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Abstract Monte Carlo Event Generators are important
tools for the understanding of physics at particle colliders like
the LHC. In order to best predict a wide variety of observ-
ables, the optimization of parameters in the Event Genera-
tors based on precision data is crucial. However, the simul-
taneous optimization of many parameters is computation-
ally challenging. We present an algorithm that allows to tune
Monte Carlo Event Generators for high dimensional param-
eter spaces. To achieve this we first split the parameter space
algorithmically in subspaces and perform a Professor
tuning on the subspaces with binwise weights to enhance
the influence of relevant observables. We test the algorithm
in ideal conditions and in real life examples including tuning
of the event generators Herwig 7 and Pythia 8 for LEP
observables. Further, we tune parts of the Herwig 7 event
generator with the Lund string model.

1 Introduction and motivation

The amount of data taken at the LHC allows measuring
observables that can be calculated perturbatively to high
precision. This is beneficial for the comparison as well
as the improvement of phenomenologically motivated non-
perturbative models and also the searches for new physics.
With the increasing precision made available in recent years
through perturbative higher order calculations, theoretical
uncertainties have reduced dramatically. In the comparison
of these theory predictions and experimental data, Monte
Carlo event generators (MCEG) [1] like Herwig 7 [2–5],
Sherpa [6] or Pythia 8 [7,8] play an important role. If
possible a matched calculation that includes the perturbative
corrections and the effects described by the MCEG can give
an improved picture of the event structure measured by the
experiment.
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Here event generators typically include additional phe-
nomenological models to include effects that are not part of
specialised fixed order and resummed calculations. Uncer-
tainties of these additional modelled, but factorised, parts
of the simulation can be estimated from lower order simula-
tions. The MCEG contain various, usually factorized (e.g. by
energy scales) components. In the development, these parts
can be improved individually. The aforementioned matching
to perturbative calculations is an example of recombining
parts usually separated in the event generation, namely the
parton shower and hard matrix element calculation. While it
is possible to make such modifications and improvements,
it is also necessary to keep other parts of the simulation in
mind. Even though the generation is factorized, various parts
of the simulation will have an impact on other ingredients
of the generator. Any modification can, in general, have an
impact on the full events. Calculated, or at least theoretically
motived improvements will lead to a reduction of freedom
that eventually also restricts the parameter ranges of the phe-
nomenological models that could be used to compensate the
variations of the perturbative side [9–16]. The capability to
describe data needs to be reviewed with the modifications
made in order to use the event generator for future predic-
tions or concept designs for new experiments.

The procedure of adjusting the parameters of the simula-
tion to measured data is called tuning. Various contributions
for the tuning of MCEGs have been made [17–25], and the
importance of these studies can be deduced from the recog-
nition received. More recently, new techniques have been
presented that can improve the performance of tuning [26–
30]. To be able to perform the comparison of simulation and
data, the data needs to be collected and it needs to be pos-
sible to analyse the simulations similar to the experimental
setup. Here, the hepdata project [31] and analysis pro-
grams like Rivet [32] are of great importance to the high
energy physics community. Once the data and the possibility
to analyse is given, the ’art’ of tuning is to choose the ’right’
data, possibly enhance the importance of some data sets over
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others, and to modify the parameters of the simulation such
to reduce the difference of data and simulation. A prominent
tool to allow the experienced physicist to perform the tun-
ing is the Professor [21] package that allows performing
most of the procedure automatically.

The complexity of the MCEG tuning depends on the
dimension of the parameter space used as an input to the
event generation. Further, the measured observables are in
general functions of many of the parameters used in the sim-
ulation. In this contribution, we address the problems of high
dimensional parameter determination. We propose a method
to choose subsets of parameters to reduce the complexity. We
further aim to automatize the tuning process, to be able to
retune with minimal effort once improvement is made to the
MCEG in use. We call this automation of the tuning process
and the algorithm to perform it the Autotunes method.1

As possible real life scenarios we then tune the Herwig 7
and Pythia 8 models and also a hybrid form, namely the
Herwig 7 showers with thePythia 8’s Lund String model
[33,34].

We structure the paper as follows: In Sect. 2 we define
the problem and questions that we want to solve and answer.
We then describe Professor and its the capabilities and
restrictions. In Sect. 3 we explicitly define the algorithm and
point out how the methods used will act mathematically. In
Sect. 4 we show how the algorithm was tested. Results of
tuning the event generators Herwig 7 and Pythia 8 are
presented in Sect. 5. We conclude in Sect. 6 and specify the
possible next steps.

2 Current state

Improving the choice of parameters – commonly referred to
as tuning – is required to produce the most reliable theory pre-
dictions. The Rivet toolkit allows comparing Monte Carlo
event generator output to data from a variety of physics anal-
yses. Based on this input, different tuning approaches can
be followed. A most elaborate approach is the tuning ’by
hand’. It requires a thorough understanding of the physical
processes involved in the generation of events and the identi-
fication of suitable observables to adjust every single parame-
ter. A detailed example of such a manual approach is given by
the Monash tune [22], the current default tune of the event
generator Pythia 8 [7,8]. However, in order to simplify
and systematize tuning efforts, a more automated approach
is desirable. The Professor [21] tuning tool was devel-
oped for this purpose. This allows to tune multiple parameters
simultaneously.

1 An implementation of the method will be made available on:
https://gitlab.com/Autotunes.

2.1 Professor: capabilities and restrictions

The Professor method of systematic generator tuning is
described in detail in [21]. The basic idea is to define a good-
ness of fit function between data generated with a Monte
Carlo event generator and reference data that is provided by
experimental measurements through Rivet. This function
is then minimized. Due to the high computational cost of gen-
erating events, a direct evaluation of the generator response
in the goodness of fit function should be avoided. This is done
by using a parametrization function, usually a polynomial,
which is fitted to the generator response to give an interpola-
tion which allows for efficient minimization. The following
χ2 measure is used as a goodness of fit function between each
bin i of observables O as predicted by the Monte Carlo gen-
erator fi , depending on the chosen parameter vector �p and as
given by the reference dataRi . To simplify the notation, each
bin in each histogram is now – without loosing generality –
called an observable, with prediction fi and reference data
value Ri :

χ2( �p) =
∑

i

wi
( fi ( �p) − Ri )

2

�2
i

. (1)

The uncertainty of the reference observable is denoted by �i .
Furthermore, a weight wi is introduced for every observable.
These weights can be chosen arbitrarily to bias the influence
of each observable in the tuning process.

The approach of the Professor method allows to tune
multiple parameters simultaneously, and drastically reduces
the time needed to perform a tune. The number of parameters
and the polynomial approximation of the generator response
limits the efficiency for a high number of parameters or a high
degree of polynomial power. The formula is given in [21] and
already a set of 15 parameters and an approximation using
third power requires at least 816 generator samples to form an
interpolation. To test the stability of such interpolations the
method of runcombinations can be used to check how
well the minimization is performed. Here a higher number
than the minimal set of points is needed. However, further
effort is needed to overcome some of the restrictions that
remain:

• The polynomial approximation of the generator response
is well suited for up to about ten parameters. Further
simultaneous tuning requires many parameter points as
input for the polynomial fit, typically exceeding the avail-
able computing resources. This is often circumvented by
identifying a subset of correlated parameters2 that should
be tuned simultaneously.

2 Here and in the following we use the term correlated parameters in the
sense to influence same observables. We do not discriminate between
correlation or anti-correlation.
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• The assignment of weights requires the identification of
relevant observables for the set of parameters. Different
choices and methods can possibly bias the tuning result.

• Correlations in the data need to be identified in order to
reduce the weight of equivalent data in the tune, and thus
avoid bias by over-represented data.

• The polynomial approach is reasonable in sufficiently
small intervals in the parameters, but might fail if the
initial ranges for the sampled parameters are chosen
too large and the parameter variation shows a non-
polynomial behaviour.3

2.2 Suggested improvements

In the Autotunes approach we aim to address some of
the issues mentioned above. For high-dimensional problems,
we suggest a generic way to identify correlated high-impact
parameters that need to be tuned simultaneously, and divide
the problem into suitable subsets. Instead of setting weights
for every observable by hand, we propose an automatic
method that sets a high weight on highly influential observ-
ables for every sub-tune, reducing the bias by observables
that are better optimized by parameters in another sub-tune.
This procedure makes the tuning process more easily repro-
ducible.

As a further improvement, we implement an automated
iteration of the tuning process, that takes refined ranges from
the preceding tune as a starting point. By a stepwise reduction
of the parameter ranges, we improve the stability and reliabil-
ity of our first order approximation of parameter impact, and
the polynomial interpolation implemented in Professor.

3 The algorithm

In this section we formulate the algorithm proposed to
improve the tuning of the high dimensional parameter space.
We propose to organize the algorithm as:

(A) Reduce the dimensionality of the problem by splitting
the parameters into subsets, defining sub-spaces and
sub-tunes. Here the algorithm should cluster parameters
that are correlated.

(B) Assign weights to observables, such that the current
sub-tune predominantly acts to reduce the weighted χ2

calculation for the corresponding sub-space.
(C) Run Professor on the sub-tunes.

3 For the method it would be beneficial to reformulate the theoreti-
cal model such that the parameter response on typical experimental
observables is of polynomial type. For general observables and event
generators such a reformulation is in general not given. Additional work
to identify such behaviour could be worth pursuing.

(D) Automatically find new parameter ranges for an itera-
tive tuning.

3.1 Reduce the dimensionality (chunking)

The goal of this step is to split up a high dimensional space (N
dimensional) into subspaces (n dimensional 4), such that the
clustered parameters are correlated on the observable level.
To achieve this we have to define a quantity M that can be
maximized or minimized to allow the algorithmic treatment.
The parameter space we work with is a hyper-rectangle. The
observable definitions usually allow to access one dimen-
sional projections. Here, the ’projection’ is the model (imple-
mented in an event generator) at hand.

Two issues directly come to mind: First, we explicitly
describe the parameter space �p ∈ [ �pmin, �pmax] as a hyper-
rectangle rather than a hyper-cube. Some of the parameters
could have been measured externally, others are pure model
specific. A measure, which allows comparisons between
the parameters, needs to be corrected for the initial ranges
([ �pmin, �pmax]) defined by the input. To overcome this first
problem, we first define p̄α ∈ [0, 1] as the vector5 normalized
to the input range and will describe below how a rescaling is
performed to regain the information lost by this normalisa-
tion and relate it to the variations on the observables.

The second issue is the generic observable definition.
Some of the observable bins are parts of normalized distribu-
tions, or even related to other histograms (as is the case for e.g.
centrality definitions in heavy ion collisions [35]). In other
words, the height fi of observables again does not define a
good measure to define a generic quantity to minimize. In
order to overcome the second problem, we test the observ-
able space with Nsearch random points in the parameter space
projected with the model to the observables. The spread for
each observable is used to normalize the values to f̄i ∈ [0, 1].
Note that an influential parameter can be shadowed by a less
important parameter if the latter has a too large initial range.
After the normalizations p̄α and f̄i are performed, we use
the Nsearch-projections to perform linear regression fits for
each parameter, and for each observable bin. Here, the linear
dependence defines the slope of each parameter in each bin
d f̄i/d p̄α . Due to the normalization of the fi -range, this slope
is influenced not only by the parameter itself, but also by the
spread produced by the other parameters. The reduction of
the slope includes a correlation of parameters to other param-
eters on the observable level. We use the absolute value6 of

4 Here, the dimension n is chosen such that the Professor package
can easily manage the given subspace.
5 We use Greek letters to distinguish vector indices in the parameter
space from Latin letter indices used for observables bins.
6 The later normalization of �Si but also the later definition of M
requires the absolute value.
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the slope to define an averaged gradient or slope-vector �Si .
The sum �SSum = ∑

i
�Si has in general unequal entries, one

for each parameter in the tune. This indicates that the input
ranges [ �pmin, �pmax] are of unequal influence on the observ-
ables. To correct for this choice and to improve the clustering
of parameters with higher correlation, we normalize each �Si
element-wise with �SSum to create �Ni ,

N α
i = Sα

i

Sα
Sum

. (2)

To illustrate the effect of the element-wise normalisation we
show in Fig. 1 how the sum of all normalised vectors of the
observable bins (here 3) reaches the parameter-space point
(1)N ( here N = 2). In bin i the component to a parameter
α of the new vector �Ni is reduced if other observables are
sensitive to the same parameter. The direction of �Ni indicates
the correlation of parameters . We can now use �Ni to chunk
the dimensionality of the problem.7 Therefore, we calculate
the projection for each of the �Ni on all possible n dimen-
sional sub-spaces. This is done by multiplication with com-
bination vectors �J . Here, �J is defined as one of all possible
N -dimensional vectors with N − n zero entries and n unit
entries, where n is again the dimension of the desired sub-
space, e.g. �J = (1, 0, 0, . . . , 1, 0, 1). The sub-space then
defines a sub-tune. The sum over all projections,

∑

i

( �Ni · �J )k (3)

can serve as a good measure to be maximized. However, due
to the normalization of �Ni the sum is equal �J for k = 1. For
the quantity M mentioned at the start of the section we use
k = 2 giving,

M( �J ) =
∑

i

( �Ni · �J )2 (4)

in order to define the sub-tunes. This choice of k > 1 selects
a few strongly correlated parameters over many less corre-
lated ones. The maximal M( �JStep1) defines the first of the
sub-tunes (Step 1). For other steps, we require no overlap
between the sub-spaces. This we enforce by requiring a van-
ishing scalar product �JStepN · �JStepM. It is now possible to
perform the tuning in the same order as the maximal mea-
sures of Eq. (4) are found. This would first fix parameters
that can modify the description of fewer observables, and

7 A linear regression used is blind to more complicated parameter
dependence. However, we assume at this point that on the one hand
there is more than one bin that is important to a given parameter, and
on the other hand a strong variation of the parameter with a small slope
will reduce the importance of the bin in this iteration and will become
more important in the next iteration if the parameter range is shifted
and new slopes are calculated.

Fig. 1 Illustration of a two-dimensional parameter space and the nor-
malized slope vectors that sum up to reach the all-one position of a
hyper-cube. Projections of the individual vectors help to split up the
parameter space and to assign weights to the sub-tunes

then continue to vary parameters that are globally important.
In order to first constrain globally important parameters, and
then fix specialized parameters, we invert the order of found
sub-tunes. We thus have split the dimensionality of the prob-
lem, and will ensure, in the following, that observables used
in the various sub-tunes are described by the set of influential
parameters.

3.2 Assign weights (improved importance)

In the last paragraph, we described how we split up the dimen-
sionality of the full parameter set to allow us to tune subsets,
such that parameters with higher correlation on the observ-
able level are tuned simultaneously. To increase the impor-
tance of observables that are relevant for the sub-tune, we
now try to enhance the relative weight with respect to other
observables. Here, we use the same vectors �Ni defined in the
last paragraph. These vectors, obtained by linear regression,
and normalized to the overall range of observable vectors
have the properties, that they point in the parameter space,
and, due to the normalization, they correlate the importance
of other measured observables to the current bin. We define
the weight of the observable bins later used to minimize the
χ2 as

wi = ( �Ni · �JStep)
2

∑
α Nα

i
, (5)

where �JStep is the combinatorial vector defined in Sect. 3.1,
corresponding to the sub-tune. This weight has the properties
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that the multiplication in the numerator increases the weight
of the important bins for the sub-tune, while the sum over
components of �Ni in the denominator reduces the importance
of bins that are equally or more important to other parameters.
Note that the �Ni itself are not normalised, only the sum over
i is normalised in each component.

This weighting enhances the effect of bins that have been
identified as influential with respect to the parameters tuned
in the given sub-tune. It also reduces the effect of bins that
are expected to be relevant in other sub-tunes. Thereby, the
algorithm reduces bias by not yet optimized data bins and less
relevant distributions. This weighting is applied for each tune
step individually and does not take into account the physi-
cists knowledge of relevant or unsuitable data from a physics
perspective. An additional global weighting based on physi-
cal motivations can be performed on top of this algorithmic
treatment, but is not considered in this work.

We want to highlight that the splitting of the parameter
space, described in Sect. 3.1 as well as the assignment of
weights described here are blind to the data measured in
the experiment. Only the generator response on the defined
observables are needed.

3.3 Run Professor (tune-steps)

Before we start the first iteration and step, we perform a sec-
ond order Professor tune as starting condition, referenced
to as BestGuessTune. Here, we make use of the Nsearch

sampled points used to determine the splitting of the param-
eter space and the weight setting described in the previous
sections. Instead of giving ranges and a starting parameter
point, only ranges are required as starting conditions. As
the starting point has an impact on the sub-tunes that are
performed in the beginning, the BestGuessTune aims to
reduce user interference.

After splitting the parameter space and enhancing the
weights for important observables for the sub-tunes we use
the capability of Professor to tune the parameter space of
each step. When a step is performed, we use theProfessor
result of this and all previous steps to fix the parameters for
the following step.

For the individual sub-tunes, we make use of the
runcombination method of Professor, to build sub-
sets of the randomly sampled parameter points. This pro-
duces modified polynomial interpolations and gives a spread
in the χ2 values of the best fit values. We choose the
result associated with the best χ2 as the best tune value.
To give a measure for the stability of the tune, we choose the
runcombinations that give the best 80% of the χ2 val-
ues. For those we extract the corresponding parameter range,
and add a 20% margin on both sides. To elucidate the effect,
an example for the tuning of the strong coupling constant αS

is given in Fig. 2. Here, the blue points correspond to the

80% best combinations and the green dashed lines give the
measure of stability. Diagrams like Fig. 2 are automatically
produced by the program, for each parameter and tune-step.
In Fig. 2 three iterations are shown as it is described in the
next section.

3.4 Find new ranges and iterate the procedure (Iteration)

The measure of stability defined in the Sect. 3.3 also serves
as input for the next iterations. Here we make use of the rede-
fined ranges. An iterative tuning is important, since the first
set of parameters has been influenced by the users choices,
and a next iteration can have significant impact on the param-
eter value. For very expensive simulations, at least a retuning
of the first step’s parameter space seems desirable. The pro-
gram is setup such that one can use the output of the first full
tune as input for the next iteration.

4 Testing and findings

Before applying the Autotunes framework to perform a
LEP retune of Pythia 8, Herwig 7, and a combination of
both in Sect. 5, we test the method under idealized conditions.
First, we tune the coefficients of a set of polynomials. The
observables used for the tune are constructed from the poly-
nomials for a random choice of coefficients, see Sect. 4.1.
As a second test, we tune the Pythia 8 event generator to
pseudo data generated with randomized parameter values. In
both scenarios, it is desirable to recover the randomly chosen
parameter values that were used to generate the observables.

4.1 Testing the algorithm under ideal conditions

To test the algorithm, we first introduce a simplified and fast
generator. We define the projection,

Oa = G0,a + Gi
1,aC

ir
a pr + Gi j

2,aC
ir
a pr p j

+Gi jk
3,aC

ir
a pr p j pk + Gi jkl

4,a C
ir
a pr p j pk pl , (6)

withm-dimensional tensors G ···
m,a , correlation matrices8 Cir

a ,
and parameter points pi . Upper indices sum over the param-
eter dimensions. We fill G ···

m with random numbers and use
Cir
a to correlate subsets of parameters. Here Cir

a is a diag-
onal matrix with constant entries k > 1 if the bin a should
be enhanced for this parameter i and one if not. By build-
ing ranges, we can define enhanced parameter sets. As an
example, we use a d = 15 dimensional parameter space,

8 As mentioned before, we understand the correlation of parameters
only on the level of influencing similar observables. It is therefore a
simple choice to enhance subsets of parameters in the way described
without off-diagonal entries in the correlation matrices.
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Fig. 2 Example of tune results for the αS(MZ ) value with three iter-
ations from left to right. The points are Goodness of fit (G.o.F.) values
given by Professor for variousruncombinations (see Sects. 3.3 and
3.4 for details). While the old parameter ranges are given by dashed red
lines, the 80% of the best G.o.F. values (blue points) determine the new
green ranges for the next iteration. The 20% of the worst G.o.F. values

(orange points) are neglected. The lowest G.o.F. value (solid green line)
defines the current best tune value that is used as starting value for next
tune-steps and iterations. The G.o.F. values are calculated including the
weights for the observables given by the algorithm. Hence, for the best
fit and the range only the relative values are important and G.o.F. values
between iterations are not comparable
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Fig. 3 Left: measure density for all combination vectors according to Eq. (4) for ideal conditions of polynomial functions, see Sect. 4.1. Right:
measure density for MCEG tuning (here Herwig angular ordered shower with cluster model). Although the distribution is less resolving, a structure
is visible

and correlate the parameter in combinations as [A, B, C, D,
E], [F, G, H, I, J] and [K, L, M, N, O]. Under these ideal
conditions, we search for the correlations with the procedure
described in Sect. 3.1. In Fig. 3(left), the weights for the
parameter correlations are shown. The ideal combinations
defined above create the highest weights, and would there-
fore be detected as correlated by the algorithm. In a real life
MCEG tune the correlations are much less pronounced. In
the right panel of Fig. 3, we show the weight distribution for
the example of the Herwig 7 tune described in Sect. 5.2.1.
Once the correlated combinations are found, the algorithm
continues with the procedure described in Sects. 3.3 and 3.2.
As the result of each full tune serving as input to a next iter-
ation, it is possible to visualize the outcome as a function of
tune iterations. Figure 4 shows this visualisation as produced
by the program. Each parameter (A–O) is normalised to the
initial range, and plotted with an offset. In this example, it
is possible to show the input values of the pseudo data with
dashed lines. This is not possible when tuning is performed
to real data. As Professor is very well capable of finding
polynomial behaviour, the parameter point that the method
aims to find is already well constrained after the first itera-

tion. However, next iterations still improve the result. This
may be seen for example in the third and last line.

The procedure to split the parameter space into smaller
subsets, and to assign weights can suffer from numerical
and statistical noise if we consider many observables. In
Appendix A, we discuss the range dependence and show that
the weight distributions are fairly stable if the same param-
eters are found to be correlated. It is further possible to ask
for weights, if all parameters should be tuned independently.
From the tuning perspective this seems an unnecessary fea-
ture, but can help to find observables that are likely influenced
by a model parameter, e.g it is possible to identify the range
of bins where the bottom mass has influence in jet rates.

4.2 Tuning Pythia 8 to pseudo data

As a second test of our method, we usePythia 8 to generate
pseudo data for a random choice of 18 relevant parameter val-
ues. We then use three different methods to tune Pythia 8
to this set of pseudo data, and try to recover the true param-
eters. In all methods, we divide the tuning into three sub-
tunes. The first method is a random selection of parameters
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Fig. 4 Iterated tuning to polynomial pseudo data using the
Autotunes method

out of the full set, with unit weights on all observables. In the
second method, we choose the simultaneously tuned param-
eters based on physical motivation, but still use unit weights
on all observables. Finally, we use the Autotunes method
to divide the parameters into steps, and automatically set
weights as described in Sect. 3.

The choice of parameters used in the physically motivated
method is given in Table 1. The first step collects parameters
that have a significant influence on many observables, com-
bining shower and Pythia 8 string parameters. The second
step gathers additional properties of the string model [33,34],
focusing on the flavor composition. The last step then tunes
the ratio of vector-to-pseudoscalar meson production.

The results of the three tuning approaches that aim to
recover the Pythia 8 pseudo data parameters are shown in
Fig. 5a–d. None of the approaches is capable of exactly recov-
ering all of the original parameter values. This suggests that
close-by points in parameter space are well suited to repro-
duce the pseudo data observable distributions. However, the
iterated Autotunes method improves the agreement of the
recovered parameters by avoiding large mismatches, e.g. in
the StringFlav-mesonBvector parameter. In the physically
motivated and random approaches, there is a certain chance
that parameters are strongly constrained by observables that
also depend on other parameters. If these are not identified
and included in the same sub-tune, both parameters get con-
strained. Thus, the optimal configuration is not necessarily
recovered, as can be observed by the seemingly fast con-
vergence of the random method. Figure 5a shows that some
parameters are constrained rather quickly, not recovering the
original value. By iteratively identifying such sets of param-
eters, the Autotunes method attempts to avoid these mis-
matches. On the other side, Fig. 5b indicates that the fixed
physically motivated combinations lead to a rather slow con-
vergence of parameters. Overall, it is difficult to assess the
tune quality from Fig. 5a to c.

Figure 5d shows the summed, squared and normalized
deviation of the recovered to the true parameter values. Each
approach is performed three times to access the stability of
the results. The random approach uses random combinations
of parameters for the tuning steps, so we see a wide spread of
results. The iterative tuning using our fixed physically moti-
vated parameter choice is more reliable, showing a lower
spread and better results. The Autotunes method leads to
the best agreement with the original parameters. More sta-
ble results in the physically motivated and the Autotunes
method could be achieved by using higher statistics for both
the event generation and the sampling. We see that in the
physically motivated and the Autotunes approach, a sec-
ond tuning iteration affects the results, mostly – but not nec-
essarily – improving the parameter agreement. Further iter-
ations have a minor impact.

5 Results

We use the Autotunes framework to perform five distinct
tunes to LEP observables. We tuned to a rather inclusive list
of analyses9 available within the Rivet framework for the
collider energy at the Z-Pole. To this point we do not weight
the LEP observables, but make use of the sub-tune weights
described in Sect. 3.2.10 The tunes make use of the default
hadronisation models of the event generators Herwig 7 and
Pythia 8. We further present a new tune of the Herwig 7
event generator interfaced to thePythia 8 string hadronisa-
tion model. The details of the simulations can be found in the
following sections. The results are presented in Table 2 and
Table 3, listing default values, tuning ranges of the param-
eters, as well as the tuning results using the Autotunes
method.

9 ALEPH–1991–S2435284 [36], ALEPH–1995–I382179 [37],
ALEPH–1996–S3486095 [17], ALEPH–1999–S4193598 [38],
ALEPH–2001–S4656318 [39], ALEPH–2002–S4823664 [40],
ALEPH–2004–S5765862 [41], DELPHI–1991–I301657 [42],
DELPHI–1995–S3137023 [43], DELPHI–1996–S3430090 [19],
DELPHI–1999–S3960137 [44], DELPHI–2011–I890503 [45], JADE–
OPAL–2000–S4300807 [46], L3–1992–I336180 [47], L3–2004–-
I652683 [48], OPAL–1992–I321190 [49], OPAL–1993–I342766 [50],
OPAL–1994–S2927284 [51], OPAL–1995–S3198391 [52], OPAL–-
1996–S3257789 [53], OPAL–1997–S3396100 [54], OPAL–1997–-
S3608263 [55], OPAL–1998–S3702294 [56], OPAL–1998–S3749908
[57], OPAL–1998–S3780481 [58], OPAL–2000–S4418603 [59],
OPAL–2003–I599181 [60], OPAL–2004–I648738 [61], OPAL–-
2004–S6132243 [62], PDG–HADRON–MULTIPLICITIES [63],
PDG–HADRON–MULTIPLICITIES–RATIOS [63], SLD–1996–-
S3398250 [64], SLD–1999–S3743934 [65], SLD–2002–S4869273
[66], SLD–2004–S5693039 [67].
10 Additional weighting with knowledge of perturbative stability or
known misinterpretation of experimental errors may be subject to future
work.
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Table 1 Parameters chosen to
be tuned simultaneously in the
physics motivated tuning
approach

Step 1 Step 2 Step 3

TimeShower:alphaSvalue StringFlav:probStoUD StringFlav:mesonUDvector

TimeShower:pTmin StringFlav:probQQtoQ StringFlav:mesonSvector

StringZ:aLund StringFlav:probSQtoQQ StringFlav:mesonCvector

StringZ:bLund StringFlav:probQQ1toQQ0 StringFlav:mesonBvector

StringPT:Sigma StringFlav:etaSup

StringZ:aExtraSQuark StringFlav:etaPrimeSup

StringZ:aExtraDiquark StringFlav:popcornRate
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TimeShower-alphaSvalue
TimeShower-pTmin
StringZ-aLund
StringZ-bLund
StringPT-Sigma
StringZ-aExtraSQuark
StringZ-aExtraDiquark
StringFlav-probStoUD
StringFlav-probQQtoQ
StringFlav-probSQtoQQ
StringFlav-probQQ1toQQ0
StringFlav-etaSup
StringFlav-etaPrimeSup
StringFlav-popcornRate
StringFlav-mesonUDvector
StringFlav-mesonSvector
StringFlav-mesonCvector
StringFlav-mesonBvector

(a) IteratedPythia 8 pseudo data tune with random choice of
parameter subset.

0 1 2 3 4 5 6
Iterations

Tu
ne
d
Pa
ra
m
et
er
s

TimeShower-alphaSvalue
TimeShower-pTmin
StringZ-aLund
StringZ-bLund
StringPT-Sigma
StringZ-aExtraSQuark
StringZ-aExtraDiquark
StringFlav-probStoUD
StringFlav-probQQtoQ
StringFlav-probSQtoQQ
StringFlav-probQQ1toQQ0
StringFlav-etaSup
StringFlav-etaPrimeSup
StringFlav-popcornRate
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(b) Iterated Pythia 8 pseudo data tune with physically motivated
choice of parameters.
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(c) Iterated Pythia 8 pseudo data tune using the Autotunes method.
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(d) Comparison in summed deviation from true parameters, each
normalized to a range between 0 and 1. Iterating the Autotunes

approach leads to better agreement with initially chosen
parameters.

Fig. 5 Parameter development as a function of tune iterations. Each
iteration consists of a full tuning procedure with three sub-tunes, using
the optimized parameter values and ranges of the preceding iteration as
starting conditions. The dashed lines in Fig. 5a–c show the true param-
eter point that was used to produce the pseudo data. The uncertainty

bands are given by 80% of the best fit values in the Professor run-
combinations and an additional 20% margin. In Fig. 5d we compare the
the summed deviation for three distinct tunes for the random, physically
motivated and Autotunes method
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5.1 Retuning of Pythia 8

The tune of Pythia 8.235 is performed by using LEP
data. We usePythia 8’s standard configuration as described
in the manual, including a one-loop running of αS in the par-
ton shower. The tuned parameters, initial ranges and tune
results are given in Table 2 in Appendix B.

The given ranges on the tune results, obtained from the
variation of the optimal tune in different run combinations,
can be interpreted as a measure of the stability of the best
tune. A wide range suggests that different configurations give
tunes of similar χ2. The extraction of the strong coupling αS

is the most stable result in the tune. The modification of the
longitudinal lightcone fraction distribution in the string frag-
mentation model for strange quarks (StringZ:aExtraSQuark)
is very loosely constrained, suggesting that the data that is
employed in the tune is not suitable to extract this parameter.

We tune 18 parameters in three sets of six parameters each.
In thePythia 8 tune, the parton shower cutoff pTmin is sur-
prisingly loosely constrained. Checking the combinations of
parameters that the Autotunes method chooses, we note
that pTmin is found to be correlated with the string fragmen-
tation parameters aLund and bLund in every iteration, which
are also rather loosely constrained. This suggests that differ-
ent choices for these three parameters can provide tunes of
similar χ2.

5.2 Retuning of Herwig 7

As another real life example we tune the Herwig 7 event
generator to LEP data. Here the tune is based upon version
Herwig 7.1.4 and ThePEG 2.1.4. We perform two tunes
– cluster and string model – for both showers, the QTilde
shower [68] and the dipole shower [69]. For the presented
tunes we do not employ the CMW scheme [70], but keep the
αS(MZ ) value a free parameter. This results in the enhanced
value compared to the world average [71].

5.2.1 Tuning Herwig 7 with cluster model

We retune the cluster-model with a 22 dimensional parameter
space. Here, we require tree sub-tunes and performed four
iterations. The results are listed in Appendix B. Comparing
the results, we note that the method is in general able to find
values outside of the given initial parameter ranges, see e.g.
the αS(MZ ) or the nominal b-mass. This can be caused by
Professor interpolation outside the given bounds or in the
determination of the new ranges for the next iteration. Apart
from the parameters that influence the cluster fission process
of heavy clusters involving charm quarks (ClPowCharm and
PSplitCharm), the parameters are comparable between the
two shower models. Further in the cluster-model, the fission

parameters are correlated. It is reasonable to assume possible
local minima in the χ2 measure.

5.2.2 Tuning Herwig 7 with Pythia 8 Strings

The usual setup of the event generators are genuinely well-
tuned and even though the tests of Sect. 4 allow the conclusion
that relatively arbitrary starting points lead to similar results,
ignoring the previous knowledge completely seems undesir-
able. To create a real live example and further allow useful
future studies we employed the fact that the C++ version of
theAriadne shower but also theHerwig 7 event generator
is based onThePEG. Furthermore, with minor modifications,
the unpublished interface between ThePEG and Pythia 8
(called TheP8I, written by L. Lönnblad), allowed the inter-
nal use of Pythia 8-stings with Herwig 7 events.11 Since
no tuning for this setup was attempted before the starting
conditions needed to be chosen with less bias compared to
the other results of this section.

When we compare the values received for the Herwig 7
showers to the Pythia 8 shower, we note a comparably
large value for the Pythia 8 αS value. In contrast, the cut-
off in the transverse momentum in Pythia 8 is rather small.
The reason for this contradicting behaviour12 can be found
in the order at which the two codes evaluate the running
of the strong coupling. While Herwig 7 chooses an NLO
running, Pythia 8 evolves αS with LO running, and there-
fore suppresses the radiation for low energies. Even though
the shower models are rather different, the difference in the
response in the best fit values of the parameters are moder-
ate. Less constrained parameters like the popcornRate, which
influences part of the baryon production or the additional
strange quark parameter aExtraSQuark show a correspond-
ing large uncertainty. It can be concluded that the data used
for tuning is hardly constraining these parameters.

6 Conclusion and outlook

We presented an algorithm that allows a semi-automatic
Monte Carlo Event generator tuning of high dimensional
parameter space. Here, we motivated and described how the
parameter space can be split into sub-spaces, based on the
projections to and variations in the observable space. We
then assigned increased weights when we perform the sub-

11 For the string model to be used withHerwig 7 the reshuffling to con-
stituent masses was switched off. This modification will be available in
the next Herwig 7 version. However, the underlying event modelling
and needed colour reconnection is not yet supported and needs to be
improved for the simulation of hadron collisions.
12 Observables like the number of charged particles are both likely to
be modified in the same direction with an increased coupling and a
decreased evolution cutoff.
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tunes, such that influential observables are highlighted. It is
then possible to use the output of any tune step as starting
conditions for next steps. Therefore the procedure is itera-
tive. In ideal conditions, we performed tests to check that the
algorithm finds correlated parameters and showed in realis-
tic environment that pseudo data could be reproduced better
by the algorithm than by random or physically motivated
tunes. As real life examples we tuned the Pythia 8 and
Herwig 7 showers with their standard hadronisations mod-
els and modified the Herwig 7 generator to allow consistent
hadronisation with the Pythia 8’s Lund String model.

The method allows to perform tuning with far less human
interaction. It also allows different models to be tuned with a
similar bias. Such tunes can then be used to identify mismod-
elling, with the assurance that the origin of the difference in
data description is less likely part of a better or worse tuning.

At the current stage we did not assign weights or uncer-
tainties other than the sub-tune weights and the uncertainties
given by the experimental collaborations. We note that the
difference between higher multiplicity merged simulations
to the pure parton shower simulations can serve as an excel-
lent reduction weight to suppress observables influenced by
higher order calculations. However, the investigation of such
procedures goes beyond the scope of this paper and will be
subject to future work. Further, we did not address the third
point of the mentioned restrictions in Sect. 2.1 that describes
over-represented data. We postpone such studies, that include
clustering of slope-vectors to reduce such an influence, to
future work.
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Appendix A: Range dependence

The algorithm to split the dimensions and to assign weights
to sub-tunes is constructed such that correlations should still
be found when the parameter ranges are varied. This is not
always possible if the parameter ranges are strongly modi-
fied. It is possible that the slope vectors, that are evaluated by
averaging over the full n−1 (other) dimensions, are modified
by the newly defined initial ranges. It is even possible that the
range of other parameters influence the slope as the spread
modifies the normalisation. In order to show such behaviour
(and also to illustrate the weight distributions), we choose
three different setups for the event generator Herwig 7. We
choose d = 4 and try to split the dimensions in half. Here
we choose the parameters and initial ranges as,

Parameter Setup 1 Setup 2 Setup 3

αS(MZ) 0.12–0.13 0.124–0.126 0.12–0.13
Cl light

max 2.0–3.0 2.4–2.6 2.4–2.6
pTmin 0.7–0.9 0.7–0.9 0.78–0.82
gCM 0.7–0.9 0.7–0.9 0.7–0.9

The result for the parameter grouping and the weight dis-
tributions are depicted in Fig. 6. While the algorithm to split
the parameter space in setup 1 and setup 2 such that Cl light

max

and pTmin should be tuned in the first step and then αS(MZ)

and gCM
13 in a second step, the modification to the initial

ranges has the effect that the algorithm favours the pairing
(Cl light

max , gCM) and (αS , pTmin) for steps 1 and 2 for setup 3.
While it is possible that by changing the initial ranges the

pairing flips and other parameter groups are found, the fact
that neighbouring bins have a similar behaviour supports the
concept of meaningful weight distributions. It would be pos-
sible to correlate neighbouring bins or introduce a smooth-
ing algorithm to make the weights more stable but such a
modification can be introduced once issues with the current
algorithm appear.

In principle, it is possible to visualize for each parame-
ter the weights of the sub-tune choice that we want. This
choice can help to identify observables that are influential
for individual parameters, and give insights in unexpected
behaviours. Already from the weight distributions shown in
Fig. 6, we can deduce that pTmin is of great importance for
the transverse momentum out-of-plane, see upper left panel.
Further modifications of the constituent mass of the gluon
gCM will influence the difference in the hemisphere masses,
see lower right panel.

13 gCM is the parameter for the constituent mass of the gluon.
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Fig. 6 Weight distributions for subsets of parameter pairs as described
in Appendix A. The upper panels show the measured data points and
the lower panels show the weights assigned. A clear distinction between

more and less important sets is visible. The dashed lines correspond to
Setup 2, which gives a same grouping of parameters as Setup 1

Appendix B: Tune Results

In Table 2 and Table 3 we list the results of the Herwig 7
and Pythia 8 tunes with the standard hadronisation. For
Herwig 7 we also list a tune for the Lund string model. The
results are discussed in Sect. 5.
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Table 2 Tuned Pythia 8
parameters with default values,
initial ranges for the tune, and
the Autotunes result. See
[7,8] for details on the
parameters. (SF = StringFlav,
SZ = StringZ). The errors given
are determined by the method
described in Sects. 3.4 and 3.3
and must not be confused with
either theoretical or
experimental uncertainties

Parameter Def. Range Pythia 8 tune H7+Q̃+Str. H7+Dip.+Str.

alphaSvalue 0.1365 0.125–0.14 0.13699+0.00019
−0.00057 0.1289+0.0011

−0.0004 0.13229+0.00083
−0.00015

pTmin 0.5 0.4–0.8 0.49+0.05
−0.16 0.993+0.010

−0.004 0.990+0.020
−0.004

SZ-aLund 0.68 0.5–0.8 0.71+0.07
−0.24 0.60+0.13

−0.19 0.84+0.03
−0.16

SZ-bLund 0.98 0.7–1.3 1.11+0.11
−0.23 0.78+0.18

−0.19 1.00+0.04
−0.20

StringPT-Sigma 0.335 0.3–0.4 0.3011+0.0020
−0.0010 0.3008+0.0006

−0.0022 0.29876+0.00122
−0.00022

SZ-aExtraSQuark 0.0 0.0–0.5 0.04+0.60
−0.05 0.08+0.26

−0.08 0.22+0.37
−0.22

SZ-aExtraDiquark 0.97 0.8–1.2 1.19+0.06
−0.18 1.1+0.3

−0.6 1.02+0.38
−0.18

SF-probStoUD 0.217 0.1–0.3 0.196+0.010
−0.004 0.2186+0.0018

−0.0103 0.1979+0.0016
−0.0066

SF-probQQtoQ 0.081 0.0–0.2 0.0828+0.0011
−0.0024 0.0821+0.0010

−0.0032 0.0856+0.0007
−0.0039

SF-probSQtoQQ 0.915 0.8–1.0 0.98+0.09
−0.05 0.748+0.091

−0.029 0.797+0.004
−0.009

SF-probQQ1toQQ0 0.0275 0.0–0.1 0.033+0.003
−0.011 0.024+0.008

−0.006 0.023+0.007
−0.003

SF-etaSup 0.6 0.4–0.8 0.644+0.034
−0.018 0.800+0.012

−0.036 0.7976+0.0018
−0.0068

SF-etaPrimeSup 0.12 0.0–0.3 0.1095+0.0054
−0.0016 0.1027+0.0115

−0.0022 0.100+0.017
−0.008

SF-popcornRate 0.5 0.4–0.6 0.31+0.27
−0.05 0.63+0.12

−0.36 0.51+0.08
−0.17

SF-mesonUDvector 0.5 0.3–0.7 0.527+0.027
−0.023 0.459+0.031

−0.008 0.473+0.009
−0.047

SF-mesonSvector 0.55 0.35–0.75 0.53+0.07
−0.08 0.55+0.07

−0.05 0.581+0.018
−0.044

SF-mesonCvector 0.88 0.7–1.1 0.874+0.021
−0.024 1.10+0.08

−0.22 0.72+0.13
−0.08

SF-mesonBvector 2.2 2.0–2.4 2.24+0.16
−0.20 2.34+0.09

−0.50 2.31+0.27
−0.44

Table 3 Result of the retuning
of the Herwig 7 event
generator employing the default
hadronisation model (cluster
model). The 22 dimensional
parameter space was tuned with
three sub-tunes and three
iterations. Shown are the default
values (corresponding to the
Qtilde shower tune) as well as
the parameter range and the
tuning result for both showers.
The errors given are determined
by the method described in
Sects. 3.4 and 3.3 and must not
be confused with neither
theoretical not experimental
uncertainties

Parameter Def. Range H7+Dip.+Cluster H7+Q̃+ Cluster

alphaS 0.126234 0.12–0.13 0.13008+0.00013
−0.00061 0.12455+0.00020

−0.00118

gConstituentMass 0.95 0.7–1.1 0.83+0.16
−0.07 1.0045+0.0028

−0.0006

EMpTmin 1.2228 0.8–1.4 1.204+0.010
−0.033 1.068+0.004

−0.020

SPpTmin 1.2228 0.8–1.4 1.204+0.010
−0.033 1.22+0.27

−0.74

bNominalMass 4.2 4.0–4.7 4.76+0.04
−0.21 4.2+0.9

−0.5

bConstituentMass 5. 4.0–4.7 4.01+0.22
−0.13 4.03+0.17

−0.15

DecWt 0.62 0.5–0.9 0.59+0.10
−0.05 0.61+0.05

−0.04

SngWt 0.74 0.5–0.9 0.86+0.18
−0.11 0.80+0.14

−0.37

ClSmrLight 0.78 0.5–1.0 0.59+0.05
−0.08 0.437+0.041

−0.013

ClSmrCharm 0. 0.0–0.2 0.24+0.04
−0.21 0.18+0.04

−0.18

ClSmrBottom 0.0204 0.0–0.1 0.100+0.019
−0.044 0.088+0.018

−0.033

ClMaxLight 3.00254 3.0–5.0 3.18+0.11
−0.22 3.13+0.08

−0.14

ClMaxCharm 3.63822 3.0–5.0 3.34+0.25
−0.07 3.68+0.28

−0.07

ClMaxBottom 3.911 3.0–5.0 4.4+1.6
−0.6 4.9+0.9

−2.9

ClPowLight 1.42426 1.0–1.8 1.85+0.24
−0.58 1.36+0.15

−0.03

ClPowCharm 2.33186 1.5–3.0 1.89+1.71
−0.29 3.1+0.4

−1.5

ClPowBottom 0.6375 0.4–0.8 0.638+0.104
−0.018 0.80+0.04

−0.23

PSplitLight 0.847541 0.0–1.5 0.8747+0.0041
−0.0007 0.935+0.035

−0.018

PSplitCharm 1.23399 0.0–1.5 0.637+0.164
−0.028 1.20+0.11

−0.66

PSplitBottom 0.5306 0.0–1.5 0.599+0.019
−0.113 0.69+0.12

−0.12

SingleHadronLimitCharm 0.0 0.0–0.5 0.0015+0.0156
−0.0015 0.0012+0.0061

−0.0012

SingleHadronLimitBottom 0.0 0.0–0.5 0.08+0.12
−0.09 0.015+0.009

−0.016
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