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Abstract Circular electron positron colliders, such as the
CEPC and FCC-ee, have been proposed to measure Higgs
boson properties precisely, test the Standard Model, search
for physics beyond the Standard Model, and so on. One of
the important goals of these colliders is to measure the W
boson mass with great precision by taking data around the
W -pair production threshold. In this paper, the data-taking
scheme is investigated to maximize the achievable precisions
of the W boson mass and width with a threshold scan, when
various systematic uncertainties are taken into account. The
study shows that an optimal and realistic data-taking scheme
is to collect data at three center-of-mass energies and that
precisions of 1.0 MeV and 3.4 MeV can be achieved for
the mass and width of the W boson, respectively, with a
total integrated luminosity of L = 3.2 ab−1 and several
assumptions of the systematic uncertainty sources.

1 Introduction

In the Standard Model (SM) of particle physics, the elec-
troweak (EW) interaction is mediated by the W boson, the
Z boson, and the photon, in a gauge theory based on the
SU(2)L × U(1)Y symmetry [1–3]. The so called symmetry-
breaking mechanism is based on the interaction of the gauge
bosons with a scalar doublet field and predicts the existence of
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a new physical state known as the Higgs boson [4–6]. The W
and Z bosons were discovered by the UA1 and UA2 Collab-
orations in 1983 [7–10] and the Higgs boson was discovered
by the ATLAS and CMS Collaborations in 2012 [11,12].

In the EW theory, the W boson mass, mW , can be
expressed as a function of the Z boson mass, mZ ; the fine-
structure constant, α; the Fermi constant, Gμ; the top-quark
mass, mt ; and the Higgs boson mass, mH . With the mea-
sured values of these parameters, the SM predicted value of
the W boson mass has been calculated to be 80.358 ± 0.008
GeV in Ref. [13] and 80.362 ± 0.008 GeV in Ref. [14].
The current Particle Data Group (PDG) world average value
of mW = 80.379 ± 0.012 MeV [15] is dominated by the
measurements at LEP2 and Tevatron as well as the latest
measurement by the ATLAS Collaboration. In the context
of global fits to the SM parameters, constraints on physics
beyond the SM are currently limited by the precision of mW ,
mt , and mH . High precision measurements of these masses
are essential to test the overall consistency of the SM and
search for new physics beyond the SM.

There are several methods to measure themW , as proposed
for the LEP2 program [16–20]. The first one is the direct
reconstruction method, with kinematically-constrained or
mass reconstructions of W+W−, which is the most used in
the current experimental results of both hadron and lepton
colliders. This method suffers from large systematic uncer-
tainties such as those from hadronization modeling, radia-
tive corrections, lepton energy scale, missing energy, and
so on. The second method for mW measuring is to use the
lepton end-point energy. This method encounters the lepton
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energy calibration problem. The third method is that the W
boson mass can be determined by comparing the observed
W -pair production cross section(s) (σWW ) near their kine-
matic threshold. Just like the measurement of the τ lepton
mass [21,22], this method has potential to measure the mW

with high precision when collecting large data sample around
the W+W− threshold. Based on this strategy, LEP2 exper-
iments have measured the W -pair cross section at a single
energy point near 161 GeV, with a total integrated luminos-
ity of about 10 pb−1 for each of the four experiments. The
W boson mass was determined with a precision of 200 MeV
[23–26], dominated by the statistical uncertainty. With much
larger data samples, the precision of the W boson mass using
this method is expected to be improved significantly. After
the discovery of the Higgs boson [4–6], several large elec-
tron positron colliders have been proposed, such as the ILC
[27], FCC-ee [28,29] and CEPC [30]. One of their impor-
tant physics goals is the precise measurement of the W
boson mass. With the expected high integrated luminosity,
the threshold scan method is well suited.

For the linear colliders, the W -pair threshold scan using
polarized beams have been studied by TESLA physics pro-
gram [31], and ILC [32]. The different polarization states
have a advantage to enhance signal cross section and to mea-
sure the background in situ. For the circular colliders, the
concept of a multi-point scan of the W threshold to extract
mass and width of the W boson, and the related data-taking
optimization strategy was introduced in the context of FCC-
ee studies [33], which reveal that an optimal strategy would
include measuring σWW at the ΓW -independent energy point√
s � 2mW + 1.5 GeV, and “off-shell” at

√
s � 2mW - (1–

2)ΓW . Scenarios where systematic uncertainties would be
limiting the precision have been examined separately for dif-
ferent sources, and provided the indication that systematic
effects that are correlated at different energy points could be
partially canceled by measuring σWW at additional energy
points where the differential coefficients relevant to the sys-
tematic uncertainties are equal [34–38].

In this paper we follow the same methodology, extend-
ing it to the context of the CEPC planned data-taking, and
produce comparisons with current FCC-ee projections. Addi-
tional care and insight is given to a comprehensive evaluation
of the impact and possible limitations of systematic uncer-
tainties on the final measurements.

The threshold scan method is introduced in Sect. 2,
together with the theoretical tools used to obtain the W -
pair production cross section. Since the data-taking scheme,
including the number of data-taking points, the center-of-
mass (CM) energy (

√
s) of each data point, and the allocation

of the integrated luminosity, directly impacts the statistical
and systematic uncertainties of the measured mW and ΓW ,
these uncertainties are studied firstly as described in Sect. 3.

Fig. 1 The leading-order Feynman diagrams of W+W− production in
e+e− collisions. The last one is neglected in this study since it is highly
suppressed due to the small electron (positron) mass

The investigation of the data-taking scheme and the corre-
sponding expected precision on mW are presented in Sect. 4.

2 Methodology and Theoretical setup

The cross section of the W -pair production around its thresh-
old depends sensitively on the mass and width of the W
boson, and the dependency can be precisely calculated in
the EW theory. Therefore by measuring the cross sections at
one or more energy points around the W -pair threshold, the
W boson mass and width can be determined by comparing
the measured cross sections with the theoretical predictions.

Figure 1 shows the leading order Feynman diagrams for
W+W− production at electron positron colliders. Due to the
small electron mass, the production of W+W− through the
Higgs boson is highly suppressed and is therefore neglected
in the discussion below. Then the Born-level matrix element
of the on-shell W+W− production can be written as [39,40]:

M = √
2e2[Mν + Mγ + MZ ]Δσ(−1)d J0

Δσ,Δλ

Mν = 1

2 sin2 θWβ
δ|Δσ |,1

[
Bν

λλ − 1

1 + β2 − 2β cos Θ
Cν

λλ̄

]

Mγ = −βδ|δσ |,1Aγ
λ,λ

MZ = β[δ|Δσ |,1 − 1

2 sin2 θW
δ|Δσ |,1] s

s − M2
Z

AZ
λλ̄

(1)

where M is the total amplitude of W+W− production, Mν ,
Mγ , and MZ are the amplitudes for the coupling channels
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Fig. 2 The theoretical cross sections ofW -pair production as functions
of the CM energy of the e+e− collisions. The black solid line is the Born-
level cross section with the zero-width assumption, the blue dash line is
the Born-level cross section including the finite width of the W boson.
The red dash-dot line is the cross section taking into account both the
finite width of the W boson and the ISR corrections. The world average
values [15] of mW and ΓW are used in these calculations

with νe, γ , and Z , propagators, respectively; Δσ = σ − σ̄ ;
Δλ = λ − λ̄; σ (σ̄ ) and λ (λ̄) are the z components of the
electron (positron) and W+ (W−) spins (i.e. their polariza-
tion state), respectively; J0 ≡ max(|Δσ |,Δλ), is the mini-

mum angular momentum of the system; β ≡
√

1 − (
2mW√

s
)2

is the velocity of the W boson; and θW is the Weinberg weak
mixing angle.

The production cross section of W -pair at e+e− colliders,
σWW, is calculated using the GENTLE package [41] with
the CC03 mode [42]. Figure 2 shows the cross section as
functions of

√
s withmW and ΓW fixed to their world average

values: mW = 80.379 GeV and ΓW = 2.085 GeV [15]. The
Born-level cross sections are shown in black for a zero-width
W boson and in blue for a finite-width W boson. The red
curve includes the effects of both the finite width and the
Initial State Radiation (ISR) contribution.

The goal of this study is to optimize the data-taking
scheme for a fixed total integrated luminosity and given beam
parameters with their corresponding systematic uncertain-
ties. Table 1 summarizes the inputs and configurations used
in this study. For comparisons, the configurations used by the
FCC-ee study are also listed.

Among the configurations listed in Table 1, the mass and
width of the W boson are from the PDG [15]; the total lumi-
nosity is assumed to be 3.2 ab−1 expected at the CEPC in
one year data-taking; the parameters for beam energy and
its spread are from the CEPC’s Conceptual Design Report
[30]; other assumptions on the systematic uncertainties are
largely the same as the ones in the FCC-ee’s paper [33],
except for the signal selection efficiency. To estimate the
selection efficiency and purity for the W -pair events, the

Table 1 The configurations of the data-taking assumed in this paper.
Shown in the table are the world average values of the mass and width
of the W boson [15]; the total integrated luminosity and its relative
uncertainty, L and ΔL ; the means and uncertainties of beam energy
and its spread, E , EBS , ΔE , and ΔEBS ; the relative uncertainties of
the background, and detection efficiency, ΔσB, and Δε. The second
column is used in this study and the third one in FCC-ee’s paper [33]

Configurations This study FCC-ee work

mW (GeV) 80.379 ± 0.012

ΓW (GeV) 2.085 ± 0.042

L (ab−1) 3.2 15

σE (%) 0.1 0.09

ε 0.8 0.75

σB (pb) 0.3 0.3

ΔσE (%) 10 5

ΔE (MeV) 0.5 0.24

ΔσB/σB 10−3 10−3

ΔL /L 10−4 10−4

Δε/ε 10−4 10−4

semi-leptonic e+e− → W+W− → μνμqq̄ process is sim-
ulated at the generator-level using the Monte Carlo (MC)
package whizard [43,44] at

√
s = 161 GeV. The signal

candidates are selected by requiring two jets, one muon. The
energy of the muon must be larger than 30 GeV. The cor-
responding signal selection efficiency is about 90% with a
signal purity of about 98%. Figure 3 shows the distribu-
tions of the invariant and recoil mass of the two selected
jets. For the pure leptonic and hadronic processes, e+e− →
W+W− → l1νl1l2νl2/qq̄QQ̄, signal event selections are
more complex, thus the selection efficiency and the purity are
expected to be lower than those of the semi-leptonic decays.
For this study, weighted selection efficiency and purity of
80% and 90%, respectively, are assumed for selecting W -pair
events.

For the energy calibration, resonant depolarization is
the most precise method, which is successfully applied
at LEP [45–47]. This method are proposed also by both
FCC-ee [28,29] and CEPC [30] for Z pole and W -pair
threshold energy regions. And FCC-ee’s study shows that
the precision of 500keV of the beam energy calibration
at W -pair threshold can be achieved [48], but require
a dedicated operation mode, specific hardware elements,
and carefully controlling and monitoring of the operating
conditions.

For what concerns the energy spread, it has been shown
in FCC-ee studies [28,37] that it can be measured and mon-
itored to a precision of ∼5% making use of the acollinear-
ity distribution of ∼ 103 dimuon events [28]. For CEPC,
the further study of the energy spread is in progress, so
the 10% is taken as the uncertainty the energy spread
conservatively.
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Fig. 3 The invariant and recoil mass of two jets of e+e− →
W+W− → μνμqq̄ process. The black dots are the distributions of
MC simulated SM processes, while the red and blue histograms are for
signal and background processes, respectively

3 Consideration on the uncertainties

Once the configurations of the data samples described above
are assumed, the data-taking scheme can be optimized. The
guideline of the optimization is to obtain the highest pre-
cision of the mass (width) of the W boson based on the
fixed total integrated luminosity. Thus the statistical and sys-
tematic uncertainties of the mW and ΓW measurements are
investigated firstly, following with the estimations of the total
uncertainties of the mW and ΓW measurements for specific
data-taking schemes.

3.1 Statistical uncertainty

The W -pair cross section can be experimentally determined
by counting the number of e+e− → W+W− (W -pair)
events. It should be noted that W boson’s three major decay

channels (lνlν, lνqq̄ , qq̄qq̄) are all used to increase the sta-
tistical power. Although each channel has its own efficiencies
and background, the global analysis and the simultaneous fit
could be applied to get the total W -pair events.So the number
of the total W pairs can be determined by combining all vari-
ous channels with all branching ratios and efficiencies taken
into account.

The W -pair cross section at a specific CM energy point is
determined by:

σmeas = Nmeas

L ε
= Nobs − NB

L ε
, (2)

where Nmeas is the signal yield, Nobs and NB the numbers
of observed events and estimated background events, respec-
tively,L the integrated luminosity, and ε the signal selection
efficiency. With Eq. 2, the statistical uncertainty of the σmeas

can be expressed as (assuming Poisson distribution):

Δσmeas(stat.) ∼
√

Nmeas

L ε
=

√
σmeas√
L εP

, P= εσWW

εσWW+εBσB
,

(3)

where P is the signal purity of the selected sample, εB is the
surviving rate of background events (i.e. background effi-
ciency) and σB is the total background cross section.

If the data is taken at one single energy point, the statistical
sensitivities of the W boson mass and width can be obtained
individually:

ΔmW (stat.) =
(

∂σmeas

∂mW

)−1
Δσmeas =

(
∂σmeas

∂mW
)−1

√
σmeas√
L εP

,

ΔΓW (stat.) =
(

∂σmeas

∂ΓW

)−1
Δσmeas =

(
∂σmeas

∂ΓW

)−1 √
σmeas√
L εP

.

(4)

Figure 4 shows the statistical uncertainties of mW and ΓW

as functions of
√
s of the data-taking. The distributions show

minimal statistical uncertainties for mW and ΓW , but at two
different

√
s values. Please note, however, only one of them

can be determined at one single data point, with the another
one fixed to the world averaged value [15].

For taking data at more than one energy point, mW and
ΓW can be measured simultaneously. The statistical uncer-
tainties can be obtained by the covariance matrix, which is
the inverse of the second-order derivative matrix of the log-
likelihood or χ2 function with respect to its free parameters,
usually evaluated at their best values (the function minimum).
The minimum χ2 method is used in this study and the χ2 is
constructed as:

χ2 =
∑
i

(Ni
fit − Ni

WW )2

Ni
WW

, (5)

which is minimized using the minuit package [49].
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Fig. 4 Distributions of the statistical uncertainties of mW (a) and
ΓW (b) for taking data at a single energy point

Therefore the covariance matrix can be written as:

V = 1

2

⎡
⎣[cc] ∂2χ2

∂m2
W

∂2χ2
∂mW ∂ΓW

∂2χ2
∂mW ∂ΓW

∂2χ2
∂m2

ΓW

⎤
⎦

−1

=
[
[cc] ∑

i

1
(Δσ i

meas)
2

[
[cc]( ∂σ i

∂mW
)2 ∂σ i

∂mW

∂σ i

∂ΓW
∂σ i

∂mW

∂σ i

∂ΓW
( ∂σ i

∂ΓW
)2

]]−1

.

(6)

The diagonal elements of the second-order derivative
matrix, are de-coupled from other parameter(s), but when the
matrix is inverted, the diagonal elements of the inverse con-
tain contributions from all the elements of the second deriva-
tive matrix. When the number of fit parameters is reduced to
one, Eq. 6 is simplified to Eq. 4.

Fig. 5(a) shows that the dependence of the precision of
mW and/or ΓW are in inversely proportional to integrated
luminosity, which is consistent with the Eq. 4 and 6. The
derivatives of the statistical uncertainties are shown in the
Fig. 5(b), and it become almost stable when luminosity is
greater than 6 ab−1.
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Fig. 5 (a)The dependence of the statistical uncertainties of the mea-
sured results on the statistic of data. (b)The decline rate of the statistical
uncertainty to luminosity. The black (red) solid line shows the result
for measuring the mW (ΓW ) only, and the black and red dots show
the results for measuring the mW and ΓW simultaneously. The energy
162.5 GeV is used for mW and 158.5 GeV is used for ΓW , and they are
both used when the mass and width are fitted simultaneously

3.2 Systematic uncertainties

Since the W boson mass and width are determined by com-
paring the measured cross section(s) of W -pair with the theo-
retical prediction(s), there are various sources could contam-
inate the measured precisions, which can be separated into
two categories: 1) The “X-value” (abscissa of Fig. 2) uncer-
tainties, such as the beam energy calibration (E) and the
beam energy spread (σE ) measurement. Generally speaking,
there will be some dedicated approaches to measure E and
σE , and the uncertainties after the measurements are defined
as ΔE and ΔσE , respectively; 2) The “Y-value” (ordinate
of Fig. 2) or “yield uncertainties”, which are affected by the
integrated luminosity, the selection efficiency and the back-
ground determinations.
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3.2.1 “X-value” uncertainties

The energy and energy spread of each beam are associ-
ated with the accelerator performance, and their uncertain-
ties are treated as point-to-point, which means that these
uncertainties of different data points are independent with
each other. The uncertainties of energy and energy spread
of each beam are both assumed to follow Gaussian distribu-
tion, E = G(E0,ΔE) and σE = G(σ 0

E ,ΔσE ), where E0

and σ 0
E are the nominal values for the energy and its spread,

respectively.
Take the energy spread into account, the measured cross

section at a specific energy point, E0, reads:

σWW (E0, σ
0
E ) =

∫
σWW (E) × G(E0, σ

0
E )dE

=
∫

σWW (E) × 1√
2πσ 0

E

e

−(E0−E)2

2σ0
E

2
dE .

(7)

When both ΔE and ΔσE are considered, the σWW becomes:

σWW (E0, σ
0
E ) =

∫
σWW (E

′
) × 1√

2πσE
e

−(E−E
′
)2

2σE
2 dE

′
, (8)

The ΔmW associated with the ΔE can be written as

ΔmW (ΔE) = ∂mW

∂E
· ΔE = ∂mW

∂σWW
· ∂σWW

∂E
· ΔE . (9)

Figure 6 shows the dependence of the uncertainty of mW

on the ΔE , with ΔE = 0.7 MeV (since the two beam ener-
gies are thought to be independent, the uncertainty of the
beam energy is 0.5 MeV, and 0.7 MeV for the total CM
energy). The black dots with error bars are the simulations
results and the blue curve is the numerical result from Eq. 9,
which are consistent with each other. It can be seen that
the ΔmW associated with the ΔE almost insensitive to the
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Fig. 7 The distribution of the ratio between the cross sections with
different σE and the one without the energy spread. The central curve
corresponds to the prediction obtained with σE = 0.1% (relative value),
which is the design value of the CEPC. Purple and blue bands show the
ratio curves obtained varying the nominal σE with [0.8, 1.2]σE

energy from 155 GeV to 165 GeV, which indicates that this
uncertainty can be estimated separately with the optimization
of the data-taking strategy.

The distributions of W -pair cross section with different
energy spreads are shown in Fig. 7, whose Y-axis is the ratio
between the cross sections with different δE and the nominal
one without the spread. We can see that the dependence of
cross section on the beam energy spread intersects at a point
at E ≈ 2mW + 1.3 GeV, which means that the cross section
is insensitive to the beam energy spread in the vicinity of this
specific energy point. So the effects of the energy spread and
its uncertainty to the cross section are both can be neglected
here. Analytic way to consider the effect of the energy spread
can be performed using the Taylor expansion of the σWW

[50], which reads

σWW (E0) = σWW (E0) + dσWW

dE
(E − E0)

+ 1

2

d2σWW

dE2 (E − E0)
2 + ...+

× 1

n!
dnσWW

dEn
(E − E0)

n .

(10)

With the above expansion, the Eq. 7 becomes

σWW (E0, σ
0
E ) = σWW (E0) + 1

2

d2σWW

dE2 (σ 0
E · E0)

2

1

8

d4σWW

dE4 (σ 0
E · E0)

4 + ....

(11)

The variation of the cross section is

ΔσWW (E0, σ
0
E ) = 1

2

d2σWW

dE2 (σ 0
E · E0)

2
. (12)
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The third item of Eq. 11 is about two orders of magnitude
smaller than the second one, therefore the high order items
can be neglected safely. So the effect of the uncertainty of
energy spread on the mW can be expressed as

ΔmW (Δσ 0
E ) = Δσ 0

E · ∂mW

∂σWW
· d

2σWW

dE2 · (σ 0
E · E0)

2
(13)

With σ 0
E = 0.001, Δσ 0

E = 0.1, ∂mW
∂σWW

= 0.48 and
d2σWW
dE2 = 0.16 at 161.2 GeV, ΔmW associated with Δσ 0

E is
about 0.2 MeV, which is consistent with the result obtained
by simulation.

3.2.2 “Y-value” uncertainties

From the Eq. 2 we can see that the signal yield (number of
W+W− events), is affected by the uncertainties related to
the luminosity, efficiency, and background in different ways,
which can be shown from the error propagation:

Δσ 2
meas = σ 2

meas(ΔL 2 + Δε2) + 1

L 2ε2 ΔN 2
B, (14)

where ΔL and ε are the relative uncertainties of luminosity
and efficiency, and ΔNB is the uncertainty of background.

For the WW production above their threshold, the poten-
tial main background processes include e+e− → Z0/γ →
qq̄ , e+e− → Z0e+e−, e+e− → Z0Z0, e+e− → Weν̄e, and
e+e− → τ+τ− [23–26]. The effect of the backgrounds has
two parts, the statistical fluctuation and the uncertainty of the
theoretical predictions of their cross sections. The effective
background cross section is set as 0.3pb in this study, which
is consistent with LEP2’s result [23–26] and the one in FCC-
ee’s work [28]. The contribution of the statistical uncertainty
of background to mW is

ΔmW (ΔNB) = ∂mW

∂σWW
·
√
L εBσB

L ε
, (15)

ΔmW (ΔσB) = ∂mW

∂σWW
· L εBσB

L ε
· ΔσB, (16)

where εB and σB are the selection efficiency and cross sec-
tion of backgrounds, respectively, and their product is the
effective background cross section, and ΔσB is the relative
uncertainties of the background cross section. The ratio of
them can be written as

R = ΔmW (ΔNB)

ΔmW (ΔσB)
=

√
L εBσB

L εBσB · ΔσB
= 1

ΔσB
√
L εBσB

,

(17)

With L = 3.2 ab−1, ΔσB = 10−3, and εBσB = 0.3 pb
at 161.2 GeV, the corresponding R ∼ 1 and the ΔmW (ΔσB)

is about 0.2MeV. The contributions of ΔmW (ΔNB) have
already been considered by embodying in the product of the
efficiency and purity as shown in Eq. 4, which is a simply
dilution of the statistical power of data sample. It should be

noted that the input for ΔσB used in this work is at 10−3

level, which is comparable with FCC-ee’s work [33]. But
this assumption is quite challenging for the current knowl-
edge about the background, especially for the hadronic pro-
cesses. Based on this spot, the background could be studied
using the data-based method, such as data samples collected
at the Z pole or below the W -pair threshold to calibrate the
background. If systematic uncertainty of background could
be controlled at same level as its statistical part, this uncer-
tainty will not be limiting the precision of the measured mW .

The uncertainties of luminosity and efficiency affect the
cross section in same way, so we define the combined uncer-
tainty, δc ≡ √

ΔL 2 + Δε2 = 1.4 · 10−4, to consider their
total contributions of these two items. The ΔmW associated
with δc is

ΔmW (δc) = ∂mW

∂σWW
σWW · δc . (18)

With Eq. 18, one can obtain the ΔmW of a specific energy
point, and the similar result can be applied for W width.

When there is more than one energy point, the uncertain-
ties of luminosity and efficiency have often been treated as the
non point-to-point ones in experiment. Since the same detec-
tor, signal model, and theoretical calculation (Bhabha process
for determining the luminosity) are used for all the energy
points. The cross sections of W -pair production at different
energy points are expected to vary in same unknown direction
and in similar relative amount simultaneously, which means
that these uncertainties of different data points are correlated.

There are two common to consider δc:

1) Gaussian case: δc is assumed to follow Gaussian distri-
bution, which means that the cross section can be written
as

σWW = G(σ 0
WW , σ 0

WW · δc), (19)

where σ 0
WW is the nominal value.

2) Non-Gaussian case: the δc is treated as a fixed value, so
the cross section is

σWW = σ 0
WW · (1 + δc). (20)

For the Gaussian case, the measured mW follows the
Gaussian distribution as well, and its standard deviation is
ΔmW . Figure 8(a) shows the simulation results with δc =
+1.4 ·10−4 and +1.4 ·10−3 at 161.2 GeV (the δc is enlarged
10 times for demonstration). The fitted ΔmW are 0.24 and
2.4 MeV, respectively, which are consistent with the direct
calculations from the Eq. 18.

For the non-Gaussian case, the situation is different. The
measured cross section will be changed of σWW · δc, and the
ΔmW is turned to be the shift now, as shown in Fig. 8(b).
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Fig. 8 The simulation results of mW for the Gaussian (a) and non-
Gaussian (b) cases, with the input mW of 80.379 GeV. The black solid
and dash lines are for δc = +1.4 · 10−4 and δc = +1.4 · 10−3 at
161.2 GeV, respectively

We can see that the fitted mW is shifted to left with positive
inputs for δc, since the ∂mW /∂σWW is negative at this energy.
This shifts becomes significant with the increasing δc, so
the correlation should be taken into account to reduce the
contribution from δc, especially for the non-Gaussian case.

In general, there are several ways to consider the corre-
lation between multiple energy points in experiment, such
as the covariance matrix and scale factor methods [51,52].
These two methods are discussed and compared in the Refs.
[53–56] and the latter is used in this work, with the χ2 con-
structed as

χ2 =
∑
i

(Ni
meas − h · Nfiti )

2

δ2
i

+ (h − 1)2

δ2
c

, (21)

where δi is the combination of the statistical and uncorrelated
systematic uncertainties, δc is the total relative correlated
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Fig. 9 The simulation results of mW for the Gaussian (a) and non-
Gaussian (b) cases, the input mW is 80.379 GeV and the scale fac-
tor method is used. The black solid and dash lines are the result for
δc = +1.4 · 10−4 and δc = +1.4 · 10−3 at 161.2 GeV and 162.5 GeV,
respectively

systematic uncertainty, h is a free parameters and (h − 1)

represents the potential shift of the measurement.
The scale factor method is adopted for both the Gaussian

and non-Gaussian cases. Since an additional fit parameter,
h, is needed for this method, the energy point at 162.5 GeV
is added. Figure 9(a) shows the simulation results for the
Gaussian case. We can see that even when δc increases by
10 times, the corresponding variation on ΔmW is still very
small. The advantage of this method is more obvious for the
non-Gaussian case, as shown in Fig. 9(b). Even though the
uncertainties are increased by an order of magnitude, the shift
of mW is well controlled.

Apart from the uncertainties discussed above, the one on
the theoretical calculated W -pair cross section , ΔσWW , is
an important source which may limit the precision of the
measured mW (ΓW ). The contribution of ΔσWW is in the
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same form as Eq. 18, and will have a prominent effect if
ΔσWW is quite large. With the ΔσWW at 10−3 level, the
corresponding ΔmW is about 1.7 MeV at 161.2 GeV, which
dilutes the statistical power obviously. The precision of σWW

at threshold in LEP2 era was at 10−2 level, so it is extremely
important to improve this for the precise measurement ofmW

(ΓW ) in future.

4 Data-taking strategies

In the above discussion, the main sources of the uncertain-
ties of mW (ΔΓW for data-taking at more than one point) are
studied, including both the statistical and systematic ones.
Generally, ΔmW (ΔΓW ) depends on the energy of the data
point, and the statistical part is also limited by the integrated
luminosity. The optimization of the data-taking strategy is
to determine the number of data-taking points, the energy
of each data point, and the allocation of the integrated lumi-
nosity for a fixed total integrated luminosity. The FCC-ee has
investigated data-taking at one and two energy points to mea-
sure mW and ΓW [33]. When the systematic uncertainties are
taken into account, especially for the correlated ones, more
energy points are beneficial for an optimal measurement.

MC experiment method is used to optimize the data-taking
schemes. The number of W -pair events is compared with the
theoretical predictions, and the corresponding mW (mW and
ΓW ) and its (their) uncertainties can be obtained. The χ2

construction is listed in Eq. 5 for data taking at one or two
energy points, and in Eq. 21 for three energy points.

For each MC experiment, the statistical and uncorrelated
systematic uncertainties, are assumed to follow indepen-
dent Poisson and Gaussian distributions at all energy points,
respectively; and for each correlated systematic uncertainty,
the Gaussian distribution is assumed. The experiments are
repeated 500 times, the corresponding distributions of mW

and ΓW are expected to follow Gaussian distribution, whose
standard deviation represent the combinations of all different
uncertainty sources.

4.1 Measurement of the W boson mass at one energy point

For data taking at a single energy point, there is an ideal
choice, E = 2mW + 0.4 ≈ 161.2 GeV, to measure mW

with the best statistical sensitivity as shown in the Fig. 4
(a). But the contributions from systematic uncertainties need
to be included for a realistic measurement. An interesting
feature is the effect of the ΓW uncertainty on the W boson
mass. Figure 10 shows how the line-shape of W -pair cross
section varies according to the W boson mass and width,
where the black line is the one with mW and ΓW fixed to
the world averaged values [15], mW = 80.385 GeV and
ΓW = 2.085 GeV, and bands correspond to the variations

 (GeV)s
150 155 160 165 170

 (p
b)

σ

0

5

10
=2.085 GeVWΓ=80.379 GeV, Wm

=2.085 GeVWΓ=79.379-81.379 GeV, Wm

=1.085-3.085 GeVWΓ=80.379 GeV, Wm

=162.3 GeVs

Fig. 10 The distribution of W -pair cross section as a function of
√
s.

The central curve corresponds to the result of using the PDG values
of mW and ΓW [15]. Purple and green bands show the cross sections
obtained by varying mW and ΓW within ±1 GeV

of the W boson mass or width in large ranges, ±1 GeV.
It can be seen that although the variation of the W boson
width changes the cross section line-shape, there is a common
intersection of all the line-shape curves with different ΓW ,√
s = 162.3 GeV, which indicates that the cross section

around this energy points is insensitive to the uncertainty of
the W boson width.

Based on the above discussion, two specific energy points
are favored for the W mass measurement. The first is the
most statistically sensitive one, E = 161.2 GeV, and the
other is E = 162.3 GeV, where the uncertainties of ΓW

and the EBS have negligible effects on the W mass mea-
surement. At 161.2 GeV, the effect of uncertainty from ΓW

on W mass can be written as ΔmW = (
∂mW
∂σWW

)ΔσWW =
(

∂mW
∂σWW

)(
∂σWW
∂ΓWW

)ΔΓW , which could be estimated with numer-

ical calculation. With ∂mW
∂σWW

= 0.474GeV/pb and ∂σWW
∂ΓWW

=
0.376pb/GeV at 161.2GeV and ΔΓW = 42 MeV [15], the
corresponding ΔmW is about 7.5 MeV.

Table 2 summarizes the results for the data taking at either
one of the above two energy points with the configurations
in Table 1. It can be seen that the dominant contribution to
ΔmW at 161.2 GeV is from the uncertainties of ΓW , which
is negligible at E = 162.3 GeV. Thus 162.3 GeV is a better
choice when onlymW is measured and the expected precision
is about 0.9 ⊕ theory MeV.

4.2 Measurement of the W boson mass and width at two
energy points

In the previous section, data taking at one energy point is
investigated, the best precision of mW can be obtained with
E = 162.3 GeV. With one energy point, only mW can be
measured. Alternately, both mW and ΓW can be determined
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Table 2 The precision of mW when taking data at E = 161.2 or 162.3 GeV. Shown in the table are the statistical and systematic uncertainties on
mW . The last column is the total uncertainty at the corresponding energy point

Energy/source δstat (stat.) ΔE ΔσE ΔΓW δB δc Total

ΔmW (MeV) 161.2 (GeV) 0.59 0.36 0.20 7.49 0.17 0.24 7.53

162.3 (GeV) 0.65 0.37 – – 0.17 0.34 0.84

simultaneously if two energy points near the W -pair thresh-
old are adopted for data-taking. In this case, the statistical
uncertainties of mW and ΓW can be obtained using Eq. 6.

To obtain the best precision ofmW and ΓW for a given total
integrated luminosity, the data-taking scheme of the energy
points and luminosity allocation for each energy point are
optimized. A 3-dimensional (3D) scan of the energy points
E1 and E2 (E1 < E2), and the luminosity fraction F of the
energy point E1 is performed, which defined as F = L1/L .
The scan step sizes of E1 and E2 are 100 MeV, and 0.05 for
F .

The best energy point for mW is above the W -pair thresh-
old, while the one for ΓW is below the threshold, as shown
in Fig. 4, making it impossible to simultaneously achieve the
best precisions for both. Thus an objective function is defined
to quantify the relative importance of the two measurements:
T = mW +A ·ΓW , where A is the weight factor to be chosen.
Since the W boson mass is thought to be more important than
its width, A = 0.1 is used throughout this paper, and the goal
of optimization is to minimize ΔT . Figure 11 (a)-(c) show
the optimization of E1, E2, and F . For the scheme of two
energy points, the optimized parameter values are:

E1 = 157.5 GeV, E2 = 162.5 GeV, F = 0.3, (22)

where E2 = 162.5 GeV is consistent with the expectation,
since ΔmW is minimal around this energy region and has
more weight to ΔT . The W -pair cross section is not very
sensitive to mW when

√
s is less than 158 GeV, thus the

distribution of ΔT is generally flat in this energy region. The
corresponding luminosity fraction is smaller than the one
around 162.5 GeV. The projected precisions for mW and ΓW

are summarized in Table 3.

4.3 Measurement of the W boson mass and width at three
energy points

For taking data at more than two energy points near the
W -pair threshold, the correlation in the mW and ΓW mea-
surements among different energy points can be taken into
account by redefining the χ2 form and introducing additional
parameter(s) hi as shown in Eq. 21. Therefore the effects of
the correlated systematic uncertainties are reduced, leading
to improved precisions of the measurements.

The procedure of optimization for three energy points
scheme is analogous to the case for two energy points by
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Fig. 11 The optimization results of 3D scan for taking data at two
points. (a)-(c) are for E1, E2, and F , respectively. In practice, each
parameter is optimized by scanning other two parameters. These three
plots just shows the dependence of ΔT on one parameter, with another
one float and the third one fixed
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Table 3 The expected precisions of mW and ΓW with the optimized
data-taking schemes. Listed are the effects of different uncertainty
sources such as statistical, un-correlated systematic (ΔE and ΔσE ),

and correlated systematic. The last column shows the total uncertain-
ties on the W mass and width

Data-taking scheme mass or width δstat (MeV) δsys (MeV) Total (MeV)
ΔE ΔσE δB δc

One point ΔmW 0.65 0.37 – 0.17 0.34 0.84

Two points ΔmW 0.80 0.38 – 0.21 0.33 0.97

ΔΓW 2.92 0.54 0.56 1.38 0.20 3.32

Three points ΔmW 0.81 0.30 – 0.23 0.29 0.98

ΔΓW 2.93 0.52 0.55 1.38 0.20 3.37

adding another two scan parameters. The energies of the three
data points, E1, E2, and E3, as well as the two luminosity
fractions F1 and F2 are optimized to reach the best precisions
of mW and ΓW , where F1 = L1/L and F2 = L2/L . The
scan procedure is similar to that for the two energy points,
except it is over a 5-dimensional parameter space now. The
optimized parameter values are:

E1 = 157.5 GeV, E2 = 162.5 GeV,

E3 = 161.5 GeV, F1 = 0.30, F2 = 0.63.
(23)

With these results and the assumptions of total integrated
luminosity and the systematic uncertainties, the expected
ΔmW and ΔΓW are listed in Table 3, and the total projected
uncertainties would be

ΔmW ∼ 1.0 ⊕ Δth
M MeV, ΔΓW ∼ 3.4 ⊕ Δth

Γ MeV, (24)

where Δth
M and Δth

Γ are the theoretical uncertainties of the
W boson mass and width due to the cross section calculation
Though the precisions of the W boson mass and width for the
three energy points are not improved much compared with
those for the two energy points, the results for the three energy
points are more realistic and robust. Since more energy points
have the advantage of better background understanding and
the sophisticated treatment of correlated systematic uncer-
tainties.

4.4 Discussion about the data-taking plan

Three data-taking schemes are investigated above for the best
measurement precisions of the W boson mass and width with
the threshold scan method. With the fixed total integrated
luminosity and expectations on systematic uncertainty con-
trols, the data-taking is optimized to minimize the total uncer-
tainties on the W boson mass and width measurements.

The integrated luminosities of the CEPC and the FCC-ee
at the W -pair threshold are expected to be much larger than
that at the LEP. In the ideal case of one single energy point,
both the analytic and MC simulation method have showed
that a statistical precision of less than 1 MeV can be achieved
for mW . It indicates that the systematic uncertainties such as

theoretical calculation, beam energy calibration, luminosity
determination, etc. become more important. One interesting
feature is that the ΔmW due to the W boson width and the
beam energy spread vanishes around

√
s = 2mW +1.5 GeV.

These two systematic uncertainties can be neglected for the
data taking at this energy point.

For taking data at a single energy point, the W boson mass
and width cannot be determined simultaneously. Moreover,
the best precision of either is obtained at different energies.
However, the optimized ΔmW for the two or three energy
points is only slightly larger than the one for a single energy
point as shown in Table 3. In this case, ΓW can be measured
simultaneously. Also, although the optimized precisions on
mW and ΓW are similar for the two and three energy points,
the latter is beneficial for the treatment of the correlated sys-
tematic uncertainties, especially when the effects of these
uncertainties are in the absolute form, which will cause shifts
to the obtained mW and ΓW . Therefore, data taking at three
different energy points is preferred, the corresponding opti-
mal data-taking scheme is listed in Eq. 23.

Thanks to contributions from FCC-ee studies [28,33], the
different types of systematic uncertainties are considered
comprehensively in this work, and the numerical results of
the contributions of the dominant backgrounds are estimated.
In this paper, the data taking schemes are optimized for a total
integrated luminosity of 3.2 ab−1 [30]. The results of the
optimization can be scaled to other integrated luminosities.
Table 4 lists the precisions of mW and ΓW with the threshold
scan method, varying the total luminosity between 1 ab−1 and
15 ab−1. The three data taking schemes in the table are the
optimized results described above, and all the uncertainties
are statistical only. One can obtain the total uncertainty by
adding the systematic uncertainties summarized in Table 3.
The results for an integrated luminosity of 15 ab−1 are com-
parable with FCC-ee’s results: (1) for the one energy point
scheme, our result of ΔmW = 0.31 MeV at 162.3 GeV is
slightly worse than that of the FCC-ee study, i.e., 0.25 MeV
at 161.4 GeV . Since the uncertainty of ΓW has significant
contribution to ΔmW around the most statistically sensitive
energy point (up to 8 MeV), so the one at 162.3 GeV is chosen
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Table 4 The expected precisions of mW and ΓW with the optimized
data-taking schemes, corresponding to different luminosity inputs (sta-
tistical uncertainties only). The last column is the result of FCC-ee,
where the systematic uncertainties are reckoned to be under control to
a negligible level of impact [33]. Several systematic uncertainties have
been studied in section 3.2, and the numerical results with the assump-

tions listed in Table 1 can be found in Tables 2 and 3. It should be noted
that the uncertainty related to the theoretical precision of the W -pair
cross section is not include. Its improvement is necessary for the high
precision measurement of mW (ΓW ), as well as the controlling of other
systematic uncertainties

Data-taking scheme mass or width (MeV) Luminosity (ab−1) FCC-ee
1 3 6 9 12 15 15

One point ΔmW 1.15 0.67 0.47 0.39 0.33 0.30 0.25

Two points ΔmW 1.42 0.82 0.58 0.47 0.41 0.37 0.41

ΔΓW 5.21 3.02 2.13 1.74 1.51 1.35 1.10

Three points ΔmW 1.43 0.82 0.58 0.48 0.41 0.37 –

ΔΓW 5.24 3.02 2.14 1.75 1.51 1.35 –

in this work, where the W -pair cross section is insensitive to
the ΓW and the statistical uncertainty of the mW increases a
bit. (2) for the two energy points scheme, since the W mass is
thought to be more important than its width, it’s reasonable
to allocate more luminosity to the energy point that bene-
fits the mW measurement. So the precision of mW is slightly
better than FCC-ee’s result, contrary to the precision on ΓW .
It is worth noting that the contribution to ΔmW from sys-
tematic uncertainties will become more important with the
increasing of the luminosity, so the consideration of the sys-
tematic uncertainties is more important. With this in mind,
the three energy points data-taking scheme is preferred since
it allows for better control and treatment of the systematic
uncertainties.

5 Summary

In this paper, different data-taking schemes are investigated
for the precise measurements of the W boson mass and
width at further circular electron positron colliders, such as
the CEPC and FCC-ee. For a fixed total integrated lumi-
nosity, L = 3.2 ab−1, and the expectations of the system-
atic uncertainties, taking data at three energy points is found
to be optimal with the energies and luminosity allocations
listed in Eq. 23. The corresponding projected uncertainties
on the W boson mass and width are ΔmW ∼ 1.0 MeV and
ΔΓW ∼ 3.4 MeV, respectively. Various systematic uncer-
tainties are taken into account in the investigation. The one
related to the theoretical calculation of the W -pair cross sec-
tion is discussed but not included in the numerical results
and listed separately. It’s critical to improve the calculation
for the high precision measurement of mW (ΓW ) using the
threshold scan method.
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