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Abstract Previously, the Maxwell equal-area law has been
used to discuss the conditions satisfied by the phase tran-
sition of charged AdS black holes with cloud of string and
quintessence, and it was concluded that black holes have
phase transition similar to that of vdW system. The phase
transition depends on the electric potential of the black hole
and is not the one between a large black hole and a small
black hole. On the basis of this result, we study the rela-
tion between the latent heat of the phase transition and the
parameter of dark energy, and use the Landau continuous
phase transition theory to discuss the critical phenomenon of
the black hole with quintessence and give the critical expo-
nent. By introducing the number density of the black hole
molecules, some properties of the microstructure of black
holes are studied in terms of a phase transition. It is found
that the electric charge of the black hole and the normaliza-
tion parameter related to the density of quintessence field
play a key role in the phase transition. By constructing the
binary fluid model of the black hole molecules, we also dis-
cuss the microstructure of charged AdS black holes with a
cloud of strings and quintessence.

1 Introduction

As an interdisciplinary area of general relativity, quantum
mechanics, thermodynamics and statistical physics, particle
physics and string theory, black hole physics plays a very
important role in modern physics. The investigation of the
thermal properties and the internal microstructure of black
holes has always been one of the topics of interest to theoret-
ical physicists. Recently, based on the study of the thermo-
dynamic properties of black holes, some researchers have
adopted Boltzmann’s profound idea, i.e., a black hole can
change its temperature by absorbing and emitting matter. An
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object with a temperature has a microstructure. According to
this view, the literature [1–3] proposes that black holes are
also composed of valid molecules. They think that just as our
rooms are filled with air molecules, the interior of a black
hole is filled with a kind of “black hole molecule”. These
black hole molecules, of course, give the number of micro-
scopic states of a black hole in a statistical physical sense,
and hence the entropy of a black hole. They believe that this
internal entropy is equivalent to the “Bekenstein–Hawking
entropy” of the black hole horizon, and that the black hole
molecules themselves carry microscopic degrees of freedom
of the black hole’s entropy. Based on this hypothesis, the
concept of molecular density of black holes is introduced to
obtain the phase transition of black holes. It is given by

m = 1

v
= 1

2l2pr+
, (1.1)

where lp is the Planck length, lp = √
h̄G/c3. One intro-

duces m ≡ (mSBH − mLBH)/mc with the aid of the critical
molecules number density mc = 1/(2

√
6Q). According to

the research, the order parameter has a nonzero value when
the system passes through the first-order phase transition of
a small black hole and a large one. The value of the order
parameter gradually decreases as the temperature increases,
and it becomes zero at the critical point. To some extent, the
microstructure of small black holes and large black holes will
converge at the critical point. It is found that the variation of
the molecular density of the black hole is the internal cause of
the black hole phase transition. By studying the “black hole
molecules” inside a black hole, their collective behavior can
be compared to that of a fluid. In other words, these ‘black
hole molecules’ are like a “fluid” inside the black hole. When
a black hole is at a certain temperature, given the pressure of
these black hole molecules (the cosmological constant), the
black hole can undergo a phase transition, known as a “big
black hole” and “small black hole” phase transition, in which
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the size of the black hole can change suddenly. For example,
a large black hole can suddenly shrink in half its size and
become a small black hole.

From the point of view of mathematics, one uses string
theory and supersymmetry theory to explain the microstruc-
ture of black holes. From the perspective of thermodynam-
ics, the hypothesis of “black hole molecules” and “space-
time atoms” has been proposed to explore the microscopic
behavior of black holes [4]. These two aspects of research
have made some progress. The microscopic behavior of
the thermal stable AdS black hole was studied completely
from the thermodynamic point of view by Ruppeiner’s ther-
modynamic geometry method, combining the “black hole
molecule” hypothesis and the concept of microscopic particle
number density in [5–8], and one has given a natural expla-
nation for the microscopic behavior of the black hole. It is
pointed out that the interaction between black hole molecules
in the black hole is mainly attractive, and the description of
the molecular potential of the “black hole” was proposed for
the first time. In addition, based on the proposed description
of the molecular potential, the correction of the molecular
potential to the equation of state of the black hole is calcu-
lated and the rationality of the correction term is analyzed.

Recent studies have shown that the RN-AdS black hole
has similar thermodynamic critical characteristics to a van
der Waals (vdW) system. The cosmological constant is inter-
preted as the pressure in the thermodynamic system [9–59].
With these issues, the thermodynamic characteristics and
critical phenomena of AdS and dS black holes are stud-
ied, and the first-order and second-order phase transitions
of RN-AdS black holes are obtained [8,9,60]. However,
a Schwarzschild–de Sitter black hole without charge has
no phase transition like a vdW system [61]. Therefore, the
charge of the black hole plays a key role in the phase tran-
sition, and the effect of the black hole charge on the phase
transition must be considered in the microstructure theory of
the black hole.

In the case of a vdW system, the microstructure of the sys-
tem changes as the fluid undergoes a liquid–gas phase tran-
sition, and thus the physical properties of the system change
[1–3]. It is well known from the study of the black hole sys-
tem that when the system meets the requirement of thermody-
namic equilibrium stability in isothermal or isobaric process,
the P–V curve or T –S curve describing the change of the
system is discontinuous, and the system has the latent heat
of the phase transition when it crosses the two-phase coex-
istence curve. The system has different physical properties
in the two phases and thus it has a different microstructure
in the different phases. In the literature [62], the Maxwell
equal-area law was used to discuss the critical behavior of
the RN-AdS black hole, and it was found that the generation
of the phase transition of the RN-AdS black hole was mainly
determined by the electric potential at the event horizon of the

black hole, rather than simply being determined by the size
of the black hole. Recent observations showed that the dark
energy is prevailing in our universe [64,65]. The equation of
state of dark energy approaches the cosmological constant or
vacuum energy expressions [66]; however, dynamical dark
energy is also possible [67], and quintessence could affect
the black hole space-time [68].

It is showed that, in the presence of quintessence, the
charged AdS black hole exhibits a small–large black hole
phase transition, which is similar to the liquid–gas phase tran-
sition of vdW fluid. Near the critical point, the heat capacity
will diverge. It also shares the critical phenomena and scal-
ing laws [69,71]. For we have the dark energy correspond-
ing to the state parameter α and the state equation p = ωρ

with the corresponding parameter ω in the charged AdS black
holes with a cloud of strings and quintessence (charged AdSQ
black hole). So, the study of the critical behavior of a charged
AdSQ black hole must address the effect of α and ω on the
phase transition. In order to make the conclusion universal,
two groups of independent variables, P–V and T –S, were
selected to discuss the critical behavior of the charged AdSQ
black hole. The microscopic interpretation of the black hole
phase transition and the critical exponential thermodynamic
geometry method, as a unique perspective, played an impor-
tant role in the study of the black hole phase transition. Rup-
peiner’s clear physical picture makes it widely used [6–8,72–
77,79,80].

This paper is organized as follows. In Sect. 2, we give
a brief review for the thermodynamic quantity of a charged
AdSQ black hole. In Sect. 3, we choose different conjugate
variables and use Maxwell’s equal-area law to study the phase
transition of the charged AdSQ black hole, which is not a sim-
ple phase transition between a small black hole and a large
black hole. The first-order phase transition of a black hole
is a mutation for the potential φ = Q

r+ and the quintessence

potential � = 3α

r3ω+1+
. On the other hand, this reflects that

black holes produce first-order liquid–vapor phase transitions
similar to vdW systems and have coexistence zones. Because
the charged AdSQ black hole molecule is affected by an elec-
tric potential (electric field) and a quintessence potential,
the black hole molecule produces orientation polarization
and displacement polarization, which makes the black hole
molecule have a certain orientation. Under the dual action
of the quintessence potential and thermal motion, the orien-
tation degree of the black hole molecules is different. The
orientation degree of the black hole molecules determines
the phase of the black hole. Guided by this thought, in Sect.
4, we analyze the influence of each parameter on the latent
heat of the phase transition when the first-order phase tran-
sition occurred in charged AdSQ black hole. In Sect. 5, the
electric potential and quintessence potential were selected as
the order parameters for studying the black hole phase transi-
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tion, and Landau continuous phase transition theory was used
to analyze the continuous phase transition of the charged
AdSQ black hole. In Sect. 6, we try to understand some
properties of the microstructure of the black hole molecules
by analyzing the influence of the value of x under differ-
ent parameters (that is, taking different temperatures) on R.
Section 7 is a summary. For simplicity, we adopt the units
h̄ = c = kB = G = 1.

2 Charged AdS black hole

In the presence of quintessence, the line element of a charged
AdS black hole is [63–71]

ds2 = − f (r)dt2 + f −1dr2 + r2d�2
2, (2.1)

where the metric function is given by

f (r) = 1 − 2M

r
+ Q2

r2 − �r2

3
− αr−3ω−1. (2.2)

Here the parameters M , Q and � are, respectively, related
to the black hole mass, charge and cosmological constant.
ω is the state parameter for quintessence matter under the
state equation p = ωρ. If ω satisfies −1 < ω < −1/3,
the quintessence will give the universe accelerated expan-
sion. The parameter α is related to the energy density of
quintessence matter.

In the extended phase space, the cosmological constant is
treated as a thermodynamic pressure,

P = − �

8π
. (2.3)

Solving the equation f (r+) = 0, one can obtain the event
horizon radius r+, with which the mass of the black hole
mass can be expressed as

M = r+
2

+ Q2

2r+
+ 4π P

3
r3+ − α

2
r−3ω+ . (2.4)

According to the Bekenstein–Hawking entropy–area rela-
tion, the black hole entropy is

S = A

4
= πr2+. (2.5)

Treating the state parameter α as a new thermodynamic quan-
tity, the first law of the black hole is [69,71]

dM = T dS + φdQ + V dP + �dα. (2.6)

Employing it, we can obtain the thermodynamic quantities

T = f ′(r+)

4π
= 1

4πr+

(

1 − Q2

r2+
+ 8πPr2+ + 3ωαr−3ω−1+

)

,

φ = Q

r+
, V = 4

3
πr3+, � = −1

2
r−3ω+ . (2.7)

It has the same critical behavior as that of the vdW fluid.
Especially, when the parameter ω = −2/3, the analytical
critical point can be obtained [69],

rc+ = √
6Q, Tc =

√
6

18πQ
− α

2π
, Pc = 1

96πQ2 . (2.8)

3 The equal-area law of the charged AdSQ black hole in
extended phase space

Keeping Q, α and ω of the charged AdSQ black hole as
constants, for Eq. (2.7), the equation of states of the charged
AdSQ black hole is analogous to the simple system of the
general thermodynamics system. The equation of states can
be written in the form of f (T, P, V ) = 0. First, we use
the Maxwell equal-area law to study the condition of the
phase transition occurs with Q, α and ω fixed and with the
differential conjugate variables P–V and T –S.

3.1 The construction of equal-area law in P–V diagram

Taking Q, α and ω of the charged AdSQ black hole as con-
stants, the temperature T0 (T0 ≤ Tc), Tc is critical tempera-
ture. The horizontal axes of the two-phase coexistence region
are V2 and V1, and the vertical axis is P0, which depends on
the radius r+ of the black hole horizon. We can obtain the
following expression by Maxwell’s equal-area laws:

P0(V2 − V1) =
V2∫

V1

PdV =
r2∫

r1

4P(r)πr2dr . (3.1)

From Eq. (3.1), we can obtain

P0 = T0

2r1
− 1

8πr2
1

+ Q2

8πr4
1

− 3ωα

8π
r−3ω−3

1 ,

P0 = T0

2r2
− 1

8πr2
2

+ Q2

8πr4
2

− 3ωα

8π
r−3ω−3

2 , (3.2)

2P0 = 3T0(1 + x)

2r2(1 + x + x2)
− 3

4πr2
2 (1 + x + x2)

+ 3Q2

4πr4
2 x(1 + x + x2)

− 3α(1 − x3ω)

4πr3ω+3
2 x3ω(1 − x3)

,

(3.3)

where x = r1/r2. From Eq. (3.2), we can obtain

0 = T0 − 1

4πr2x
(1 + x) + Q2

4πr3
2 x

3
(1 + x2)(1 + x)

− 3ωα(1 − x3ω+3)

4πr3ω+2
2 x3ω+2(1 − x)

, (3.4)

2P0 = T0

2r2x
(1 + x) − 1

8πr2
2 x

2
(1 + x2)
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+ Q2

8πr4
2 x

4
(1 + x4) − 3ωα(1 + x3ω+3)

8πr3ω+3
2 x3ω+3

. (3.5)

From Eqs. (3.3) and (3.5), we can obtain

1

4πr2x
= T0(1 + x)(1 − x)2

(1 + x − 4x2 + x3 + x4)

+Q2[(1 + x4)(1 + x + x2) − 6x3]
4πr3

2 x
3(1 + x − 4x2 + x3 + x4)

− 3α
[
ω(1 + x3ω+3)(1 − x3) − 2x3(1 − x3ω)

]

4πr3ω+2
2 x3ω+2(1 − x)(1 + x − 4x2 + x3 + x4)

.

(3.6)

Form Eq. (3.4), we obtain

T0 = (1 + x)

4πr2x
− Q2

4πr3
2 x

3
(1 + x)(1 + x2)

+ 3ωα(1 − x3ω+3)

4πr3ω+2
2 x3ω+2(1 − x)

. (3.7)

Substituting Eq. (3.7) into (3.6), we get

r2
2 = Q2

x2

(1 + 2x − 6x2 + 2x3 + x4)

(1 − x)2

+ 3α

r3ω−1
2 x3ω+2(1 − x)3

[
ω(1 − x3ω+3)(1 − x2)(1 − x)

−ω(1 + x3ω+3)(1 − x3) + 2x3(1 − x3ω)
]

= Q2 f1(x) + 3α

r3ω−1
2

f2(x, ω)

= Q2 f1(x) − r2
2 �2 f2(x, ω), (3.8)

where f1(x) = (1+4x+x2)

x2 , the quintessence potential of the

black hole horizon �2 = 3α

r3ω+1
2

,

f2(x, ω) = ω(1 − x3ω+3)(1 − x2)(1 − x) − ω(1 + x3ω+3)(1 − x3) + 2x3(1 − x3ω)

x3ω+2(1 − x)3 .

When ω = −2/3, f2(x,−2/3) = 0, Eq. (3.8) can be written

as r2
2 = Q2

x2 (1 + 4x + x2) = Q2 f1(x), this result being
identical with the one of the RN-AdS black hole [62]. When
ω �= −2/3, r1 = r2 = rc, from Eq. (3.8) we can find that the
radius of the horizon rc of the critical point satisfies

r2
c = 6Q2 − 9ωα

2r3ω−1
c

(ω + 1)(3ω + 2)

= 6Q2 + 3r2
c

4π
Bc(ω + 1)(3ω + 2),

so

1

6
= Q2

r2
c

+ ρcAc

8π
(ω + 1)(3ω + 2)

= φ2
c + Bc

8π
(ω + 1)(3ω + 2), (3.9)

where Ac = 4πr2
c is the area of the critical horizons,

ρc = − 3ωα

2r3(ω+1)
c

is the density of quintessence of the criti-

cal horizons, Bc = ρcAc = − 6ωαπ

r3ω+1
c

is the quintessence of

the unit thickness of the black hole horizon, φc is the charged
potential of the critical horizon, rc is the radius of the horizon.

When Bc and ω is given, from Eq. (3.9) we can obtain
φc. When the charged Q is given, from φc we can get the
critical radius rc. According to Eq. (3.9), when the parameter
ω was set, there is a second phase transition for the charged
AdSQ black hole. The sum Bc of the electric potential φc and
quintessence on the event horizon of the charged AdSQ black
hole is a constant. Therefore, the position of the second-order
phase transition point of the black hole is determined by the
electric potential φc at the event horizon of the black hole and
the sum of quintessence potential per unit thickness on the
event horizon of the black hole. When ω = −2/3, the second
phase transition position of the charged AdSQ black hole is
only related to the electric potential, which is the same as a
charged AdS black hole [62].

When x → 1, from Eq. (3.7) we can obtain the critical
temperature Tc, which satisfies

Tc = 1

3πrc
− 3ωα(3ω − 1)(ω + 1)

4πr3ω+2
c

= 1

3πrc

(
1 + 3Bc(3ω − 1)(ω + 1)

8π

)
. (3.10)

When x → 1, from Eq. (3.3) we can obtain the critical pres-
sure Pc, which satisfies

Pc = 1

6πr2
c

+ Q2

8πr4
c

− 3ω2α(3ω + 2)

8πr3ω+3
c

= 1

6πr2
c

(
1 + 3

4
φ2

c + 3ωBc(3ω + 2)

8π

)
. (3.11)

When ω = −2/3, the critical position rc, the critical tem-
perature Tc and the critical pressure return to the well-known
values of the conclusion in [34,69,71]. Substituting Eq. (3.8)
into Eq. (3.7), we get

T0 = (1 + x)

πr2x2 f1(x)
+ 3α

4πxr3ω+2
2

[
(1 + x)(1 + x2) f2(x, ω)

1 + 4x + x2

+ω(1 − x3ω+3)

x3ω+1(1 − x)

]
. (3.12)

Taking T0 = χTc = χ
3πrc

−χ
3ωα(3ω−1)(ω+1)

4πr3ω+2
c

, with 0 < χ ≤
1, and substituting it into Eq. (3.12), we can obtain

χ

3rc

(
1 + 3Bc(3ω − 1)(ω + 1)

8π

)
= (1 + x)

r2x2 f1(x)
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Fig. 1 The simulated phase transition and the boundary of a two-phase coexistence on the base of isotherms in the P–V diagram for charged
anti-de Sitter black holes. The temperature of isotherms decreases from top to bottom. The green line is the critical isotherm

− Bcr3ω+1
c

8πωxr3ω+2
2

[
(1 + x)(1 + x2) f2(x, ω)

1 + 4x + x2

+ω(1 − x3ω+3)

x3ω+1(1 − x)

]
. (3.13)

For given χ , Bc, ω and Q, substituting Eq. (3.8) into Eq.
(3.13), we can obtain the value of x at a certain temperature.
Substituting the obtained value x into Eq. (3.8), we can get
r2, and we get r1 from r1 = xr2.

From

P = χTc

2r+
− 1

8πr2+
+ Q2

8πr4+
+ Bcr3ω+1

c

16π2 r−3ω−3+ , (3.14)

we can give the P–V graph for the temperature T0 = χTc,
and constant Q, Bc and ω �= −2/3 in Fig. 1. The horizontal
line in Fig. 1 is the region where the two phases coexist, and
the intersection point of the horizontal line and the curve is
the position of the first-order phase transition point of the
black hole. To show the effect of the parameters Bc and ω on
the phase transition point, at the same temperature, we draw
the P–V curves of different Bc and ω in Fig. 2. As shown in
Fig. 2, the pressure for the phase transition point increases,
and the coexistence zone of the two phases decreases with
the value of Bc decrease at the same black hole temperature.
The pressure for the phase transition point increases and the

coexistence zone of the two phase decreases as the value of
ω decreases at the same black hole temperature.

3.2 The construction of equal-area law in T –S diagram

Taking the invariable cosmological constant l, the horizon-
tal axes of the two-phase coexistence region are S2 and S1,
respectively. The vertical axis is T0(T0 ≤ Tc) which depends
on the radius r+ of the black hole event horizon. We can
obtain by Maxwell’s equal-area laws

T0(S2 − S1) =
S2∫

S1

T dS+

=
r2∫

r1

1

2

(

1 + 3r2+
l2

− Q2

r2+
+ 3ωαr−3ω−1+

)

dr+,

(3.15)

T0 = 1

4πr2

(

1 + 3r2
2

l2
− Q2

r2
2

+ 3ωαr−3ω−1
2

)

,

T0 = 1

4πr1

(

1 + 3r2
1

l2
− Q2

r2
1

+ 3ωαr−3ω−1
1

)

.

(3.16)
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Fig. 2 The simulated phase transition and the boundary of a two-phase coexistence on the base of isotherms in the P–V diagram for charged
anti-de Sitter black holes with differential Bc and ω. The left figure shows Q = 1, ω = −1/2, the right figure Q = 1, Bc = 0.1

From Eq. (3.15) we can obtain

2πT0r
2
2 (1 − x2) = r2(1 − x) + r3

2

l2
(1 − x3)

−Q2 1 − x

r2x
+ α(1 − x3ω)

r3ω
2 x3ω∗ . (3.17)

From Eq. (3.16) we get

0 = −1 − x

r2x
+ 3r2

l2
(1 − x) + Q2

r3
2 x

3
(1 − x3)

−3ωα(1 − x3ω+2)

r3ω+2
2 x3ω+2

, (3.18)

8πT0 = 1 + x

r2x
+ 3

l2
r2(1 + x) − Q2

r3
2 x

3
(1 + x3)

+3ωα(1 + x3ω+2)

r3ω+2
2 x3ω+2

. (3.19)

From Eqs. (3.17), (3.18) and (3.19) we can obtain

r2
2

l2
x = 1 − Q2(1 + x − 4x2 + x3 + x4)

r2
2 x

2(1 − x)2

+3ωα(1 + x3ω+2)(1 − x2) − 4αx2(1 − x3ω)

r3ω+1
2 x3ω+1(1 − x)3

.

(3.20)

Substituting Eq. (3.18) into Eq. (3.20), we get

1 = Q2(1 + 2x − 6x2 + 2x3 + x4)

r2
2 x

2(1 − x2)

−3α[ω(1 − x)(1 + 2x + 2x3ω+2 + x3ω+3) − 2x2(1 − x3ω)]
r3ω+1

2 x3ω+1(1 − x)3
,

(3.21)

we find that Eq. (3.21) is equivalent to Eq. (3.8).

From Fig. 3, we find that at the same black hole pres-
sure, the temperature decreases, and the region of coexis-
tence increases as the transition point increases as the value
of Bc increases, the temperature decreases, and the region of
coexistence increases. Meanwhile the temperature decreases
and the coexistence zone of the two phases increases with
the decrease of the value of ω.

According to Eqs. (3.8) and (3.13), if the temperature T0

and ω are given, the location r2 or r1 of the phase transition
in a charged AdSQ black hole is related to the charge Q and
α. Thus, the phase transition in the charged AdSQ black hole
at a given temperature of T0 depends on the electric potential
φ2 and the quintessence potential �2 at the event horizon of
the black hole, or φ1 and �1. It is not simply related to the
event horizon of the black hole r2 or r1.

For constant Q and α, at a given temperature T0(T0 < Tc),
when the radius of the event horizon of the black hole is
r+ < r1, a charged AdSQ black hole corresponds to the
liquid phase of the van der Waals system. When the event
horizon radius of the black hole is r+ > r2, the charged
AdSQ black hole corresponds to the vapor phase of the van
der Waals system. When the event radius of the horizon of
the black hole is r1 ≤ r+ ≤ r2, the charged AdSQ black hole
corresponds to the vapor–liquid coexistence region of the van
der Waals system. Thus, according to the electric potential
of three different states, we get a charged AdSQ black hole
at a given temperature of T < Tc, the same pressure P0,
and the same charge Q and α, corresponding to three dif-
ferent states; φ and � are, respectively, called high potential
and high quintessence potential phase (referred to as high
coefficient phase), middle potential and middle quintessence
potential phase (referred to as medium coefficient phase) and
low potential and low quintessence potential phase (referred
to as low coefficient phase). They, respectively, correspond to
the liquid phase, liquid-vapor coexistence phase, and vapor
phase of a van der Waals system.
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Fig. 3 The simulated phase transition and the boundary of a two-phase coexistence on the base of isobaric in the T –S diagram for charged anti-de
Sitter black holes with differential Bc and ω. The left figure shows Q = 1, ω = −1/2, the right figure Q = 1, Bc = 0.1

4 The latent heat of the phase transition of the charged
AdSQ black hole

Due to the lack of complete knowledge of the chemical ther-
mal potential of the ordinary thermodynamic systems, the
phase diagram, which is the P–T curve when the two phases
α and β are in equilibrium, is determined directly by exper-
iment. The slope of the P–T curve is determined by the
Clapeyron equation

dP

dT
= L

T (vβ − vα)
(4.1)

where L = T (sβ − sα), sα and sβ is the molar entropy of
phase α and β, vα and vβ is the molar volume of phase α

and β. For the general thermodynamic system, the Clapeyron
equation is in good agreement with the experimental results,
which provides a direct experimental verification for the cor-
rectness of thermodynamics point of view.

For the charged AdSQ black hole thermodynamic system,
substituting Eq. (3.8) into Eq. (3.12) we get the latent heat L
of the phase transition of the black hole,

L = πT (1 − x2)r2
2

= π(1 − x2)r2
2

[
(1 + x)

πr2x2 f1(x)
+ 3α

4πxr3ω+2
2

×
(

(1 + x)(1 + x2) f2(x, ω)

1 + 4x + x2 + ω(1 − x3ω+3)

x3ω+1(1 − x)

)]
.

(4.2)

Given Q, ω and Bc, by Eqs. (3.8) and (4.2), the latent heat
of the phase transition is a function of x . When Q = 1, the
effects of different ω and Bc on the latent heat of the phase
transition are shown in Tables 1 and 2.

From Tables 1 and 2, at the same value of Bc, the latent heat
of the phase transition increases with the value of ω increas-
ing. At the same value of ω, the latent heat decreases with

Table 1 The latent heat of the phase transition for different ω with
Bc = 0.10

Bc = 0.10 ω = −7/12 ω = −1/2 ω = −5/12

L

x = 0.4 0.5557 0.5561 0.5572

x = 0.5 0.3921 0.3923 0.3930

x = 0.6 0.2765 0.2767 0.2771

Table 2 The latent heat of the phase transition for different Bc with
ω = −1/2

ω = −1/2 Bc = 0.05 Bc = 0.10 Bc = 0.15

L

x = 0.4 0.5597 0.5561 0.5526

x = 0.5 0.3948 0.3923 0.3899

x = 0.6 0.2784 0.2767 0.2750

the increase of the value of Bc. As the value of x increases,
the latent heat decreases. Tables 1 and 2 show that at the
same temperature and pressure, the black hole from r1 to
r2 through the two-phase coexistence zone needs to absorb
heat—the latent heat of the phase transition, which means
that the black hole molecules inside the black hole have dif-
ferent microstructures when they are in phase 1 and 2.

5 The microcosmic explanation of the phase transition
for charged AdSQ black hole

According to Eqs. (3.8) and (3.13), given T0, Bc and ω,
when the black hole system phase transition occurs, the
molecular potential φ = Q

r+ and the quintessence potential

� = − Bcr3ω+1
c

2ωπr3ω+1+
= 3α

r3ω+1+
show a mutation, which reflects the

inconsistent microstructures of the black hole molecules in
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Fig. 4 The �(T ) − x diagram for charged anti-de Sitter black holes with differential Bc and ω. The left figure Q = 1, ω = −1/2, the right figure
Q = 1, Bc = 0.1

different phases. When the temperature is fixed, the electric
potential and quintessence potential of the two-phase system
are, respectively, determined by

φ2 = Q

r2
, �2 = 3α

r3ω+1
2

,

φ1 = Q

r1
= Q

xr2
, �1 = 3α

x3ω+1r3ω+1
2

, (5.1)

where x is given by Eq. (3.13). When the temperature T0 ≤
Tc, 0 < x ≤ 1, one takes the order parameter

�(T ) = φ1 − φ2

φc
+ �1 − �2

�c
= −φ

φc
− �

�c

= rc(1 − x)

r2x
+ r3ω+1

c (1 − x3ω+1)

r3ω+1
2 x3ω+1

. (5.2)

When χ , Bc, ω, and Q are given, substituting Eq. (3.8) into
Eq. (3.13), one can obtain the solution to x and r2 for the
corresponding temperature. Substituting χ , x , r2, and rc into
Eq. (5.2), we get �(T ) in Fig. 4 and we find that the curves
are coincident with the differential Bc and ω. In other words,
the quintessence parameters Bc and ω have little effect on
the order parameter.

Recently, the microstructure of the phase transition of
black holes has been studied, and the phase transition
between black holes of different sizes is caused by the differ-
ent density of molecules of black holes with different sizes
[1–6]. Considering the influence of charge and quintessence
on the phase transition, we re-examined the physical mech-
anism of the phase transition in a charged AdSQ black hole.

The Landau theory of a continuous phase transition is
characterized by changes in the degree of material order and
the accompanying changes in the symmetry of matter. Since
the black hole has the characteristics of ordinary thermody-
namics, whether the phase transition of the black hole also
shows the symmetry change similar to the phase transition of
ordinary thermodynamics is a question that generally is paid

attention to. According to the above discussion, we believe
that the phase transition in a charged AdSQ black hole is
also a symmetry change. When the temperature of the black
hole is lower than the critical point temperature and the black
hole molecule is at a high coefficient phase 1, the black hole
molecule inside the black hole is subjected to a strong elec-
tric potential φ. The black hole molecule has a certain ori-
entation under the action of the strong electric potential and
the higher quintessence potential. The black hole molecules
are in a relatively ordered state with low symmetry. At the
same temperature, when the black hole molecule is in the
low coefficient phase 2, the potentials φ and � that cause
the orientation of the black hole molecule are weakened, and
the order degree of the black hole molecule is relatively low
and the symmetry is relatively high. With the increase of
temperature, the thermal motion of the black hole molecules
tends to weaken the order orientation. But the temperature is
not too high, there are still some black hole molecules that
have a certain orientation. When the temperature of the black
hole is above the critical temperature, the thermal motion of
the black hole molecules increases and the orientation of the
black hole molecules tends to zero. The phase below the crit-
ical temperature has low symmetry, higher order and nonzero
�(T ). The phase above the critical temperature has higher
symmetry, lower order, and the order parameter �(T ) is zero.
As the temperature decreases, the order parameter �(T ) con-
tinuously changes from zero to nonzero at the critical point.

In Landau’s idea, the order parameter �(T ) has a small
value near the critical point Tc, and one can expand the Gibbs
energyG(T, φ) near Tc as a power of �(T ). Considering that
the phase transition of the system is due to the change of order
degree of the black hole molecules inside the black hole, then
the system is symmetric with respect to the transformation
φ � −φ. When �(T ) can be taken as the order parameter
and the thermodynamic quantity of the black hole G(T, φ)

is expanded according to the order parameter perturbation
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series, there is no odd power term of the order parameter, but
only the even-order term of the order parameter. So

G(T, φ) = G0(T ) + 1

2
a(T )�2 + 1

4
b(T )�4 + · · · , (5.3)

where G0(T ) is the Gibbs function when �(T ) = 0. We
determine the functional relationship between�(T ) and tem-
perature T by using the minimum stable equilibrium Gibbs
function at T , P constant. Note that the Gibbs function is
written as G(T, φ), where � is not an independent variable.
According to the requirement that G(T ) has minimum value
in a stable equilibrium state, � should have three solutions:

� = 0, � = ±
√

−a

b
. (5.4)

This solution � = 0 concerns the disordered state, corre-
sponding to the temperature range T > Tc at a > 0. This

nonzero solution � = ±
√

− a
b represents an orderly state,

corresponding to the T < Tc temperature range at a < 0.
The order parameter continues to shift from zero to

nonzero at Tc, so we should have a = 0 at T = Tc. we
can just take near the critical point

a = a0

(
T − Tc

Tc

)
= a0t, a0 > 0. (5.5)

Note that � = ±
√

− a
b is real. When T < Tc, a < 0, we

give the constant b > 0. From this we can get

� = 0, t > 0,

� = ±
(a0

b

)1/2
(−t)1/2, t < 0. (5.6)

Various ferromagnetic systems have been found to obey the
following cooperative experimental laws in the critical point
field:

• When t = t−tc
Tc

→ −0, the spontaneous magnetization
follows the rules

M ∝ (−t)β, t → −0. (5.7)

• The zero field magnetization of various ferromagnetic
substances χ = (

∂M
∂H

)
T is divergent at t → ±0. The

change rule of χ with t is

χ ∝ t−γ , t → +0; χ ∝ (−t)−γ ′
, t → −0. (5.8)

• At t = 0 and very weak magnetic field, the relationship
between the magnetization of M and the external mag-
netic field of H is

M ∝ H1/δ. (5.9)

• At t → ±0, the zero field specific heat capacity of the
ferromagnetic material, cH(H = 0), follows the law

cH ∝ t−ᾱ, t > 0; cH ∝ (−t)−ᾱ′
, t < 0. (5.10)

The dependence of � on t from Eq. (5.6) is the same as
Eq. (5.7), with the critical index of β = 1/2. According to
the method of the literature [62], we can obtain the critical
exponent ᾱ = ᾱ′ = 0, γ = γ ′ = 1, δ = 3, and the entropy
of the charged AdSQ black hole near the critical point.

The entropy of disordered phase is S = S0, and the entropy
of the ordered phase is

S = S0 + a2
0 t

2bTc
. (5.11)

When t = 0, the entropy of the ordered phase is equal to the
entropy of the disordered phase. It means that the entropy of
the black hole is continuous at the critical point.

6 Thermodynamic geometry of the charged AdSQ
black hole

From the discussion in Sect. 5, we find that Eq. (5.3) contains
parameters of a and b related to specific system character-
istics, but the critical exponent given above is irrelevant to
a and b. And is well known there are similar problems in
the general thermodynamic system. The cause is basically
that when we discuss the continuous phase transition, we do
not consider the strong fluctuation of the order parameters
in the critical point domain. Fortunately, the famous Rup-
peiner geometry comes from the thermodynamic fluctuation
theory. The singularity of the curvature scalar of correspond-
ing thermodynamic geometry is studied to reveal the phase
transition of the black hole [72,73]. Therefore, we can reveal
the microstructure of the black hole molecules by studying
the Ruppeiner geometry. We take a (S, P) fluctuation, with
fixed Q, Bc and ω. One can obtain the Ruppeiner curvature
scalar (Ricci scalar) as

R =
(
(8PS + 1)S

3(ω+1)
2 − πQ2S

1
2 (3ω+1) + 3αSπ

1
2 (3ω+1)ω

)

× (−2πQ2(16PS + 3)S3ω+1 + 2(8PS + 1)S3ω+2

+3απ
1
2 (3ω+1)ωS

3(ω+1)
2 (24PS(ω + 1) + 3ω + 5)

+4π2Q4S3ω − 3αQ2π
3(ω+1)

2 ω(3ω + 7)S
3(ω+1)

2

+27α2Sπ3ω+1ω2(ω + 1)
)
/2S3/2

×
(
S3�/2(−πQ2 + S + 8PS2) + 3απ(1+3�)/2

√
S�

)3
.

(6.1)

At the same temperature R is divided into two parts, one
representative φ2 = Q

r2
, �2 = − 1

2r3ω
2

, another representative

φ1 = Q
r1

= Q
xr2

, �1 = − 1
2x3ωr3ω

2
. Substitute Eqs. (3.5) and
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Table 3 The Ruppeiner curvature scalar for different ω with Bc = 0.10

Bc = 0.10 ω = −7/12 ω = −1/2 ω = −5/12

R(r1) R(r2) R(r1) − R(r2) R(r1) R(r2) R(r1) − R(r2) R(r1) R(r2) R(r1) − R(r2)

x = 0.3 0.008920 0.005250 0.003670 0.010071 0.005520 0.004550 0.010580 0.005439 0.005140

x = 0.4 0.016951 0.008347 0.008604 0.018251 0.008790 0.009461 0.018689 0.008688 0.010001

x = 0.5 0.021818 0.011697 0.010120 0.023264 0.012345 0.010918 0.024008 0.012599 0.011408

x = 0.6 0.024792 0.015153 0.009639 0.026376 0.016034 0.010341 0.026677 0.015927 0.010750

x = 0.7 0.026583 0.018608 0.007975 0.028294 0.019747 0.008546 0.028530 0.019657 0.008872

x = 0.8 0.027608 0.021985 0.005623 0.029438 0.023405 0.006032 0.029610 0.023347 0.006263

x = 0.9 0.028127 0.025230 0.002897 0.030067 0.026952 0.003115 0.030178 0.026941 0.003236

x = 1 0.028391 0.028391 0 0.030361 0.030360 0 0.030176 0.030176 0

Table 4 The Ruppeiner curvature scalar for differential Bc with ω = −1/2

ω = −1/2 Bc = 0.05 Bc = 0.10 Bc = 0.15

R(r1) R(r2) R(r1) − R(r2) R(r1) R(r2) R(r1) − R(r2) R(r1) R(r2) R(r1) − R(r2)

x = 0.3 0.008903 0.005295 0.003608 0.010071 0.005520 0.004550 0.011255 0.005752 0.005503

x = 0.4 0.016951 0.008409 0.008531 0.018251 0.008790 0.009461 0.019582 0.009180 0.010402

x = 0.5 0.021821 0.011776 0.010045 0.023264 0.012345 0.010918 0.024732 0.012929 0.011802

x = 0.6 0.024813 0.015245 0.009568 0.026376 0.016034 0.010341 0.027969 0.016844 0.011124

x = 0.7 0.026623 0.018709 0.007914 0.028294 0.019747 0.008546 0.030000 0.020812 0.009187

x = 0.8 0.027670 0.022091 0.005578 0.029438 0.023405 0.006032 0.031246 0.024753 0.006493

x = 0.9 0.028211 0.025339 0.002872 0.030067 0.026952 0.003115 0.031968 0.028607 0.003361

x = 1 0.028418 0.028418 0 0.030361 0.03036 0 0.032355 0.032355 0

(3.7) into Eq. (6.1) and we get the value of R with fixed Bc,
ω and Q.

From Tables 3 and 4, two curves of R will overlap at x = 1
with differential Bc and ω. For an anyon gas curvature scalar
R >0 (or R < 0) the average interaction between particles is
repulsive or attractive, while the average interaction is zero
as R = 0 [5–8,78–80]. From Tables 3 and 4, we can find that
0 < R(r2) < R(r1), and we think that the average attrac-
tion between the black hole molecules of phase 2 in black
holes is less than phase 1. According to Eq. (1.1) relating the
number density of the black hole molecules and the position
of the event horizon, the number density of the black hole
molecules in phase 2 is less than that in phase 1. The number
density of the black hole molecules decreases and mutual
attraction decreases, which satisfies Lenard–Jones’ descrip-
tion of the interaction potential between particles. When the
distance between particles increases, the interaction potential
between particles decreases, that is, when the number density
of particles decreases, the interaction potential decreases.

From Tables 3 and 4, for constant Bc, R(r1) and R(r2)

will change as ω and x change, R(r1) − R(r2) will increase
with ω increasing. When ω is fixed R(r1) − R(r2) will
increase with Bc increasing. Whatever the values of Bc and
ω, R(r1) − R(r2) starts to increase as x increases until it

reaches its maximum value at x = 0.5, then R(r1) − R(r2)

starts to decrease, and finally R(r1)−R(r2) = 0 when x = 1.
According to Eq. (2.7), the change of Bc and ω with the same
temperature and pressure is accompanied by the change of
the radius of the event horizon of the black hole. Therefore,
the change of Bc and ω makes the number of the black hole
molecule density change with the temperature and pressure
fixed. So, we think that the charge Q, Bc and ω play two roles
in the phase transition of black hole: on the one hand, they
can change the order degree of the black hole molecules, on
the other hand, they can change the number density of the
black hole molecules. These two aspects are the main reasons
for the phase transition of the thermodynamic system.

7 Discussion and summary

The investigation of the thermal properties and the internal
microstructure of black holes has always been one of the
topics of interest for theoretical physicists. Although the pre-
cise statistics description of the thermodynamic states corre-
sponding to a black hole is unclear, the black hole thermo-
dynamics as well as the critical phenomenon is still a pop-
ular topic. Since the discovery of the accelerated expansion
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of the universe, dark energy has become one of the topics
that many physicists are interested in. Among the many dark
energy models, quintessence is very influential.

In this paper, we choose different conjugate variables and
use Maxwell’s equal-area law to study the phase transition
of a charged AdSQ black hole. We find that the phase tran-
sition points which are obtained by choosing the conjugate
variable (P, V ) and (T, S), respectively, are the same for the
same temperature. It was found that the charged AdSQ black
hole had a phase transition similar to that of a vdW system
when the temperature was below the critical temperature, and
the charged AdSQ black hole had a phase transition similar
to that of a vdW system under the same temperature and
pressure. From Eq. (3.8), whether a black hole experiences a
first-order phase transition depends on the electric potential
at the event horizon φ = Q

r+ and the quintessence potential

� = − Bcr3ω+1
c

2ωπr3ω+1+
= 3α

r3ω+1+
, not just the size of the black hole.

It shows that the microstructure of black hole molecules will
change under the action of electric potential and quintessence
potential. Through the analysis in Sect. 4, we found that the
charged AdSQ black hole had a phase transition latent heat
similar to the vdW system in the phase transition of the first
order.

From the microscopic point of view, a fluid is made up
of fluid molecules, so it can be speculated that a black hole
is also made up of black hole molecules, and black hole
molecules themselves carry the microscopic degree of free-
dom of the black hole entropy [1–3,5–8,62]. We consider that
the phase transition of the charged AdSQ black hole at a cer-
tain temperature and pressure is not simply a phase transition
from a large black hole to a small black hole, but is deter-
mined by the electric potential and quintessence potential at
the event horizon. The charge Q of the black hole, the dark
energy state parameter ω and the normalized factor α related
to the dark energy density play a key role in the phase tran-
sition, so we introduced the order parameter of the charged
AdSQ black hole. In Sect. 5, Landau continuous phase tran-
sition theory is used to analyze the critical phenomenon of
the black hole, and the critical index is obtained. In Sect. 6,
we reveal the microstructure of the black hole molecules by
studying the geometry of Ruppeiner of the black hole sys-
tem. According to the standard curvature R and the statisti-
cal interpretation, curvature scalar R > 0 (or R < 0) means
that the average interaction between particles is repulsive or
attractive, while the average interaction is zero as R = 0.
According to the given conclusion, the average black hole
molecules in the interior of the charged AdSQ black hole are
attracted by each other. We have analyzed the influence of the
dark energy state parameter ω and the dark energy density
related normalized factor α on the phase transition and the
latent heat of the phase transition.

This work revealed that the microstructure of the charged
AdSQ black hole was similar to that of vdW system.These
conclusions are helpful to explore the microstructure of black
holes. The study of the black hole microstructure is the basis
of quantum gravity theory and the bridge to understanding the
relationship between quantum mechanics and gravity theory.
In particular, the in-depth study of the black hole microstruc-
ture will help to understand the basic properties of black hole
gravity, and it is of great significance to the establishment of
quantum gravity.
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