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Abstract We study the dynamical properties of a large
body of varying vacuum cosmologies for which dark matter
interacts with vacuum. In particular, performing the critical
point analysis we investigate the existence and the stability
of cosmological solutions which describe de-Sitter, radiation
and matter dominated eras. We find several cases of varying
vacuum models that admit stable critical points, hence they
can be used in describing the cosmic history.

1 Introduction

The detailed analysis of the recent cosmological observations
[1–6] indicates that in large scales our universe is spatially flat
and it consists of ∼ 4% baryonic matter, ∼ 26% dark matter
and ∼ 70% of dark energy (DE). Dark energy is an “exotic”
fluid source with a negative equation of state which attributes
the cosmological acceleration. The origin and nature of the
DE is a complete mystery still, though some of its properties
are widely accepted, namely the fact that it has a negative
pressure. Obviously this has been a starting point that has
given birth to numerous alternative cosmological scenarios,
which mainly generalize the nominal Einstein-Hilbert action
of General Relativity either by the addition of extra fields
[7–14], or a non-standard gravity theory that increases the
number of degrees of freedom [15–21]. These are two dif-
ferent approaches in the dark energy problem which are still
under debate in the scientific community.

The introduction of a cosmological constant term, is one
of the simplest ways to modify the Einstein-Hilbert action.
In the concordance �CDM model, the cosmological con-
stant coexists with the component of cold dark matter (CDM)
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and baryonic matter. Although this model does describe the
observed universe quite accurately, it suffers from two basic
problems, namely the expected value of the vacuum energy
density and the coincidence problem [22–25]. An interesting
approach for solving those problems is to allow � to vary
with cosmic time, see [26–31] and references therein. These
models [32–49] are based on a dynamical � term that evolves
as a power series of the Hubble rate [50–54]. It was found
that in the latter models the spacetime can be the physical
result of a non-singular initial de Sitter vacuum stage, that
also provides a graceful transition out of the inflation and into
the radiation era. It has been found that these running vacuum
scenarios accommodate the radiation and matter dominated
era as well as the late time cosmic acceleration [27,29,55].

In this context, matter is allowed to interact with dark
energy [31,56–66] . Although, this interaction is not imposed
by a fundamental principle, it has its roots in the particle
physics theory, where any two matter fields can interact with
each other. Such an interaction has been found to be a very
efficient way to explain the cosmic coincidence problem and
at the same time approach the mismatched value of the Hub-
ble constant H0 from the global �CDM based Planck and
local measurements. Thus, in the present work we shall con-
sider several interacting cosmological models of � varying
cosmologies. The structure of the manuscript is as follows.

In Sect. 2, we briefly introduce the concept of the running
� varying cosmologies and the interacting models that we
shall study. Section 3, includes the main analysis of our work
where we study the dynamical behaviour of our models and
present the main results of this work. More specifically we
study the critical points and their stability. Each critical point
describes a specific exact solution for the field equation which
correspond to the cosmic history. By studying the stability of
the solutions of the critical points we are able to reconstruct
the cosmic history and infer about the cosmological viability
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of these models. Finally, in Sect. 4, we summarize our results
and we draw our conclusions.

2 �-varying cosmology

We consider a universe with a perfect fluid with energy den-
sityρ, and pressure p = wρ; such that the energy-momentum
tensor is given by Tμν = −p gμν + (ρ + p)UμUν . In addi-

tion we consider the �−varying cosmological term, T (�)
μν =

ρ� (t) gμν , ρ� = �(t) /(8πG) where the effective energy
momentum tensor is written as T̃μν ≡ Tμν + gμνρ�.

In General Relativityρ� is considered to be constant; how-
ever in varying vacuum cosmology, � is considered to be a
function of the cosmic time, or of any collection of homoge-
neous and isotropic dynamical variables, i.e. � = �(χ(t)).

The Einstein field equations are written as,

Rμν − 1

2
gμνR = 8πG T̃μν . (1)

where on the lhs part is the Einstein tensor and on the rhs the
effective energy momentum tensor. For spatially flat FLRW
spacetime with line element

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
, (2)

the Friedmann equations are

3H2 (t) = �(t) + ρ (t) , (3)

−2Ḣ (t) − 3H2 (t) = −�(t) + p (t) , (4)

where we have set 8πG ≡ c ≡ 1 and H (t) = ȧ(t)
a(t) is the

Hubble function.
In this work we shall consider a universe with radiation,

dark and baryonic pressureless matter as well as the vary-
ing � term, hence the Friedmann equations (3), (4) take the
following form

3H2 = (ρm + ρr + ρ�), (5)

2Ḣ + 3H2 = −
(

1

3
ρr − ρ�

)
, (6)

where we have used ρm = ρDM +ρb. Assuming that baryons
and radiation are self-conserved, namely the corresponding
densities evolve in the nominal way, ρr = ρr0a−4 for the
radiation density and ρb = ρb0a−3 for the baryon density.
In this way we only consider interaction between the Dark
Matter and the varying vacuum sectors. Thus the Bianchi
identity gives:

ρ̇DM + 3HρDM = −ρ̇� = Q, (7)

where Q is the interaction term between the Dark Matter
and the varying vacuum component, which we will study in
this work in order to define their dynamical behavior. Here
we investigate the generic evolution of the solution which

is described by the field Eqs. (5), (6) and (7) for specific
functional forms of the interaction term Q. Specifically, we
shall consider five different cases:

The first case that we study is the running vacuum model
(RVM) (see [26,27,29,31]). Theoretical motivations for this
model arise from quantum field dynamics (QFT) in curved
space-time, by associating Renormalization Group’s running
scale μ (in our context the dynamical parameter χ(t)) with
a characteristic energy threshold for cosmological scales.
Thus, χ(t) is chosen to be the Hubble rate H , for reviews
see [67–69].

Returning to our definition of �(t) = �(χ(t)), we may
express the running vacuum as a power series of the Hubble
function:

�(t) = �(H(t)) = c0 +
∑
k

αk H
k(t).

It has been shown in previous works, that only even pow-
ers of H can be theoretically motivated, as the odd powers of
the Hubble function are incompatible with the general covari-
ance of the effective action [70,71]. For that reason we shall
exclude odd powers of H from the series. Furthermore, high
powers of H can be very useful when treating the evolution
of the early universe, but they are negligible in the matter
and dark energy eras respectively [29]. In this study we are
restricting our analysis to the simplified model [50,72–75]:

�(H) = c0 + nH2, (8)

where n is a dimensionless parameter, linked to the strength
of the interaction. For consistency, the condition ρ�(H0) =
ρ�0 = ��

ρcri t
fixes the value of c0 at c0 = H2

0 (�� − n)

[76]. In the case of the RVM, the interaction term is taken by
solving the continuity equation (7) for the specific form of
ρ� = 3

8πG�(H) = ρ�0 + 3
8πG nH , and is given by:

QA = nH(3ρDM + 3ρb + 4ρ�). (9)

In the second vacuum scenario used in this study the corre-
sponding interaction term is taken ad hoc to be proportional
to the density of dark matter [77]. In particular, the interac-
tion term is given by QB = 3nHρDM where, as before, the
dimensionless parameter n is an indicator of the interaction
strength. Then we examine a third vacuum scenario which
is presented in [31,78] where the interaction term is written
as QC = 3nHρ�. Motivated by interesting results on the
above models, we also considered two additional scenarios.

The fourth model of our study is QD = 3n
H ρbρDM where

the interaction is dependent also on the baryonic density as
well as dark matter, while for the last model of our study we
assume QE = 3nHρtot , in which the total density affects
the interaction term.

To this end, from the observational viewpoint the values
of n are found to be quite small, pointing a small (but not
zero) deviation from the usual �CDM model. Indeed, the
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concordance model is recovered in any case when n is set to
0. For the first three vacuum models, n is treated as a free
parameter along with other cosmological parameters and it
is found to be of the order ∼ 10−3 or less, see for example
[76,79], where these authors found n = 0.00013 ± 0.00018,
n = 0.00014 ± 0.00103). Interactions QA, QB, QC and
QE can be seen as linear interaction terms while QD is a
nonlinear function.

3 Dynamical analysis

In this section, we study the cosmological evolution of the
aforementioned cosmological scenarios by using methods of
dynamical systems [82,83]. Specifically we study the criti-
cal points of the field equations in order to identify the cos-
mological eras that are provided by the theory. The stabil-
ity of those cosmological eras are determined by calculat-
ing the eigenvalues of the linearized system at the critical
point. The way we approach this analysis is described as
follows.

We define proper dimensionless variables to rewrite the
field equations so that our analysis can be universal. Then
we proceed by producing the first-order ordinary differen-
tial equations from our dimensionless variables. The critical
points of the system are those sets of variables for which every
differential equation of our system is equal to zero. These sets
of variables represent different epochs of the cosmos that we
further study in order to consider them as potential candidates
that actually describe the observed universe. The eigenvalues
of those points are important tools towards characterizing the
stability of the critical points [84].

If a critical point is stable/attractor then the corresponding
eigenvalues will need to have negative real parts. Thus, the
eigenvalues can be used in order to understand the behavior
of the dynamical system around the critical point [85].
Our approach is as follows. We consider a dynamical system
of any number of equations:

ẋ A = f A
(
x B

)
,

then a critical point of the system, namely P = P
(
x B

)
satisfies f A (P) = 0. The linearized system around P is
written as

δ ẋ A = J A
B δx B , J A

B = ∂ f A (P)

∂x B
.

where J A
B is the respective Jacobian matrix. We calculate the

eigenvalues and eigenvectors and write the general solution
on the respective points as their expression. Since the lin-
earized solutions are expressed in terms of the eigenvalues
λi as functions of eλi t , when all those terms have negative real
parts the solution on the critical point is apparently stable.

3.1 Dimensional system

In order to study the generic evolution of the cosmologi-
cal models of our consideration we prefer to work in the
H−normalization where define the dimensionless variables
[82,83]

�DM = ρDM

3H2 , �r = ρr

3H2 , �b = ρb

3H2 , �� = ρ�

3H2 .

Consequently, the constraint equation (5) becomes

�DM + �r + �b + �� = 1, (10)

while the rest of the field equations can be written as the
following four-dimensional first-order ordinary differential
equations

d�DM

d ln a
= −�DM

(
3 + 2

Ḣ

H2

)
− Q

3H3 , (11)

d�r

d ln a
= −2�r

(
2 + Ḣ

H2

)
, (12)

d�b

d ln a
= −2�b

(
3

2
+ Ḣ

H2

)
, (13)

d��

d ln a
= −2��

Ḣ

H2 − Q

3H3 , (14)

in which

Ḣ

H2 = 1

2
(3�� − �r − 3). (15)

and as new independent variable we consider the number of
e-fold N = ln a.

By using the constraint equation (10) we are able to
reduce the latter dynamical system into the following three-
dimensional system

d�r

d ln a
= −�r (−1 − 3�� + �r ), (16)

d�b

d ln a
= −�b(3�� − �r ), (17)

d��

d ln a
= −��(3�� − �r − 3) − Q

3H3 . (18)

The latter equation depends on the functional form of Q,
which is necessary to be defined in order to continue with
our analysis.

3.2 Case A: QA

For the first model of our consideration in which QA =
nH(3ρDM + 3ρb + 4ρr ), Eq. (18) becomes

d��

d ln a
= −��(3�� − �r − 3) − n (3 − 3�� + �r ).

(19)

Hence, by assuming the rhs of Eqs. (16), (17), (19) to be
zero we determine the critical points of the dynamical system.
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Table 1 Critical points and physical quantities for Case A

Point {�DM , �b, ��,�r } Existence w Acceleration Eigenvalues Stability

A1 {0, 0, 1, 0} Always −1 Yes {−4,−3,−3(1 − n)} Stable for n < 1

B1 {−4n, 0, n, 1 + 3n} − 1
4 ≤ n ≤ 0 1

3 No {4, 1, 1 + 3n} Unstable

C1 {1 − n, 0, n, 0} 0 ≤ n ≤ 1 −n Yes for n > 1
3 {−1 − 3n,−3(n − 1),−3n} Unstable

Every point P has coordinates P = {�DM ,�b,��,�r }
and describes a specific cosmological solution. For every
point we determine the physical cosmological variables as
also the equation of the state parameter. In order to deter-
mine the stability of each critical point the eigenvalues of
the linearized system around the critical point P are derived.
Therefore, the dynamical system (16), (17), (19) admits the
three critical points with coordinates A1 = {0, 0, 1, 0}, B1 =
{−4n, 0, n, 1 + 3n} and C1 = {1 − n, 0, n, 0}

Point A1 describes a de Sitter universe with equation
of state parameter w = −1, where only the cosmological
constant term contributes in the evolution of the universe.
The eigenvalues of the linearized system are found to be
{−4,−3,−3(1−n)} from where we infer that point A1 is an
attractor for n < 1. This is in agreement with the expected
values of n and thus this point is of physical interest.

Point B1 is physical accepted when − 1
4 ≤ n ≤ 0. In

this area these points correspond to a universe where radia-
tion, dark matter and the cosmological constant coexist and
dynamically it behaves like a radiation dominated universe
(w = 1

3 ) which is the case for n → 0. The eigenvalues
of the linearized system at the point B1 are derived to be
{4, 1, 1 + 3n} from where we conclude that the point is a
source (unstable point).

PointC1 describes a universe where only the cosmological
constant and the dark matter fluids contribute to the total
cosmic fluid. Indeed it describes the �-CDM universe where
now the parameter n is the energy density of the cosmological
constant, i.e. �� = n. The point is physical accepted when
0 ≤ n ≤ 1, while for n = 1 it is reduced to point A1.
The eigenvalues of the linearized system are determined to
be {−1 − 3n, 3 (1 − n) ,−3n} from where we infer that the
solution of the critical point is always unstable. The critical
point analysis of the above system yields three critical points
that are shown in Table 1. In Figs. 1 and 2 the phase space
diagram of the dynamical system QA is presented for n < 1
(n = −0, 1 ) from where we can see that the unique attractor
is the de Sitter point A1.

3.3 Case B: Q = 3nHρDM

In this case our system of study are Eqs. (16), (17) and

d��

d ln a
=−��(3��−�r−3)−3n(1−�b−��−�r ) (20)

Fig. 1 Phase space diagram for the dynamical system (16), (17), (19).
We consider (a) �b = 0.2996, �r = 0.0004, �� = 0.7, (b) �b =
0, �r = 0.1, �� = 0.9, (c) �b = 0.3, �r = 0.2, �� = 0.5, (d)
�b = 0,�r = 0.5,�� = 0.2, (e) �b = 0.7,�r = 0.1 ,�� = 0.2, for
n < 1. The unique attractor is the de Sitter point A1

Fig. 2 Phase space diagram for the dynamical system (16), (17), (19)
in the space of variables �b, �� for n < 1 and �r = 10−4. The unique
attractor is the de Sitter point A1
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Table 2 Critical points and physical quantities for Case B

Point {�DM , �b, ��,�r } Existence wtot Acceleration Eigenvalues Stability

A2 {0, 0, 1, 0} Always −1 Yes {−4,−3,−3 + n} Stable for n < 3

B2 { 3−n
3 , 0, n

3 , 0} 0 ≤ n ≤ 3 − n
3 Yes for n > 1 {3 − n,−n,−n − 1} Stable for n > 3

C2 {0, 1, 0, 0} Always 0 No {3,−1, n} Unstable

D2 {0, 0, 0, 1} Always 1
3 No {4, 1, 1 + n} Unstable

thus the dynamical system (16), (17), (20) admits four
critical points with coordinates A2 = {0, 0, 1, 0}, B2 =
{ 3−n

3 , 0, n
3 , 0} and C2 = {0, 1, 0, 0}, D2 = {0, 0, 0, 1}

Point A1 describes a de Sitter universe with an equation
of state parameter w = −1, where only the cosmological
constant term contributes in the evolution of the universe.
The eigenvalues of the linearized system are found to be
{−4,−3,−3 + n} and thus we can conclude that point A2

is an attractor for n < 3. Taking into account the literature
values of n [76], this is a valid point.

Point B2 provides a �CDM scenario where the compo-
nents of the fluid are �DM = 1 − n

3 and �� = n
3 .Aparently

this family of points exists only for 0 ≤ n ≤ 3, but it can be
an accelerating point only for n > 1. For n = 3 this point
reduces to a deSitter one. In terms of stability, the eigenval-
ues of the linearized system are {3 − n,−n,−n− 1}, hence,
this point is an attractor, i.e. stable for n > 3, while it is a
source for n < 3.

PointC2 describes a baryon dominated universe, while the
solution at this point is always unstable since there is always
a positive eigenvalue, namely the corresponding eigenvalues
are {3,−1, n}.

Point D2 describes a radiation dominated universe that
does not accelerate, the corresponding eigenvalues are
{4, 1, 1 + n}, hence the current point is a source.

The critical point analysis of the above system yields four
critical points that are shown in Table 2.

In Figs. 3 and 4 the phase space diagram of the dynam-
ical system QB is presented for n < 1 (n = −0, 1 ) from
where we can see that the unique attractor is the de Sitter
point A2.

3.4 Case C: Q = 3nHρ�

For the third model of our study, the system of equations is
(16), (17) and

d��

d ln a
= −��(3�� − �r − 3 + n), (21)

The dynamical system (16), (17), (21) admits four crit-
ical points, namely A3 = {1 − �b,�b, 0, 0}, B3 =
{ n3 , 0, 3−n

3 , 0} and C3 = {1, 0, 0, 0}, D3 = {0, 0, 0, 1}.

Fig. 3 Phase space diagram for the dynamical system (16), (17), (20).
We consider (a) �b = 0.2996, �r = 0.0004, �� = 0.7, (b) �b =
0, �r = 0.1, �� = 0.9, (c) �b = 0.3, �r = 0.2,�� = 0.5, (d)
�b = 0, �r = 0.5, �� = 0.2, (e) �b = 0.7, �r = 0.1, �� = 0.2, for
n < 1. The unique attractor is the de Sitter point A2

Fig. 4 Phase space diagram for the dynamical system (16), (17), (20)
in the space of variables �b, �� for n < 1 and �r = 10−4. The unique
attractor is the de Sitter point A2
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Table 3 Critical points and physical quantities for Case C

Point {�DM , �b, ��,�r } Existence w Acceleration Eigenvalues Stability

A3 {1 − �b,�b, 0, 0} Always 0 No {−1, 0, 3 − n} Unstable

B3 { n3 , 0, 3−n
3 , 0} 0 ≤ n ≤ 3 −1 + n

3 Yes for 0 ≤ n < 2 {n − 4, n − 3, n − 3} Stable for n < 3

C3 {1, 0, 0, 0} Always 0 No {−1, 0, 3 − n} unstable

D3 {0, 0, 0, 1} Always 1
3 No {1, 1, 4 − n} unstable

Point A3 describes a matter (baryons plus dark matter)
dominated universe, hence it that does not accelerate (w =
0). The eigenvalues of the linearized system are {−1, 0, 3 −
n}. For n < 3 the solution of A3 is always unstable.

Point B3 provides a �CDM scenario where the compo-
nents of the fluid are �DM = n

3 and �� = 3−n
3 .Apparently

this family of points exists only for 0 ≤ n ≤ 3 and it provides
cosmic acceleration (w = n

3 − 1) only for n < 2. The eigen-
values of the critical point are found to be {n−4, n−3, n−3},
hence for n < 3 the point is always unstable. For n → 0
the solution at the point describes a stable de Sitter universe
(w = −1) where only the cosmological constant term con-
tributes in the evolution of the universe. Thus this is an inter-
esting point, since cosmological data point that n ∼ 10−3.

[76,79].
Point C3 describes a dark matter dominated universe that

apparently does not accelerate. The eigenvalues of the lin-
earized system are calculated to be {−1, 0, 3 − n}.The point
is a source (unstable).

Point D3 describes a radiation dominated universe that
does not accelerate. The eigenvalues of the linearized system
are {1, 1, 4 − n}, from where we can infer that the solution
at point D3 is unstable.

The critical point analysis of the above system yields four
critical points that are shown in Table 3.

In Figs. 5 and 6 the phase space diagram of the dynamical
system QC is presented for n < 1 (n = −0, 1 ) from where
we can see that the unique attractor is the point B3.

3.5 Case D: Q = 3n
H ρbρDM

For the fourth model of our consideration the dynamical sys-
tem of our study consisted by the Eqs. (16), (17) and

d��

d ln a
= −��(3��−�r−3)−3n�b(1−�b−��−�r ),

(22)

The dynamical system (16), (17), (22) admits four critical
points with coordinates A4 = {0, 0, 1, 0}, B4 = {1, 0, 0, 0}
and C4 = {0, 1, 0, 0}, D4 = {0, 0, 0, 1}.

Point A4 is a viable de Sitter point where only the cosmo-
logical constant term contributes in the evolution of the uni-
verse. This point always exists and it is always stable, since

Fig. 5 Phase space diagram for the dynamical system (16), (17), (21).
We consider (a) �b = 0.2996, �r = 0.0004, �� = 0.7, (b) �b =
0, �r = 0.1, �� = 0.9, (c) �b = 0.3, �r = 0.2, �� = 0.5, (d)
�b = 0, �r = 0.5, �� = 0.2 (e) �b = 0.7, �r = 0.1, �� = 0.2, for
n < 1. The unique attractor is the point B3

Fig. 6 Phase space diagram for the dynamical system (16), (17), (21)
in the space of variables �b, �� for n < 1 and �r = 10−4. The
attractor is the point B3
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Table 4 Critical points and
physical quantities for Case D

Point {�DM , �b, ��,�r } Existence w Acceleration Eigenvalues Stability

A4 {0, 0, 1, 0} Always −1 Yes {−4,−3,−3} Stable

B4 {1, 0, 0, 0} Always 0 No {3,−1, 0} Unstable

C4 {0, 1, 0, 0} Always 0 No {3,−1, 3n} Unstable

D4 {0, 0, 0, 1} Always 1
3 No {4, 1, 1} Unstable

Fig. 7 Phase space diagram for the dynamical system (16), (17), (22).
We consider (a) �b = 0.2996, �r = 0.0004,�� = 0.7, (b) �b =
0, �r = 0.1, �� = 0.9 (c) �b = 0.3,�r = 0.2, �� = 0.5, (d)
�b = 0, �r = 0.5, �� = 0.2, (e) �b = 0.7, �r = 0.1, �� = 0.2, for
n < 1. The unique attractor is the de Sitter point A4

the eigenvalues of the linearized system at A4 are always
negative, i.e. {−4,−3,−3}.

Point B4 describes a dark matter dominated universe that
does not accelerate. The eigenvalues are derived {3,−1, 0}
from where we find that this point is a source.

Point C4 describes a baryon matter only dominated uni-
verse that apparently does not accelerate. The point is a
source, because at least one of the eigenvalues is always pos-
itive, the eigenvalues are {3,−1, 3n}.

Point D4 describes a radiation dominated universe that
does not accelerate. The three eigenvaleus are {4, 1, 1}, that
is, point D4 is a source and the solution described at point
D4 is unstable.

The critical point analysis of the above system yields four
critical points that are shown in Table 4.

In Figs. 7 and 8 the phase space diagram of the dynamical
system QD is presented for n < 1 (n = −0, 1 ) from
where we can see that the unique attractor is the de Sitter
point A4.

Fig. 8 Phase space diagram for the dynamical system (16), (17), (22)
in the space of variables �b, �� for n < 1 and �r = 10−4. The unique
attractor is the de Sitter point A4

3.6 Case E: Q = 3nHρtot

For Q = 3nHρtot the dynamical system of our study consists
by the Eqs. (16), (17) and

d��

d ln a
= 1

H

(
ρ̇�

3H2 −ρ�

2Ḣ

3H3

)
=−��(3��−�r−3)−3n,

(23)

The latter dynamical system admits three critical points
with coordinates A5={ 1

2 (1+√
1−4n, 0, 1

2 (1−√
1−4n, 0},

B5 = { 1
2 (1 − √

1 − 4n, 0, 1
2 (1 + √

1 − 4n, 0} and C5 =
{−3n, 0, 3n

4 , 9n+4
4 }.

Points A5 and B5 describe both a �-CDM scenario
where the dark matter and the cosmological constant con-
tribute in the evolution of the universe. Point A5 exists
for 0 ≤ n ≤ 1

4 and can provide an accelerating uni-
verse for 2

9 ≤ n ≤ 1
4 . Moreover, point B5, exists for

0 ≤ n ≤ 1
4 and for the same range of values can also

provide an accelerating universe. As far as the stability of
these two points is concerned, the eigenvalues of the lin-
earized system at point A5 are {− 3

2 (1 − √
1 − 4n),− 1

2 (5 −
3
√

1 − 4n), 3
√

1 − 4n}A5 , while at point B5 are {− 1
2 (5 +

3
√

1 − 4n),− 3
2 (1+√

1 − 4n),−3
√

1 − 4n}. Therefore, the

123



55 Page 8 of 10 Eur. Phys. J. C (2020) 80 :55

Table 5 Critical points and
physical quantities for Case E

Point {�DM , �b, ��,�r } Existence w Acceleration

A5 { 1
2 (1 + √

1 − 4n, 0, 1
2 (1 − √

1 − 4n, 0} 0 ≤ n ≤ 1
4 − 1

2 (1 − √
1 − 4n) 2

9 ≤ n ≤ 1
4

B5 { 1
2 (1 − √

1 − 4n, 0, 1
2 (1 + √

1 − 4n, 0} 0 ≤ n ≤ 1
4 − 1

2 (1 + √
1 − 4n) n ≤ 1

4

C5 {−3n, 0, 3n
4 , 9n+4

4 } n = 0 1
3 No

Table 6 Critical points and
stability for Case E

Point Eigenvalues Stability

A5 {− 3
2 (1 − √

1 − 4n),− 1
2 (5 − 3

√
1 − 4n), 3

√
1 − 4n} Unstable

B5 {− 1
2 (5 + 3

√
1 − 4n),− 3

2 (1 + √
1 − 4n),−3

√
1 − 4n} Yes for n < 1

4

C5 {1, 1
2 (5 − 3

√
1 − 4n, 1

2 (5 + 3
√

1 − 4n} Unstable

Fig. 9 Phase space diagram for the dynamical system (16), (17), (23).
We consider (a) �b = 0.2996, �r = 0.0004,�� = 0.7, (b) �b =
0, �r = 0.1, �� = 0.9, (c) �b = 0.3,�r = 0.2, �� = 0.5, (d)
�b = 0, �r = 0.5, �� = 0.2, (e) �b = 0.7, �r = 0.1, �� = 0.2, for
n < 1. The unique attractor is point B5

solution at point A5 is always unstable while point B5 is an
attractor. Furthermore excluding the value n = 1

4 , in the
same range of values it is also a stable point.

Point C5 only exists for n = 0, in which case it describes
a radiation dominated universe (�r = 1) that does not
accelerate. The eigenvalues are {1, 1

2 (5 − 3
√

1 − 4n, 1
2 (5 +

3
√

1 − 4n} which mean that the point is a source.
The above results are summarized in Tables 5 and

6.
In Figs. 9 and 10 the phase space diagram of the dynam-

ical system QE is presented for n < 1 (n = −0, 1 )
from where we can see that the unique attractor is the point
B5.

Fig. 10 Phase space diagram for the dynamical system (16), (17), (23)
in the space of variables �b, ��} for n < 1 and �r = 10−4. The unique
attractor is the point B5

4 Conclusions

The current era phenomenology of the �−varying cosmo-
logical models has been discussed by one of the current
authors and collaborators, in a number of very detailed
papers. It has been found that the �(H) models are not
only highly consistent with the plethora of the astrophysi-
cal and cosmological data, but can also help alleviate some
of the current-era tensions in data, including the σ8 and the
current value of the Hubble-parameter H0 tensions [80,81].
However, a complete dynamical analysis is missing from the
literature. In this article we studied the dynamical behavior
of several varying vacuum models. In particular, we inves-
tigated various models for which baryons and radiation are
self-conserved, while interaction between the dark matter
and the varying vacuum takes different forms. Bellow we
summarize the main points of our analysis.
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In the first case we assumed the following interaction term
QA = nH(3ρDM +3ρb+4ρr from where it follows a viable
de Sitter scenario (point A1 as a future attractor for n < 1). In
this scenario n can also have negative values and thus matter
is allowed to decay into vacuum.

For our second model, namely QB = 3nHρDM , we found
two possible interesting scenarios that are described by points
A2, B2. Point A2 describes again a de Sitter universe that is
an attractor for n < 3, and point B2 describes a �CDM
universe that is always unstable (in the area of its existence
0 ≤ n ≤ 3). This is an interesting result because this solution
recovers �CDM with future attractor an expanding de Sitter
universe.

In the third vacuum model scenario we considered QC =
3nHρ�, and found a unique attractor which is described by
the critical point B3 with 0 ≤ n < 2, where the exact solu-
tion of this point describes a stable and accelerating �CDM
universe. For the fourth model QD = 3nρbρDM/H a viable
de Sitter solution is described by point A4 which is found to
be always stable. Finally, for QE = 3nHρtot we found two
points that describe a �CDM universe. Specifically, point
A5 with 2

9 ≤ n ≤ 1
4 provides an unstable �CDM universe,

while point B5 with 0 ≤ n ≤ 1
4 provides a stable �CDM

model.
It is interesting to mention that in all stable critical

points which produce cosmic acceleration the correspond-
ing parameter n is found to be small, hence our theoretical
results are consistent cosmological observations. Large val-
ues of n lead to a different evolution history for our universe
that is not consistent with the available data. In our analysis,
positive values of n mean that the vacuum decays into dark
matter, whereas negative values of n imply that dark matter
decays into vacuum. From our results it is clear that from the
dynamical point of view the interacting varying vacuum sce-
narios can largely accommodate models that describe various
phases of the observed behavior of the universe.
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