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Abstract A framework is developed for generalized poly-
tropes with the help of complexity factor introduced by Her-
rera (Phy Rev D 97:044010, 2018), by using the spherical
symmetry with anisotropic inner fluid distribution. For this
purpose generalized polytropic equation of state will be used,
having two cases (i) for mass density (μo), (ii) for energy
density (μ), each case leads to a system of differential equa-
tions. These systems of differential equations involve two
equations with three unknowns and they will be made con-
sistent by using the complexity factor. The analysis of the
solutions of these systems will be carried out graphically by
using different parametric values involved in the systems.

1 Introduction

Polytropes are playing a very vital role to discuss the astro-
nomical objects. In astrophysics many mathematicians and
researchers have shown great interest in the study of poly-
tropes. In this respect, different authors and researchers have
used theory of polytropes. Chandrasekhar [2] introduced first
time the basic concept of Newtonian polytropes by using
the laws of thermodynamics. He calculated the density and
mass of white dwrafs. Tooper [3] studied the solution of Ein-
stein field equations for compressible fluid, which obeyed
the polytropic equation of state. He also discussed the Lane–
Emden equation in case of relativistic polytropes [4]. Kaplan
and Lupanov [5] obtained a analytical relation between mass
and density using polytropic sphere. Kaufmann [6] studied
the static polytropic sphere and calculated the mass-radius
relation for different values of polytropic index n. Occhionero
[7] analyzed the rotation of structure by using the polytropes
for n ≥ 2. Kovetz [8] put some divergences right in the theory
of polytropes defined by Chandrasekhar [2].
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Horedt [9] observed the instability of the model for
the polytroic index n > 3, he also analyzed the physical
attributes like mean density, mass, acceleration and gravi-
tational potential of higher dimensional radially-symmetric
polytropes by using gamma function [12]. Sharma [10] used
Pade approximation to calculate the exact solution of field
equation for spherical geometry. Abramowicz [11] used
spherical, cylindrical and planer polytropes to develop the
Lane–Emden equation. Pandey [13] studied in detail spher-
ical symmertric structures with polytropic equation of state.
Zhang et al. [14] verified that equation of hydrostatic equi-
librium is satisfied by self-gravitating polytropes.

Herrera [15] discussed the relativistic polytropes with the
help of effective variables. Herrera and Barreto [16] gave
a generalized mathematical structure of anisotropic Newto-
nian stars with polytropic equation of state. They [17] also
provided a general framework for anisotropic polytropes
and discussed the stability by using Tolman mass. Herrera
et al. [18] minimized the parameters in spherically anisotropic
polytopic models by using the conformally flat condition and
developed modified form of Lane–Emden equation. Herrera
et al. [19] also used cracking method to discussed stability
analysis of relativistic anisotropic polytropes.

Polytropes depend upon a relation between pressure and
density of objects in which pressure depends on density. The
generalized polytropes are usually defined by two equations
of state.

(i) Linear equation of state, defined as

Pr = α1μo, (1)

where Pr is radial pressure and α1 is constant of propor-
tionality.

(ii) Polytropic equation of state, defined as

Pr = Kμ
γ
o = Kμ

1+ 1
n

o , (2)

where γ , n and K are called polytropic exponent, poly-
tropic index and polytropic constant respectively.
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Azam et al. [20] used generalized polytropic equation of
state, which is a combination of the Eqs. (1) and (2) given as

Pr = α1μo + Kμ
γ
o = α1μo + Kμ

1+ 1
n

o , (3)

if μo is changed by μ then Eq. (3) takes the form

Pr = α1μ + Kμ1+ 1
n . (4)

Azam et al. [21] discussed the relativistic charged polytropes
using the generalized polytropic equation of state in the con-
text of general relativity. They first time introduced the con-
cept of general polytropic equation of state and also estab-
lished the general frameworks of anisotropic cylindrical and
spherical polytropes with modified form of polytropic equa-
tion of state. Stability analysis was carried out by Tolmann
mass and cracking technique.

Herrera [1] first time introduced the concept of complex-
ity factor in the vicinity of general theory of relativity by
splitting the Riemann tensor Rαγβδ into four structure scalars
XT , XT F ,YT andYT F . One of themYT F named as complex-
ity factor after this, he quantified it equal to zero and termed
it as vanishing complexity factor. Sharif and Iqra [22] applied
the vanishing complexity factor on charged spherical system
and found that the electromagnetic field decreases complex-
ity of the system.

The plan of this paper is as follows. In Sect. 2 we will
discuss the Einstein field equation and generalized Tolman-
Oppehheinar-Volkoff equation (TOV). In Sect. 3 relation of
Riemann and Weyl tensor will be stuied. In Sect. 4 mass func-
tion and Weyl tensor will be discussed. We shall talk about
the orthogonal splitting of Reimann tensor and complexity
factor in Sects. 5 and 6. Section 7 will be devoted to study the
generalized polytropes and the energy conditions. In Sect. 8
we shall discuss the graphs of generalized polytropes with
complexity factor. In last section we shall summarized our
discussion.

2 Einstein field equations

We consider static spherically symmetric distributions of
fluid, bounded by a spherical surface �. The line element
is given as

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2 θdφ2), (5)

where ν = ν(r) and λ = λ(r). We number the coordinates:
x0 = t, x1 = r, x2 = θ, x3 = φ. The energy-momentum
tensor for anisotropic fluid distribution is given by

Tμν = (μ + P⊥)uμuν − P⊥gμν + (Pr − P⊥)sμsν, (6)

where P⊥ is the tangential pressure. The four velocity uμ and
four vector sμ are given by the following equations respec-
tively,

uμ = (e
−ν
2 , 0, 0, 0), (7)

sμ = (0, e
−λ
2 , 0, 0), (8)

with properties sμuμ = 0, sμsμ = −1.
The Einstein field equations are

μ = − 1

8π

[
− 1

r2 + e−λ

(
1

r2 − λ′

r

)]
, (9)

Pr = − 1

8π

[
1

r2 − e−λ

(
1

r2 − ν′

r

)]
, (10)

P⊥ = 1

8π

[
e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)]
, (11)

where primes indicate the derivatives w. r. t. ‘r’. From Eqs.
(9-11) it is easy to write the hydrostatic equilibrium equation
as

P
′
r = −ν

′

2
(μ + Pr ) + 2(P⊥ − Pr )

r
. (12)

It is called generalized TOV equation for anisotropic fluid.
As another option is

ν′ = 2
m + 4π Prr3

r(r − 2m)
, (13)

then we may write

P ′
r = − (m + 4π Prr3)

r(r − 2m)
(μ + Pr ) + 2(P⊥ − Pr )

r
, (14)

here m is the mass function given by

R3
232 = 1 − e−λ = 2m

r
, (15)

alternatively

m = 4π

∫ r

0
r2μdr . (16)

From four velocity vector Eq. (7) we can calculate the four
acceleration, aa = uα

,βu
β , whose non-vanishing component

is

a1 = −ν′

2
. (17)

It will be favorable to put down the energy-momentum tensor
as

Tμ
ν = μuμuν − Phμ

ν + �μ
ν , (18)
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with

�μ
ν = �(sμsν + 1

3
hμ

ν ); P = Pr + 2P⊥
3

.

� = Pr − P⊥; hμ
ν = δμ

ν − uμuν . (19)

We take Schwarzschild space time for the exterior of the fluid
distribution

ds2 =
(

1 − 2M

r
dt2

)
−

(
1 − 2M

r

)−1

dr2

−r(dθ2 + sin2 θdφ2). (20)

In order to match smoothly the two metrics Eqs. (5) and (20)
on the boundary r = r� =constant, we need the continuity
of the first and second fundamental form as

eν� = 1 − 2M

r�
, (21)

e−λ� = 1 − 2M

r�
, (22)

P� = 0. (23)

3 The Riemann and Weyl Tensor

The Weyl tensor Cρ
αβμ, the Ricci tensor Rβ

α and the Ricci
scalar R can be used to expressed the Riemann tensor as

Rρ
αβμ = Cρ

αβμ + 1

2
Rρ

βgαμ − 1

2
Rαβδρ

μ + 1

2
Rαμδ

ρ
β

−1

2
Rμ

μgαβ − 1

6
R(δ

ρ
βgαμ − gαβδρ

μ). (24)

In the spherical symmetric case, magnetic part of the Weyl
tensor vanishes and we can write Weyl tensor within its elec-
tric part (Eαβ = Cαγβδuγ uδ) as

Cμν8πλ = (gμναβgκλγ δ − ημναβηκλγ δ)u
αuγ Eβδ, (25)

with gμναβ = gμαgνα and ημναβ denoting the Levi-Civita
tensor. Note that Eαβ can also be expressed as

Eαβ = E(sαsβ + 1

3
hαβ), (26)

with

E = −e−λ

4

[
ν′′ + ν

′2 − λ′ν′

2
− ν′ − λ′

r
+ 2(1 − eλ)

r2

]
,

(27)

satisfying the following properties:

Eα
α = 0, Eαγ = E(αγ ), Eαγ u

γ = 0. (28)

4 The mass function

Now we shall bring in a widely used definition for the mass of
a sphere interior to the surface and some relations between it

and the Weyl tensor. Using Eqs. (9–11, 24, 26) and the mass
function given in Eq. (15) or (16) we have

m = 4π

3
r3(μ + P⊥ − Pr ) + r3E

3
, (29)

and then we have

E = −4π

r3

∫ r

0
r3μ′dr + 4π(Pr − P⊥). (30)

Finally, inserting Eq. (30) into Eq. (29) we have

m(r) = 4π

3
r3μ − 4π

3

∫ r

0
r3μ′dr . (31)

Equation (30) associates the Weyl tensor with the two phys-
ical attributes of the self gravitating fluid distribution, first
density in homogeneity and second the anisotropy in pres-
sure. Equation (31) expresses the mass function in terms of
homogeneous energy density distribution, plus the change
induced by density inhomogeneity.

5 The orthogonal splitting of the Riemann tensor

The Bel [23] first time introduced the orthogonal splitting of
Riemann tensor. Thus according to Bel, we have

Yαβ = Rαγβδu
γ uδ, (32)

Zαβ = ∗Rαγβδu
γ uδ = 1

2
ηαγ εμR

εμ
βδ u

γ uδ, (33)

Xαβ = ∗R∗
αγβδu

γ uδ = 1

2
ηεμ

αγ R
∗
εμβδu

γ uδ, (34)

where ∗ denote the dual tensor i.e. R∗
αβγ δ = 1

2ηεμγ δ Rεμ
αβ . It

is possible to show that the Riemann tensor can be expressed
in terms of these tensors which is called orthogonal splitting
of Riemann tensor [24]. Using the field equations, Eq. (24)
may be written as

Rαγ
βδ = Cαγ

βδ + 28πT [αγ ]
[βδδ] + 8πT

(
1

3
δ
αγ

[βδδ] − δ
[αγ ]
[βδδ]

)
, (35)

we split the Riemann tensor by using Eq. (18) into Eq. (35)

Rαγ
βδ = Rαγ

(I )βδ + β
αγ

(I I )βδ + Rαγ

(I I I )βδ, (36)

where

Rαγ

(I )βδ = 16πμu[αγ ]u[βδδ] − 28π Ph[αγ ]
[βδδ]

+8(μ − 3P)

(
1

3
δ
[αγ ]
[βδδ]

)
− δ

[αγ ][βδδ], (37)

Rαγ

(I I )βδ = 16π�
[αγ ]
[βδδ], (38)

Rαγ

(I I I )βδ = 4u[αγ ]u[βE δ] − εαγ
μ εβδνE

μν = 0, (39)

with

εαγβ = uμημαγβ, εαγβu
β = 0, (40)
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and where the vanishing, due to the spherical symmetry of
magnetic part of the Weyl tensor (Hαβ =∗ Cαγβδuγ uδ) has
been used.

With the help of above results, we can now find the explicit
expressions for the three tensors Yαβ, Zαβ and Xαβ in term
of the phyisical variables, we have

Yαβ = 4π

3
(μ + 3P)hαβ + 4π�αβ + Eαβ, (41)

Zαβ = 0, (42)

and

Xαβ = 8π

3
μhαβ + 4π�αβ − Eαβ. (43)

These tensors, can be written in term of scalar functions,
called structure scalars [25].

Using tensor Xαβ and Yαβ we can define four scalars func-
tions XT , XT F , YT , YT F , and a fifth scalar related to the
tensor Zαβ vanishing in the static case. These scalars can be
written as

XT = 8πμ, (44)

XT F = 4π�αβ − E, (45)

XT F = 4π

r3

∫ r

0
r3μ′dr , (46)

YT = 4π(μ + 3Pr − 2�), (47)

YT F = 4π� + E, (48)

or using Eq. (30)

YT F = 8π� − 4π

r3

∫ r

0
r3μ′dr . (49)

From Eqs. (46) and (49) local anisotropy of pressure is given
by

8π� = XT F + YT F . (50)

6 Complexity factor and fluid distribution

Herrera in [1] introduced YT F as complexity factor. This
complexity factor not only disappears for homogeneous
isotropic fluid where two term of Eq. (49) vanishes, but also
for all configurations where the two terms in Eq. (49) cancel
each other. It also noticeable that contribution of the pressure
anisotropy to YT F is local and contribution of the density
energy inhomogeneity is not.

The Eqs. (9–11) form system three differential equations
with five unknowns (λ, μ, ν, P⊥, Pr ). If we apply the con-
dition YT F = 0 we shall still need one condition to solve
system. From Eq. (58), vanishing complexity factor condi-
tion will be

� = 1

2r3

∫ r

0
r3μ′dr . (51)

From Eq. (51), it is noticeable that vanishing complexity
factor condition implies either pressure isotropy and homo-
geneous energy density, or inhomogeneous energy density
and pressure anisotropy.

7 Polytropes with Generalized Polytropic Equation of
State

Now we consider the generalized polytropic equation of state
for anisotropic fluid [20] as

Case1

Pr = α1μo + Kμ
1+ 1

n
o , (52)

the mass density μo connected with total energy density μ

[18] as

μ = μo + nPr . (53)

Let us consider the following assumption

α = Prc
μc

, r = ξ

A
, A2 = 4πμc

α(n + 1)
. (54)

ψo = Po
μoc

, v(ξ) = m(r)A3

4πμc
. (55)

Then TOV Eq. (13) becomes

−v − [ξψo
′(ξ − 2αv)((n + 1)ψoβ1

+α1n(1 − αn))(v + αξ3ψo
n+1)]

/
[α(n + 1)ψo((n + 1)ψoβ1 − (αn − 1)

β2(v + ξ3ψo
n(α1 + ψoβ1

−αα1n))] − αξ3ψo
n+1 + [2�ψo

−n(ξ − 2α(n + 1)v)

(v + αξ3ψo
n+1)]

/
[(n + 1)Prc((n + 1)ψo

β1 − (αn − 1)β2(v + ξ3ψo
n(α1 + ψoβ1 − αα1

n))] = 0, (56)

where β1 = α −α1α +αα1n, β2 = α1 +α1n + 1 and prime
indicates the derivative w. r. t. ξ . From the definition of mass
function Eqs. (15) and (9), we have

m′ = 4πr2μ, (57)

or using Eqs. (54, 55) we have

dv

dξ
= ξ2ψo

n(nψo(α − α1 + αα1n) − (αn − 1)(α1n + 1)).

(58)

The boundary of surface of sphere is defined by ξ = ξn
such that ψo(ξn) = 0 and following boundary conditions are
applied
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Fig. 1 Graphs between ξ and v; for α1 = .5, n = 1 and α = 10−10 (curve a); α = 2 × 10−10(curve b); α = 4 × 10−10(curve c) and
α = 8 × 10−10(curve d)

ψo(ξ = 0) = 1 and v(ξ = 0) = 0. (59)

Eqs. (56, 58) to gather give the Lane–Emden equation for
generalized polytropic equation of state in this case

[
(2nα�(ξ − 2(n + 1)αv)((nα − 1)β3 − (n + 1)β4ψo)

×(αξ3ψo
n+1 + v)(ξ3(−nαα1 + α1

+β4ψo)ψo
n + v)ψo

′ψo
1−n − 2α�((nα − 1)β3

−(n + 1)β4ψo)(αξ3ψo
n+1 + v)(αξ3ψo

n+1

+v)(ξ3(−nαα1 + α1 + β4ψo)ψo
n + v)

×(1 − 2(n + 1)αξ2ψo
n(nβ4ψo − (nα − 1)

×(nα1 + 1)))ψo
2−n − 2(n + 1)αβ4�(ξ

−2(n + 1)αv)(αξ3ψo
n+1 + v)

×(ξ3(−nαα1 + α1 + β4ψo)ψo
n + v)ψo

′ψo
2−n

−Prcξ
3(ξ − 2(n + 1)αv)((nα − 1)β3 − (n + 1)β4ψo)

×(n(1 − nα)α1 + (n + 1)β4ψo)(αξ3ψo
n+1 + v)ψo

′

×((n + 3)β4ψo
2 + ((n + 1)β4ξψo

′ − (nα − 1)

×((n + 3)α1 + 1))ψo + n(1 − nα)α1ξ

ψo
′)ψo

n + Prcξ
3(ξ − 2(n + 1)αv)

×(n(1 − nα)α1 + (n + 1)β4ψo)((nα − 1)β3

−(n + 1)β4ψo)(ξ
3(−nαα1 + α1 + β4ψo)ψo

n + v)ψo
′

×(−(nα − 1)(nα1 + 1) + ((n + 3)α

+n(nα − 1)α1)ψo + (n + 1)αξψo
′)ψo

n+1

+(n + 1)Prcαξ2((nα − 1)(nα1 + 1) − nβ4ψo)

×((nα − 1)β3 − (n + 1)β4ψo)
2(ξ3(−nαα1 + α1

+β4ψo)ψo
n + v)2ψo

n+2 − (n + 1)2Prcα
2ξ3((nα − 1)

β3 − (n + 1)β4ψo)
2(ξ3(−nαα1 + α1 + β4ψo)ψo

n

+v)2ψo
′ψo

n+2 − 3(n + 1)Prcα
2ξ2((nα − 1)β3

−(n + 1)β4ψo)
2(ξ3(−nαα1 + α1 + β4ψo)ψo

n

+v)2ψo
n+3 − 2α�ξ2(ξ − 2(n + 1)αv)((nα − 1)β3

−(n + 1)β4ψo)(ξ
3(−nαα1 + α1 + β4ψo)ψo

n + v)

(−(nα − 1)(nα1 + 1) + ((n + 3)α + n(nα − 1)

α1)ψo + (n + 1)αξψo
′)ψo

2 + (n + 1)

Prcβ4ξ(ξ − 2(n + 1)αv)(n(1 − nα)α1 + (n + 1)β4ψo)

×(αξ3ψo
n+1 + v)ψo

′2ψo + (n + 1)Prcβ4ξ

×(ξ − 2(n + 1)αv)((nα − 1)β3 − (n + 1)β4ψo)

×(αξ3ψo
n+1 + v)(ξ3(−nαα1 + α1 + β4ψo)ψo

n

+v)ψo
′2ψo + Prc(ξ − 2(n + 1)αv)(n(1 − nα)α1

+(n + 1)β4ψo)((nα − 1)β3 − (n + 1)β4ψo)

123
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Fig. 2 Graphs between ξ and ψo; for α1 = .5, n = 1 and α = 10−10 (curve a); α = 2 × 10−10(curve b); α = 4 × 10−10(curve c) and
α = 4 × 10−10(curve d)

×(αξ3ψo
n+1 + v)(ξ3(−nαα1 + α1 + β4ψo)ψo

n

+v)ψo
′ψo + Prcξ(n(1 − nα)α1 + (n + 1)β4ψo)

×((nα − 1)β3 − (n + 1)β4ψo)(αξ3ψo
n+1 + v)

×(ξ3(−nαα1 + α1 + β4ψo)ψo
n + v)(1 − 2(n + 1)

αξ2ψo
n(nβ4ψo − (nα − 1)(nα1 + 1)))ψo

′ψo

+2α�ξ2(ξ − 2(n + 1)αv)((nα − 1)

β3 − (n + 1)β4ψo)(αξ3ψo
n+1 + v)((n + 3)β4ψo

2

+((n + 1)β4ξψo
′ − (nα − 1)((n + 3)α1 + 1))ψo

+n(1 − nα)α1ξψo
′)ψo + Prcξ(ξ − 2(n + 1)αv)

×(n(1 − nα)α1 + (n + 1)β4ψo)((nα − 1)β3

−(n + 1)β4ψo)(αξ3ψo
n+1 + v)(ξ3(−nαα1

+α1 + β4ψo)ψo
n + v)ψo

′′ψo − Prcξ

×(ξ − 2(n + 1)αv)((nα − 1)β3 − (n + 1)β4ψo)

×(n(1 − nα)α1 + (n + 1)β4ψo)(αξ3ψo
n+1 + v)

×(ξ3(−nαα1 + α1 + β4ψo)ψo
n + v)ψo

′2)
]/

[
((n + 1)Prcαψo

2((nα − 1)β3 − (n + 1)β4ψo)
2

×(ξ3(−nαα1 + α1 + β4ψo)ψo
n + v)2)

]
= 0, (60)

where β3 = (nα1 + α1 + 1) and β4 = (nα1α + α − α1).
Equations (56, 58, 60) become Eqs. (30, 32, 57) of Herrera

[17], when (α1 → 0) and then obviously, Eq. (60) becomes

d2ψo

dξ2 + 2

ξ

dψo

dξ
+ ψ2

o = 0. (61)

in the Newtonian limit (α → 0). Equation (61) is called
classical Lane–Emden equation.

Case2

Another possibility can be consider [20] as

Pr = α1μ + Kμ1+ 1
n , (62)

in this case mass density μo is replaced by total energy den-
sity μ in Eq. (53), and they are related to each other as [16]

μ = μo

(1 − Kμ
1/n
o )n

. (63)

Introducing ψn = μ
μ o

we obtain TOV equation as

−v + [
ξψ ′(2α(n + 1)v − ξ)((n + 1)(α − α1)ψ

+α1n)(v + αξ3ψn+1)
]/[

α(n + 1)ψ((α − α1)ψ

123
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Fig. 3 Graphs between ξ and �; for α1 = .5, n = 1 and α = 10−10 (curve a); α = 2 × 10−10(curve b); α = 4 × 10−10(curve c) and
α = 4 × 10−10(curve d)

+α1 + 1)(v − ξ3ψn((α1 − α)ψ − α1))
]

−αξ3ψn+1 + [
2�ψ−n(ξ − 2α(n + 1)v)

×(v + αξ3ψn+1)
]/[

(n + 1)Prc((α − α1)ψ + α1 + 1)

×(v − ξ3ψn((α1 − α)ψ − α1))
] = 0, (64)

and from Eq. (57) we have

dv

dξ
= ξ2ψn . (65)

Eqs. (64, 65) to gather give the generalized Lane-Emdan
equation

[ − 2nα�(ξ − 2(n + 1)αv)(α1 + (α − α1)ψ + 1)

×(αξ3ψn+1 + v)(v − ξ3ψn((α1 − α)ψ − α1))ψ
′ψ1−n

−2α�(α1 + (α − α1)ψ + 1)(1 − 2(n + 1)αξ2ψn)

×(αξ3ψn+1 + v)(v − ξ3ψn((α1 − α)ψ − α1))ψ
2−n

+2α(α − α1)�(ξ − 2(n + 1)αv)(αξ3ψn+1 + v)

×(v − ξ3ψn((α1 − α)ψ − α1))ψ
′ψ2−n − Prcξ

3(ξ

−2(n + 1)αv)(α1 + (α − α1)ψ + 1)(nα1

+(n + 1)(α − α1)ψ)(αξ3ψn+1 + v)

ψ ′(3(α − α1)ψ
2 + (3α1 + (n + 1)

×(α − α1)ξψ ′ + 1)ψ + nα1ξψ ′)ψn

+Prcξ
3(ξ − 2(n + 1)αv)(α1 + (α − α1)

ψ + 1)(nα1 + (n + 1)(α − α1)ψ)(v − ξ3ψn

×((α1 − α)ψ − α1))ψ
′(3αψ + (n + 1)αξψ ′ + 1)ψn+1

+(n + 1)Prcαξ2(α1 + (α − α1)ψ + 1)2(v − ξ3ψn

×((α1 − α)ψ − α1))
2ψn+2 + (n + 1)2Prcα

2ξ3

×(α1 + (α − α1)ψ + 1)2(v − ξ3ψn

×((α1 − α)ψ − α1))
2ψ ′ψn+2 + 3(n + 1)Prcα

2ξ2

×(α1 + (α − α1)ψ + 1)2(v − ξ3ψn

×((α1 − α)ψ − α1))
2ψn+3 + 2α�ξ2(2(n + 1)αv

−ξ)(α1 + (α − α1)ψ + 1)(v − ξ3ψn((α1

−α)ψ − α1))(3αψ + (n + 1)αξψ ′ + 1)

ψ2 + (n + 1)Prc(α − α1)ξ(ξ − 2(n + 1)αv)

×(α1 + (α − α1)ψ + 1)(αξ3ψn+1 + v)

×(v − ξ3ψn((α1 − α)ψ − α1))ψ
′2ψ − Prc(α − α1)

ξ(ξ − 2(n + 1)αv)(nα1 + (n + 1)(α − α1)ψ)(αξ3ψn+1

+v)(v − ξ3ψn((α1 − α)ψ − α1))ψ
′2ψ

+Prc(ξ − 2(n + 1)αv)(α1 + (α − α1)ψ

+1)(nα1 + (n + 1)(α − α1)ψ)(αξ3ψn+1 + v)

123



1037 Page 8 of 11 Eur. Phys. J. C (2019) 79 :1037

Fig. 4 Graphs between ξ and v; for α1 = .5, n = 1 and α = 10−10 (curve a); α = 2 × 10−10(curve b); α = 4 × 10−10(curve c) and
α = 8 × 10−10(curve d)

×(v − ξ3ψn((α1 − α)ψ − α1))ψ
′ψ + Prcξ(α1

+(α − α1)ψ + 1)(nα1 + (n + 1)(α − α1)ψ)

×(1 − 2(n + 1)αξ2ψn)(αξ3ψn+1 + v)(v − ξ3ψn

×((α1 − α)ψ − α1))ψ
′ψ − 2α�ξ2(2(n + 1)

αv − ξ)(α1 + (α − α1)ψ + 1)(αξ3ψn+1 + v)

×(3(α − α1)ψ
2 + (3α1 + (n + 1)

×(α − α1)ξψ ′ + 1)ψ + nα1ξψ ′)ψ
+Prcξ(ξ − 2(n + 1)αv)(α1 + (α − α1)ψ + 1)

×(nα1 + (n + 1)(α − α1)ψ)(αξ3ψn+1 + v)

×(v − ξ3ψn((α1 − α)ψ − α1))ψ
′′ψ

−ξ(ξ − 2(n + 1)αv)(α1 + (α − α1)ψ + 1)

×(nα1 + (n + 1)(α − α1)ψ)

×(αξ3ψn+1 + v)(v − ξ3ψn((α1 − α)ψ − α1))ψ
′2]/

[
(n + 1)Prcαψ2(α1 + (α − α1)ψ + 1)2

×(v − ξ3ψn((α1 − α)ψ − α1))
2
]

= 0. (66)

Eqs. (64, 66) become Eqs. (59, 60) of Herrera [17], when
(α1 → 0) and in this case Eq. (66) becomes Eq. (61) in
Newtonian limit (α → 0).

In general theory of relativity the energy conditions are
derived to achieve maximal possible details without imposing
a certain equation of state for energy. The energy conditions
are used with the sense that energy density cannot be −ve
and satisfied by all the models as [18]

μ > 0,
Pr
μ

≤ 1,
P⊥
μ

≤ 1. (67)

For case 1 conditions (67) becomes as

nα + nα1(1 − nα) < 1,

αψo + α1(1 − nα)(1 − ψo)

(1 − nα)(1 + nα1) + n(α − α1 + nαα1)ψo
≤ 1,

3v
ξ3ψn

o
+ αψo + α1(1 − nα)(1 − ψo)

(1 − nα)(1 + nα1) + n(α − α1 + nαα1)ψo
− 1 ≤ 1,

(68)
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Fig. 5 Graphs between ξ and ψ ; for α1 = .5, n = 1 and α = 10−10 (curve a); α = 2 × 10−10(curve b); α = 4 × 10−10(curve c) and
α = 8 × 10−10(curve d)

and for Case 2 these conditions (67) tern out to be as

μ > 0, αψ + α1(1 − ψ) ≤ 1,

3v

ξ3ψn
+ αψ + α1(1 − ψ) − 1 ≤ 1. (69)

It can be observed that conditions (68) and (69) become (31)
and (35) of Herrera [18] when (α1 → 0).

8 The generalized polytropes with vanishing complexity
factor

8.1 Case No.1

The vanishing complexity factor YT F = 0, with the notation
in Eqs. (54, 55), will be read as[

4ξ2(ξψo(2�′) + μc(−n)ξψo
nψo

′((n + 1)ψo(α

−α1 + αα1n) − (αn − 1)(α1n + 1))

+6�ψo)
]/[

μcψo
] = 0. (70)

Now Eqs. (56, 58, 70) form a system of first order differential
equation with three unknown function v, ψo and � depending
on a triplet of parameters n, α and α1. This system is solved
and the solution is depicted through graphs. Figures 1, 2 and 3
for different values of n, α and α1 = .5 describe the behavior
of v, ψo and �.

8.2 Case No.2

In this case the complexity factor will be read as

6�

nμc
+ 2ξ

nμc

d�

2ξ
= ψn−1ξ

dψ

dξ
. (71)

Eqs. (64, 65, 71) form a system of first order differential
equation with three unknown function ψ , v and � depending
on a triplet of parameters n, α and α1. This system is solved
and the solution is shown through graphs in Figs. 4, 5 and 6.
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Fig. 6 Graphs between ξ and �; for α1 = .5, n = 1 and α = 10−10 (curve a); α = 2 × 10−10(curve b); α = 4 × 10−10(curve c) and
α = 8 × 10−10(curve d)

9 Summary

In this work we have formed a framework to study the
relativistic polytropes with generalized polytropic equation
of state using vanishing complexity factor. For this pur-
pose spherical symmetry is used for compact object with
anisotropic inner fluid distribution. In order to discuss the
relativistic polytropes we have developed the formalism to
obtain the generalized Lane–Emden equation. The general-
ized polytropes have been studied in two different cases. The
energy conditions for both cases have been developed. In
case (1) mass density is to be taken and in case (2) energy
density is to be considered. These cases led us to a system of
two differential equations and these systems made consistent
with the help of vanishing complexity factor.

In case (1) the system of differential equations solved and
solution were shown through graphs in Figs. 1, 2 and 3. Fig-
ure 1 shows the behavior of v for different value of parame-
ters. The graphs in Fig. 1 depict that v is zero at center and
gradually increase with the the increase of radius and it does

not show any abnormal pattern. Graphs of Fig. 2 show that
the value of ψo is minimum at center and increases with the
increase of radius and it becomes maximum at the boundary
surface. All four curves show normal behavior for different
values of parameters. In Fig. 3 curves of graphs show that �

has maximum at center and continuously decreases with the
increase of radius and it becomes zero at surface boundary.
All four curves show normal pattern through out the graphs.
In case (2) graphs in Figs. 4, 5 and 6 have same pattern of the
variables v, ψo and � for different values of ξ . They have
minimum value at the center and gradually increase with the
increase of radius and become maximum at the boundary sur-
face. All the graphs of this case show no abnormal behavior.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: We have not used
any data in this paper. The graphs content in the article was generated
using Mathematica.]
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