a2 + r(2b + r)

)

+as	(b − M + r) + 2aMrs(b + r))
)

(2.19)

p(3) = 	2
√

�

D1

(
J
√

	 − E
(
s(b + r) + a

√
	

))
(2.20)

where

D1 = aMs
√

�	
(

2br + r2 − 	
)

+r
√

�
(
	2(2b + r) − Mrs2(b + r)

)
(2.21)

there are a normalization condition of the 4-momentum as
[7]

p(a) p(a) = k (2.22)

where k = −m2 for the massive and k = 0 for massless
particles. As for massive particles, we defined a specific 4-
momentum u(a), by u(a) = p(a)/m. Hence, with Eq. (2.22)
in hand, for the massive particles, we have

u(1) = σ
√

(u(0))2 − (u(3))2 − 1 (2.23)

Here σ = ±1 denote the outgoing and ingoing motions
respectively. Moreover, combining Eqs. (2.8), (2.18) and
(2.10), the expressions of the 4-velocity read

v(0) = 1

D2

(
u(0)(F1 + fv1) + u(3)F2

)
(2.24)

v(1) = 1

D2
u(1)F1 (2.25)

v(3) = 1

D2

(
u(3)(F1 + fv2) − u(0)F2

)
(2.26)

where

fv1 = b2s2�; fv2 = s2(Mr2(b + 3r) − a2b2); (2.27)

F1 = r2(r(2b + r)3 − M(b + r)s2);
F2 = ab2

√
�s2; (2.28)

D2 = r6 + r2
(

− bMs2
(
(u(3))2 + 1

)
+ 6br3

−Mrs2
(

3(u(3))2 + 1
) )

+ 2b3
(

4r3 + rs2(u(0))2
)

+b2
(
as2

(
a

(
(u(0))2 + (u(3))2

)
+ 2

√
�u(0)u(3)

)

−2Mrs2(u(0))2 + 12r4 + r2s2(u(0))2
)

(2.29)

By employing the tetrad basis (2.12), 4-velocity can be
rewritten as

dt

dτ
=

(
a2 + 	

)
v(0) + a

√
�v(3)

√
�	

(2.30)

dr

dτ
=

√
�v(1)

√
	

(2.31)

dϕ

dτ
= av(0) + √

�v(3)

√
�	

(2.32)

By plugging (2.25) to Eq. (2.31), the radial equation of
motion for spin particle gives rise to

dr

dτ
= F2

√
�

D2
√

	
u(1) (2.33)

In order to facilitate the numerical calculation and without
loss generality, we simply set the variables to the dimension-
less variables as

Ẽ = E

m
, J̃ = J

mM
, s̃ = s

M
, t̃ = t

M
,

r̃ = r

M
, ã = a

M
, Q̃ = Q

M
, τ̃ = τ

M
(2.34)

This is equivalent to discuss the energy and other quantity
with unity mass. In the following, we omit the f̃or simplicity.
For example, E in the following text actually means Ẽ .
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Fig. 1 a The condition of the spin s and the energy E that the particles can reach the event horizon for different value of b. b The condition of the
spin s and the ξ that the particles can fall into the horizon for different value of b

2.4 Constraints on the orbits

In this part, we devoted to find the admissible trajectory of
the spin particle which can approach to the horizon rH =√

(1 − b)2 − a2 − b+ 1, this means that the equation (2.33)
must be have real solutions. Combining this fact with the Eq.
(2.23) gives us

(u(0))2 − (u(3))2 − 1 ≥ 0 (2.35)

when r ≥ rH . By plugging Eqs. (2.19) and (2.20) into the
above equation, we get a constraint on the orbits

E2
(

	2
(
	3/2

(
a2 − aBr + r(2b + r)

)

+rs(2a(b + r) − Brr) + as	(b − 1 + r))2

−	4
(
(a − Br )

√
�	 + √

�s(b + r)
)2

)
≥ D2

1 (2.36)

where Br = J/E andD1 is given at Eq. (2.21). For the orbits
which can reach the horizon, note that � and D1 vanished at
the horizon(r = rH ), Eq. (2.36) gives a critical value of Br

Bcr = −a2rH (2b + rH )2 − as
√
rH (2b + rH )((b + rH )(2b + rH ) + rH ) − r2

H (2b + rH )3

−arH (2b + rH )2 − srH
√
rH (2b + rH )

(2.37)

Hence the condition that the orbit can reach the horizon
equal to Br ≤ Bcr . On the other hand, we know that for a
massive particle, the 4-velocity along the admissible trajec-
tory must be timelike as

v(a)v
(a) = −(v(0))2 + (v(1))2 + (v(3))2 < 0 (2.38)

Along the same line of [10], the above timelike condition is
equivalent to the following constraint

UE2 < Ca2r2F1
2 (2.39)

where Ca = r(2b+ r)3 − s2(b+ r), F1 is at Eq. (2.28) , and
the detailed expression for U can be found in APPENDIX.

Since we consider the maximal energy contraction effi-
ciency from black hole, in the following we only focus on
the extreme Kerr-Sen black hole(b = 1 − a). In this situa-
tion, if one of the collision particle possess the critical angular
momentum, it is easy to see that Bcr = 2 from Eq. (2.37).
Then from Eq. (2.39), we have

E2 <

(
(b − 1)(b + 1)3 + s2

)4

(b − 1)(b + 1)4(b + 3)s2
(
(b + 1)

√
1 − b2 − s

)2 (
(b(b + 2) − 1)s2 + 2(b − 1)(b + 1)3

) (2.40)

which gives us a constraint on energy E for different values
of spin s and b and is showed in the Fig. 1a. The figure shows
that when b increase, the admissible range of spin s shrinks
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Fig. 2 The maximal and minimum value of spin s of the particles in
the extreme case for different values of b as well as its comparison with
sc

for a given energy E . If the particle falling from infinity, that
is E ≥ 1, combining this fact with Eq. (2.40), the spin s will
be restricted to smin < s < smax for a given value of b. For
example, when b = 0.1, we can obtain smin ≈ −0.285 and
smax ≈ 0.471. More information of smin and smax for dif-
ferent value of b can be found in Fig. 2. Moreover, it worth
to note that, the authors of Ref. [28] point out that when the

particle process critical spin s = −sc = −a2
( 2
a − 1

) 3
2 , the

timelike condition is violated. We show in Fig. 2, our admis-
sible spin s corresponding to the maximum of efficiency is
always bigger than critical value (s > −sc), and therefore
the timelike condition is satisfied in our case.

If the particle’s angular momentum is deviate from critical
value, we set Br = 2(1+ ξ) with ξ being a negative number.

From Eq. (2.39), the energy E now is a function of the s, b
and ξ and is showed as the Fig. 1b. This figure shows that the
allowed range of ξ increase when b increases.

We assume the particles are freely falling from infinity.
If Br > Brc, such a particle falling from infinity will find a
turning point away from horizon, and then bounce back to
infinity. So if Br = Brc+δ(δ → 0+), the turning point of the
particle can very close to the horizon. Then, these particles
will moving outward. Therefore this situation should also
need to be taken into account.

3 Collision of spinning particles

In this section, we consider the collision of two spin particles
that are freely falling from infinity, and find the formula of the

efficiency of the energy extraction from the extreme Kerr-Sen
black hole.

We denotes that the 4-momentum of particle 1 and particle
2 are p1

μ and p2
μ. Our picture is the following: The particles

collide outside the horizon. After collision, particle 3, whose
4-momenta is p3

μ, will move to infinity, while the particle
4 with p4

μ falls into the Kerr-Sen black hole. We assume
that the sum of initial spins and 4-momenta are conserved
throughout the collision process. That is,

Sμν
1 + Sμν

2 = Sμν
3 + Sμν

4 (3.1)

pμ
1 + pμ

2 = pμ
3 + pμ

4 (3.2)

Since the Kerr-Sen spacetime exists two Killing vectors, con-
tracting these two Killing vector with the above equation
gives the conservation of the energy E and angular momen-
tum J as follows

E1 + E2 = E3 + E4 (3.3)

J1 + J2 = J3 + J4 (3.4)

From the Eqs. (3.1) and (3.2), we can also obtain the con-
servation of particle’s spin and the radial components of 4-
momentum throughout the collision

m1s1 + m2s2 = m3s3 + m4s4 (3.5)

p(1)
1 + p(1)

2 = p(1)
3 + p(1)

4 (3.6)

Now we assume that particle 1 and particle 2 collide near
the horizon of extreme Kerr-Sen black hole, the radial posi-
tion of collision point rc is very close to extreme Kerr-Sen
black hole’s horizon rH (rH = a = 1 − b), so that we can
assume (rc = a/(1 − ε)) with ε → 0+. Then, we expand
the particles’ radial 4-momentum in terms of ε as follows:

p(1) = σ
(b + 1)

√
2
√

1 − b2(b + 1)s + (1 − b)(b + 1)3 + s2 |J − 2E |
ε
(
(1 − b)(b + 1)3 − s2

) + O(ε0) (3.7)

In the following analysis, without loss of generality, along
the same line of [10], we doing calculation in case that particle
1 is critical (J1 = 2E1), while particle 3 is near-critical(J3 =
2E3 + O(ε)) and particle 2 is non-critical(J2 < 2E2) [10].

Then the total angular momentum of the particle can relate
to the energy as follows:

J1 = 2E1 (3.8)

J3 = 2E3

(
1 + α3ε + β3ε

2 + · · ·
)

(3.9)

where α3 and β3 are expansion parameters of O
(
ε0

)
.

For particle 2, since it is non-critical, we assume that:

J2 = 2E2 (1 + ξ) (3.10)

where ξ < 0 and ξ = O(ε0)
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From the conservation law (3.3) and (3.4), we get the fol-
lowing equations

E4 = E1 + E2 − E3; J4 = J1 + J2 − J3; (3.11)

which give us:

J4 = 2E4

(
1 + E2

E4
ξ + · · ·

)
(3.12)

Since we consider the collision of the particle 1 and par-
ticle 2, the particle 2 must be ingoing (σ2 = −1) because
the particle 2 is noncritical [10]. Combine Eq. (3.7) with the
conservation of 4-momentum (3.6), we can get the equation
as follows:

|J2 − 2E2|
(

σ4
√Ca(s4, b) + Cb(s4, b)

Ca(s4, b)

−σ2
√Ca(s2, b) + Cb(s2, b)

Ca(s2, b)

)
= O(ε1) (3.13)

where Ca(s, b) = (1 − b)(1 + b)3 − s2 is the critical
case(rH = 1 − b) of the Ca in Eq. (2.39) and Cb(s, b) =
2(b + 1)

√
1 − b2s + 2s2. From Eq. (3.13), we find that

σ4 = σ2 and s4 = s2. Then Eq. (3.5) further forces us to
impose s3 = s1.

In the following section, we will consider three different
types of collision. The first case is the collision of two mas-
sive particles (MMM). The second type is the collision of
one massless particle with another massive particle, which is
called as compton scattering (PMP) [10] and third type is the
inverse compton scattering (MPM) [10], which is the inverse
process of type two case.

Now, we come to calculate E2 and E3 for the cases [A]
(MMM), [B] (MPM), and [C] (PMP).

3.1 Maximal efficiency in case [A] MMM

For the case[A], to simplify the discussion, we just assume
that the mass of collision particles are all equal to m, i.e.
m1 = m2 = m3 = m4 = m. With this in hand, the equations
of conservation laws (3.3)–(3.6) can be simplified as

E1 + E2 = E3 + E4 (3.14)

J1 + J2 = J3 + J4 (3.15)

s1 + s2 = s3 + s4 (3.16)

u(1)
1 + u(1)

2 = u(1)
3 + u(1)

4 (3.17)

The radial component of the 4-momentum of massive
particle can be calculated from the Eqs. (2.19)–(2.21), and
(2.23). With the help of Eqs. (3.8)–(3.10), and (3.12), we
expand the particles’ radial 4-momentum in terms of ε as
follows:

u(1)
1 = f11ε

−1 + f12ε
0 + f13ε

1 + · · · (3.18)

u(1)
2 = f21ε

−1 + f22ε
0 + f23ε

1 + · · · (3.19)

u(1)
3 = f31ε

−1 + f32ε
0 + f33ε

1 + · · · (3.20)

u(1)
4 = f41ε

−1 + f42ε
0 + f43ε

1 + · · · (3.21)

From Eqs. (3.18)–(3.21), we can easily obtain correspond-
ing equations for different order of ε. Note that the lead-
ing order equation of ε−1 has already been discussed in the
Eqs. (3.13) and we found some constraints have to be sat-
isfied under Eq. (3.13). So we further discuss the Eq. (3.17)
from the next leading order of ε0 and ε1 as follows

f12 + f22 = f32 + f42 (3.22)

f13 + f23 = f33 + f43 (3.23)

where

f12 = σ1k1(E1, s1, b, 0)

f1(s1, b)
(3.24)

f13 = − E2
1σ1k3(s1, b)

f1(s1, b)2k1(E1, s1, b, 0)
(3.25)

f22 = E2k2(s2, b, ξ)

f1(s2, b)2 (3.26)

f23 = (1 − b) f1(s2, b)4 − E2
2h41(s2, b, ξ)

4
√

1 − b2E2ξ f1(s2, b)3 f2(s2, b)
(3.27)

f32 = σ3k1(E3, s1, b, α3)

f1(s1, b)
(3.28)

f33 = − E2
3σ3(β3h61(s1, b, α3) + h62(s1, b, α3) + k3(s1, b))

f1(s1, b)2k1(E3, s1, b, α3)

(3.29)

f42 = E2k2(s2, b, ξ) − f1(s2, b)(E1h71(s2, b) + E3h72(s2, b, α3))

f1(s2, b)2

(3.30)

f43 = − 1

4(b + 1)
√

1 − b2E2ξ f1(s2, b)3 f2(s2, b)

×
(

2(b + 1)E2 f1(s2, b)(4E3ξh85(s2, b, α3, β3)

−(E1 − E3)((b − 1) f1(s2, b)h81(s2, b)

+2ξh83(s2, b))) + (b − 1)(b + 1) f1(s2, b)
2

×
(
f1(s2, b)

2 − (E1 − E3)
2h81(s2, b)

)

+E2
2 (−4(b + 1)ξ f1(s2, b)h83(s2, b)

+h82(s2, b) + ξ2h84(s2, b)
) )

(3.31)

where k1(E1, s1, b, 0), k2(s2, b, ξ), h1(s1, b), h2(s2, b) h71

(s1, b), g3(b, s2, ξ) and so on are the functions of different
parameters and we will show them in the appendix.

From the Eq. (3.22), with the detailed expressions given
by the above, we obtain the equation of E3 as follow

A1E
2
3 − 2B1E3 + C1 = 0 (3.32)
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Fig. 3 The contour maps of E3 in terms of α3 and s2 with s1 = 0. a (b = 0), b (b = 0.1) and c (b = 0.2) show that α3 → 0 give larger value of
E3 when s2 is small enough

where

A1 = f1(s1, b)2h72(s2, b, α3)
2

f1(s2, b)2 − k12(s1, b, α3)

B1 = −h72(s2, b, α3)

f1(s2, b)2 (σ1 f1(s1, b) f1(s2, b)k1(E1, s1, b, 0)

+E1 f1(s1, b)
2h71(s2, b))

C1 = 2E1σ1 f1(s1, b)h71(s2, b)k1(E1, s1, b, 0)

f1(s2, b)

+E2
1

(
k12(s1, b, 0) + h71(s2, b)2 f1(s1, b)2

f1(s2, b)2

)
(3.33)

From Eqs. (3.32) and (3.33), we find that σ3 is decou-
pled. So the sign of σ3 will not affect the value of E3.
Since the quadratic equation of E3 (3.32) has two solutions.
The larger solution of E3 = E3,+ gives larger efficiency
because the efficiency depends on the value of E3 that will
became explicit in following parts. Therefore, it is sufficient
to consider the case of σ3 = −1 with the larger solution of
E3 = E3,+. In conclusion, we can get the expression of E3

and E2 from the Eqs. (3.22) and (3.23).

E3,+ =
√
B2

1 − A1C1 + B1

A1
(3.34)

and

E2 = (b − 1)(E1 − E3)
2

P1
(3.35)

where

P1 = 2

h1(s1, b)2h41(s2, b)
(−4E3ξh85(s2, b, α3, β3)

+2
√

1 − b2ξ( f13 + f33) f1(s2, b)
2 f2(s2, b)

+(b − 1)(E1 − E3) f1(s2, b)h81(s2, b)

+2ξ(E1 − E3)h83(s2, b)). (3.36)

With all those ingredients, the efficiency can be calculated
through the following expression:

η = E3

E1 + E2
(3.37)

3.1.1 Efficiency

With the detailed expressions of E3 and E2 above. We have
three different types of parameters involved in the calculation
of the efficiency η. The first type is the charge of extreme
Kerr-Sen black hole(b = 1 − a). Second type is particles
spins(s1 and s2), the third type is orbit parameters of the
particles such as (α3, β3 and ξ ) and direction of the particles’
motion (σ1, σ2, σ3 and σ4).

Note that we already fix the value of σ2, σ3, σ4 as σ2 =
σ4 = −1 and σ3 = −1 in the last section. So the only
remaining parameter for the direction of the particles’ motion
is σ1. However, a good efficiency can’t be found for σ1 = −1
[10], so we set that σ1 = 1.

Then, for a given value of E1, the maximal efficiency
ηmax would be reached with the minimum value of E2 and
the maximal value of E3. Without loss of generality, we just
normalize the ingoing energy E1 as E1 = 1.

From the Eq. (3.34), we find that the expression of E3

decoupled with the parameters ξ and β3. So we analyze the
maximal value of E3 with the remaining parameters for dif-
ferent values of b. Note that Fig. 1a shows that the spin mag-
nitude s1 close to zero for larger value of E3. So we first
assume s1 = 0 in order to find the relation of E3 and α3. The
contour maps of E3 in terms of α3 and s2 showed in Fig. 3.
From the Fig. 3, we know that the largest efficiency can found
with α3 → 0+. Therefore, we set α3 = 0+ to calculate the
corresponding maximal efficiency.

In Fig. 4, the contour map of E3 in terms of s1 and s2

is showed. The maximal value of E3 is labeled with the red
point.
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Fig. 4 The contour map of E3 in terms of s1 and s2. The time-like
condition for the particle 3 orbit is satisfied in the green shaded region.
The maximum value of E3 is obtained at the red point. a When b = 0,
ηmax = E3max/2 ≈ 15.01 at (s1 = 0.01378, s2 = −0.2679); b when

b = 0.1, ηmax = E3max/2 ≈ 7.964 at (s1 = 0.02694, s2 = −0.2253);
c when b = 0.2, ηmax = E3max/2 ≈ 5.378 at (s1 = 0.04076, s2 =
−0.1680)

Fig. 5 a The relation between
ξ and β3 for different value of b
when E2 = 1. The other
parameters are chosen for giving
the maximal value of E3. When
b = 0, s1 = 0.01378 and
s2 = −0.2679; When b = 0.1,
s1 = 0.0269 and s2 = −0.225;
When b = 0.2, s1 = 0.0408 and
s2 = −0.168; b the relation
between maximum efficiency
ηmax = E3max/2 and b

(a) (b)

Note that E2 ≥ 1 if the particle 2 falling from infinity,
if E2 = 1 is possible, we find that the maximal value of
E3 gives the maximal efficiency. Note that E3 is decoupled
with parameters β3 and ξ . So our target is equivalent to find
E2 = 1 with some admissible values of β3 and ξ . In Fig. 1b,
we already have the constraint on ξ , that is, 0 > ξ ≥ −0.5 >

ξmin for different values of s and b. For such constrained ξ ,
the relation between β3 and ξ which gives E2 = 1 can be
found in Fig. 5a.

Hence the maximum efficiency is given by ηmax =
E3max/2. Figure 5b shows the maximum efficiency ηmax

with different b. We found that the efficiency ηmax decreases
with the increase of b. While when b = 0 which corresponds
the Kerr case, our results is the same as the previous results
[10].

3.2 Maximal efficiency in case [B] MPM

For the case[B], as the same with section, we assume that the
mass of massive particles are all equal to m and the massless
particles are nonspinning. The equations of conservation law
(3.5) and (3.6) reduce to

s1 = s3 (3.38)

p(1)
1 + p(1)

2 = p(1)
3 + p(1)

4 (3.39)

The radial component of the 4-momentum of massless parti-
cle can be calculated from the Eqs. (2.19)– (2.21), and (2.22)
as follows

p(1) = σ

√
(E(b + r + 1) − J )

(
E

(
(3b − 1)r + 2(b − 1)2 + r2

) + J (2b + r − 2)
)

(b + r − 1)2(2b + r)
(3.40)
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Fig. 6 The contour map of E3 in terms of α3 and s1. The time-like
condition for the particle 3 is satisfied in the light-green shaded region
with different b. The maximum value of E3 is obtained at the red point.

a When b = 0, E3max ≈ 15.6350; b when b = 0.1, E3max ≈ 12.2977;
c when b = 0.2, E3max ≈ 9.7977

So the expression of f22, f23, f42, and f43 can write in an
explicit way:

f22 = −2E2(bξ + b + 2ξ + 1)

(b + 1)
√

1 − b2
(3.41)

f23 = − E2
(
4(2b − 1)ξ2 + 8b(b + 1)ξ + (b + 1)4

)
4(b + 1)2

√
1 − b2ξ

(3.42)

f42 = −2(b + 1)(E1 + E2 + (α3 − 1)E3) + 2(b + 2)E2ξ

(b + 1)
√

1 − b2

(3.43)

f43 = − 1

4(b + 1)2
√

1 − b2E2ξ

(
8(b + 1)E2ξ(b(E1

+E2 + E3(−α3 + β3 − 1)) + E3(β3 − 2α3))

+(b + 1)4(E1 + E2 − E3)
2 + 4(2b − 1)E2

2ξ2
)

(3.44)

Note that the radial component of the 4-momentum of mas-
sive particle do not change through the collision process. As
in case [A], we finally get the detail expression for E3 and
E2 respectively.

E3 =
√
B2

1 − A1C1 + B1

A1

∣∣∣∣
s2=0

(3.45)

E2 = (b − 1)(E1 − E3)
2

P1

∣∣∣∣
s2=0

(3.46)

where A1, B1, C1 and P1 are given by Eqs. (3.33) and (3.36)
with s2 = 0.

3.2.1 Efficiency

On the one hand, when the value of E1 is given, the maximal
efficiency ηmax would be reached with minimum value of
E2 and maximal value of E3. On the other hand, we consider

particle 1 and particle 2 falling from infinity, we obtain the
constrains of E1 ≥ 1 and E2 ≥ 0. Without loss generality,
we again normalize E1 to unity (E1 = 1) as last subsection
and then analyze E3 and E2 which are directly associated to
the maximal efficiency.

Figure 6 shows the contour map of E3 in terms of α3 and
s1. The maximum value of E3 is given at the red point.

If E2 → 0 can be achieved, it certainly gives the minimal
value of E2 and thus the maximal efficiency can be simply
given by ηmax = E3max . Hence it is important to analyze
whether E2 → 0 is possible or not. From Eq. (3.36), we
obtain the asymptotic expression of P as

P ≈ 4(b + 1)E3β3ξ

( √
1 − b2E3h61(s1, b, 0)

f1(s1, b)2k1(E3, s1, b, 0)
− 2

)

(3.47)

Equation (3.47) tells us that E2 → 0+, if β3ξ → +∞. For
example, the value of parameters at red point in Fig. 6b are
b = 0.1, σ1 = 1, σ3 = −1, α3 = 0, s1 = 0.03513, s2 = 0,
E1 = 1, E3 = 12.2977. So the detail expression of E2 can
be rewritten as:

E2 = 7.27275

β3ξ + 1.74978ξ + 1.28748
. (3.48)

which means E2 → 0+ can be realized β3ξ → ∞ for the
case of b = 0.1.

Hence by employing formula ηmax = E3max , we found
that the efficiency ηmax decreases with the increase of b.
While b = 0 which corresponds the Kerr case, our results is
again the same as the previous results [10].

3.3 Maximal efficiency in case [C] PMP

Now we come to the last case, which is the Compton scat-
tering. The radial components of 4-momenta of massless
particles have already been given in Eq. (3.40). So we can
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Fig. 7 The contour map of S in terms of α3 and s2 for different val-
ues of b. The maximum value of E3 is labeled by the red point. a
When b = 0, ηmax = Smax ≈ 26.8564 with s2 = −0.2679; b when

b = 0.1, ηmax = Smax ≈ 14.4513 with s2 = −0.2253; cwhenb = 0.2,
ηmax = Smax ≈ 9.7977 with s2 = −0.1680

write the coefficients f12, f13, f32 and f33 in terms of energy
as:

f12 =
√
b + 3

b + 1
E1σ1 (3.49)

f13 = (b − 1)E1σ1

(b + 1)3/2
√
b + 3

(3.50)

f32 = E3σ3

√
−4α2

3 + 8α3 + b2 + 2b − 3

b2 − 1
(3.51)

f33 = E3σ3
(
8α2

3 − 8α3 + b2 + 4α2
3b − 4(α3 − 1)(b + 1)β3 − 2b + 1

)
(b + 1)

√(
1 − b2

)
(3 − 2α3 + b)(1 − 2α3 − b)

(3.52)

From the conservation of the radial components of the
4-momenta, we find

E3 = SE1 (3.53)

where the amplification factor S is given by

S =
√

1 − b
(√

b + 3σ1 f1(s2, b) + √
b + 1h71(s2, b)

)
σ3

√
(3 − 2α3 + b)(1 − 2α3 − b) f1(s2, b) − √

1 − b2h72(s2, b, α3)

(3.54)

and

E2 = − (b − 1)(E1 − E3)
2 f1(s2, b)h81(s2, b)

P3
; (3.55)

where P3 keeps the same form of P1 given by Eq. (3.36) by
replaceing f13 and f33 with Eqs. (3.50) and (3.52)

3.3.1 Efficiency

It is easy to see in Compton scattering, the efficiency η is
defined as:

η = − S
1 + E2/E1

; (3.56)

again, we consider massless particle 1 and massive particle
2 falling from infinity, we assume the constrains of E1 ≥ 0
and E2 ≥ 1 and obtain that the maximal value of S and the
minimal value of E2/E1 gives the maximal efficiency. First,
we can easily find that the ratio E2/E1 doesn’t depends on
the E1 and E2, but rather depends on the parameters α3, β3,
ξ , s2 and b. From Eq. (3.55), the asymptotic expression of
E2/E1 behaves

E2

E1
≈ (b − 1)(S − 1)2h81(s2, b)

√
(−2α3 + b + 3)(1 − b − 2α3)

8β3ξS f2(s2, b)
(
2(α3 − 1) f1(s2, b) − (b + 1) f2(s2, b)

√
(−2α3 + b + 3)(1 − b − 2α3)

) (3.57)

Note that the particle 2 is massive and can reach the hori-
zon, therefore the constraint on ξ keeps the same form as in
previous section, namely, ξmin < ξ < 0. With this parameter
space, a direct calculation shows thatS 	= 0. From Eq. (3.57),
we can see that if denominator of the equation is not equal
to zero, the condition E2/E1 → 0 can be archived when
β3ξ → ∞. Thus the maximal energy contraction efficiency
is ηmax = Smax .

Figure 7 shows the maximum value of E3 with the red
point in the contour map of S in terms of α3 and s2 for dif-
ferent values of b. The figure shows the maximum efficiency
ηmax = Smax decreases when b increases.

4 Conclusions

In this paper, we study the collision of two uncharged spin-
ning particles around an extreme Kerr-Sen black hole and cal-
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culate the maximal efficiency of the energy extraction from
the black hole. We consider the particles freely falling from
infinity to the Kerr-Sen black hole. The Kerr-Sen spacetime
is determined by three parameters, which are mass M , angu-
lar momentum a, and charge Q (b = Q2/2M). It reduces
to a Kerr black hole when the parameter b = 0 and all our
results coming back to the Kerr case [10] when b = 0. We
viewed this as a consistent check.

In this paper, we consider three types of collision, the
first one is the MMM case[A], we obtain that the maxi-
mum efficiency is given by ηmax = E3max/2 and decreases
monotonously with the increase of b. Then, in the MPM
case[B], we obtain the maximum efficiency ηmax = E3max

and decreases monotonously with the increase of b. Finally,
in the PMP case[C], we get the maximum efficiency ηmax =
Smax which decreases when the b increases. All our results
can reduce to the Kerr situation [10] when b = 0. The Comp-
ton scatting and inverse Compton scatting of spinless particle
in Kerr background is discussed in [6], and our results shows
when the spin take into account, the maximum efficiency can
be greatly improved.

In summarize, for extreme Kerr-Sen black hole, decrease
the charge parameter b = Q2/2M always increase the max-
imum efficiency of energy extraction.
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5 Appendix

U = −a2b4�r2s4(Ct3 − BrCt4)
2

+4ab2Cta2r
3s2(BrCt2 + Ct1)(Ct3 − BrCt4)

+2 fv2r(Ct3 − BrCt4)(ab
2s2(BrCt2 + Ct1)

+Cta2r
3(Ct3 − BrCt4))

+2b2rs2(BrCt2 + Ct1)(ab
2�s2(Ct3 − BrCt4)

−Cta2r(BrCt2 + Ct1)) − b4�s4(BrCt2

+Ct1)
2 + f 2

v2r
2(Ct3 − BrCt4)

2

+a2b4s4(BrCt2 + Ct1)
2 (5.1)

Cta2 = F/r2; (5.2)

Ct1 = √
	(a2r(2b + r)2

+as((b + r)(2b + r) + r)
√

	 + (2b + r)	2); (5.3)

Ct2 = √
	(−ar(2b + r)2 − rs

√
	); (5.4)

Ct3 = (2b + r)2(a
√

	 + s(b + r)); (5.5)

Ct4 = √
	(2b + r)2; (5.6)

f1(s, b) = −b4 − 2b3 + 2b − s2 + 1; (5.7)

f2(s, b) = b3 −
√

1 − b2s + b2 − b − 1; (5.8)

k1(E, s, b, α) =
√
E2k12(s, b, α) − f1(s, b)2; (5.9)

k2(s, b, ξ) = −ξ(2(b2 − 3b + 1)
√

1 − b2(b + 1)s2

−2(b − 1)(b + 2)
√

1 − b2(b + 1)4

+2(b − 1)bs3 + 2(b − 3)(b − 1)(b + 1)3s)

−(b + 1)((b2 + 2b − 1)s3

−2
√

1 − b2(b + 1)s2 + (b − 1)(b2 + 2b − 1)(b + 1)3s

−2(b − 1)
√

1 − b2(b + 1)4); (5.10)

k3(s, b) = (b − 1)(b + 1)(−(b − 1)(3b

−7)
√

1 − b2(b + 1)4s + (b5 + 3b4 + 7b + 1)s4

+(b − 1)3(b + 1)6 − (2b3 + 2b2

−3b + 11)
√

1 − b2(b + 1)s3

+(b − 1)(2b3 − 2b2 − 13b + 9)(b + 1)3s2); (5.11)

k12(s, b, α) = (b + 1)2(α2(8
√

1 − b2(b + 1)s

−4(b − 1)(b + 1)3 + 4s2) + 4α((b2 + 2b − 1)s2

+(b − 1)(b + 3)
√

1 − b2(b + 1)s

+2(b − 1)(b + 1)3) + (b − 1)(b + 3)

×(b(b + 2)s2 + (b − 1)(b + 1)3

−2((b + 1)
√

1 − b2)s)) (5.12)

h41(s, b, ξ) = (b + 1)(4(b − 1)ξ(2(b − 1)(b2 − 2b

+2)
√

1 − b2(b + 1)4s

+(b4 − 2b2 + 2b − 1)s4

+(b4 − 2b2 + 8b − 5)
√

1 − b2(b + 1)s3

+2(b − 2)2(b − 1)(b + 1)3s2

+2(b − 1)2b(b + 1)6) f1(s, b) − (b + 1)2(b2 − 1)

×(b4 + 2b3 + 2b(
√

1 − b2s − 1)

+2
√

1 − b2s − s2 − 1) f1(s, b)
2 − 4(b − 1)ξ2

×((b − 1)3(2b − 1)(b + 1)8 + (b − 1)2(7b2

−12b + 8)
√

1 − b2(b + 1)6s

+2(b − 1)b2s6 + 2(b − 1)(6b3 − 16b2
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+16b − 13)
√

1 − b2(b + 1)3s3

−2(b − 1)2(2b3 − 12b2 + 14b − 11)(b + 1)5s2

−(b − 1)(2b4 − 12b3

+18b2 − 18b + 13)(b + 1)2s4 + (4b4 − 4b3

+b2 − 4b + 2)
√

1 − b2s5)) (5.13)

h61(s, b, α) = (b + 1)(2(b − 1)(b + 3)
√

1 − b2(b + 1)2s3

+2(b − 1)2(b + 3)
√

1 − b2(b + 1)5s

+4α(b + 1)(2
√

1 − b2(b + 1)s3

+2(b − 1)
√

1 − b2(b + 1)4s − (b − 1)2(b + 1)6

+s4) + 2(b3 + 3b2 + b − 1)s4

+2(b − 1)(b + 1)6s2 + 4(b − 1)2(b + 1)7) (5.14)

h62(s, b, α) = αh621(s, b) + α2h622(s, b) (5.15)

h621(s, b) = −2(b + 1)(b − 1)(−(b − 1)(b(2b + 3)

−6)
√

1 − b2(b + 1)s3

−(b + 1)3(b(b(b + 3) − 21) + 13)s2

+(b − 1)(b(b + 3) + 12)
√

1 − b2(b + 1)4s

+4(b − 1)(b + 1)6 + (−b(b + 2)(2b − 1) − 1)s4)

(5.16)

h622(s, b) = 4(b + 1)(−5((b − 1)(b + 1)4
√

1 − b2)s

+(2b3 − 2b2 − 3b + 1)
√

1 − b2s3

+(b − 1)bs4 − (b − 2)2(b − 1)(b + 1)3s2

+(b − 1)2(b + 2)(b + 1)6) (5.17)

h71(s, b) = (b + 1)(b2(−s)

+2b(
√

1 − b2 − s) + 2
√

1 − b2 + s) (5.18)

h72(s, b, α) = 2α(b + 1)(b
√

1 − b2 +
√

1 − b2 + s)

−h71(s, b) (5.19)

h81(s, b) = (b + 1)4(2
√

1 − b2(b + 1)s

+(b − 1)(b + 1)3 − s2) (5.20)

h82(s, b) = (1 − b)(b + 1)5(2
√

1 − b2(b + 1)s

+(b − 1)(b + 1)3 − s2) f1(s, b)
2 (5.21)

h83(s, b) =
√

1 − b2s(−(5(b + 2)b2 + b

−2) f1(s, b) f2(s, b) − 5b(b(b2 + b − 3) + 1)

×(b + 1)3 f2(s, b) + (b − 1)(b + 1)4 f1(s, b))

−
√

1 − b2(b(b + 2) − 1)

(b(b + 3) + 3)s3 f2(s, b) − 2(b + 1)2(b2(b + 2)

−3)s2 f2(s, b)

+(b − 1)(b + 1)2((b − 1)(b + 1)4 f1(s, b)

−(b(b + 10) f1(s, b) + f1(s, b)

+10(b − 1)b(b + 1)3) f2(s, b)) (5.22)

h84(s, b) = 4((b + 2)(b(2b(b + 2) + 9) + 6) f2(s, b)
2s4

−2(4b + 3)
√

1 − b2(b(b + 3)

+3) f1(s, b) f2(s, b)s
3 + 2(b − 1)(b + 1)2

×(2(3b + 1)(b(b + 3) + 3) f1(s, b)

+(b + 1)(8b(b(b + 2) + 3) − 3) f2(s, b)) f2(s, b)s
2

−
√

1 − b2((b(11b + 18)

+6) f1(s, b) + 10(b − 1)b(4b + 3)(b

+1)3) f1(s, b) f2(s, b)s + (b − 1)(b + 1)2

×(35(b − 1)b2(b + 1)4 f2(s, b)
2

+20(b − 1)b(3b + 1)(b + 1)3 f1(s, b) f2(s, b)

+(2(b(13b + 10) + 1) f2(s, b)

−(b − 1)(b + 1)4) f1(s, b)
2)) (5.23)

h85(s, b, α, β) = f2(s, b)((5b
5 + 10b4 + b2(s2 − 10)

+b(3s2 − 5) + 3s2) f2(s, b)α

−(b + 1) f1(s, b) f2(s, b)β + (6b4 + 8b3

−4b(
√

1 − b2s + 2) − 3
√

1 − b2s − 4b2

−2) f1(s, b)α) (5.24)
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