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Abstract The role of the Raychaudhuri equation in study-
ing gravitational collapse is discussed. A self-similar dis-
tribution of a scalar field along with an imperfect fluid in a
conformally flat spacetime is considered for the purpose. The
general focusing condition is found out and verified against
the available exact solutions. The connection between the
Raychaudhuri equation and the critical phenomena is also
explored.

1 Introduction

It is widely accepted that at the end of its life-cycle, a mas-
sive astronomical body undergoes a phase of gravitational
collapse. Followed by the pioneering work on an idealized
model star collapsing to zero volume by Datt [1] and Oppen-
heimer and Snyder [2], many attempts have been made to find
a more complete and increasingly generalized description of
gravitational collapse. For a detailed review of the relevance
of gravitational collapse in physics and the open problems,
we refer to the references [3,4].

It is not a trivial task to simplify the Einstein field equa-
tions enough to guarantee the extraction of an exact solution
that can describe the collapsing evolution. This often com-
pels one to resort to the study of simplified systems which
can describe the essential physics. Christodoulou studied the
global initial value problem for Einstein’s equations in the
spherically symmetric case with a massless scalar field and
showed that the scalar field, depending on the initial collaps-
ing profile, can either converge towards a zero proper volume
or bounce, dispersing towards infinity [5–7]. Choptuik stud-
ied a similar problem numerically and pointed out the now
well known critical phenomena in massless scalar field col-
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lapse [8]. Similar critical phenomena were studied by Brady
et al. [9] and Gundlach [10]. Throughout the last decade,
many attempts have been made to generalize the ideas of
critical phenomena for less simplified scenarios. For exam-
ple, critical phenomena in a collapsing system with angular
momentum was studied by Olabarrieta et al. [11]. The critical
behavior of a spherically symmetric collision-less matter at
the threshold of black hole formation was studied by Olabar-
rieta and Choptuik [12]. Analytical investigations of the crit-
ical collapse problem, and a search for a theoretical expla-
nation for the behavior discovered by Choptuik were carried
out by Brady [13], under the assumption that the collapse is
self-similar. For a detailed review on the critical phenomena
in gravitational collapse we refer to the review by Gundlach
and Martin-Garcia [14].

The current work stems from a different motivation – we
intend to investigate the role of the Raychaudhuri equation
[15,16], in the context of the study of gravitational collapse
and critical phenomena. This equation has been used to study
relativistic charged collapse by Kouretsis and Tsagas [17].
In the present work we study the evolution of a conformally
flat geometry, minimally coupled with a scalar field, along
with the presence of a fluid. This specific case of spacetime
metric is well-studied for radiating and/or shear-free stars
[18–25] and is receiving increasing interest in the context
of gravitational collapse quite recently [26–28]. We make
the additional assumption that the evolution is self-similar in
nature. Gravitational collapse of a self-similar fluid with heat
flow in a conformally flat spacetime was studied by Chan et
al. [29]. Collapsing models of fluids with the assumption of
self-similarity in more general spacetimes were studied in
[30–33] and references therein. In this work, we first dis-
cuss the usefulness of the Raychaudhuri equation in study-
ing the dynamics of the system. Generic conditions regard-
ing the evolution of the spacetime can be provided using
the Raychaudhuri equation. These conditions are useful in
the absence of an exact solution. We then work out exact
solutions of field equations for some special cases making
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use of some simplifying assumptions. We show the consis-
tency of the conclusions regarding the dynamics from exact
solutions, if available, with those arrived at from the Ray-
chaudhuri equation. The role of the Raychaudhuri equation
in the context of the critical phenomena is also studied.

The paper is organized as follows. In Sect. 2 we introduce
our system and discuss the assumptions involved. The field
equations and conservation equations for the system are also
presented in this section. The Raychaudhuri equation and
focusing condition are briefly discussed in the Sect. 3. In this
section, we focus on the role of the Raychaudhuri equation
in extracting information about the evolution of spacetime.
This section also includes a discussion on the consistency of
the results with exact solutions of the field equations, where
available, and a connection between focusing condition and
the critical phenomena. The final Sect. 4 includes some con-
cluding remarks.

2 The system

The spacetime which we consider is a conformally flat spher-
ically symmetric spacetime for which the metric can be writ-
ten as,

ds2 = 1

A2(r, t)

[
−dt2 + dr2 + r2dΩ2

]
, (1)

where 1
A2(r,t)

is the conformal factor which governs the evo-
lution of the 2-sphere.

The contribution to the energy-momentum tensor comes
from a scalar field and a fluid,

Tμν = T φ
μν + T fluid

μν , (2)

where

T φ
μν = ∂μφ∂νφ − gμν

[
1

2
gαβ∂αφ∂βφ + V (φ)

]
, (3)

and

T fluid
μν = (ρ + pt ) uμuν + pt gμν

+ (pr − pt ) χμχν + q
(
uμχν + uνχμ

)
. (4)

ρ, pt , pr and q are the energy density, tangential pressure,
radial pressure, and radial heat flux of the fluid respectively;
uμ = Aδ

μ
0 is the velocity of the fluid and χμ = Aδ

μ
1 is a unit

spacelike vector along the radial direction.
We assume the system to be self-similar of the first kind

in nature i.e. the metric admits a homothetic Killing vector
[34–36]. In the present case, we write,

A(r, t) = r B(z), ρ(r, t) = ρ(z), pr (r, t) = pr (z),

pt (r, t) = pt (z), q(r, t) = q(z), φ(r, t) = φ(z), (5)

where z = t

r
. With this choice the field equations become self

similar (i.e. the only independent variable in these equations
is z).

2.1 Field equations

The Einstein field equations (in the units 8πG = 1) for the
metric (1) with energy momentum tensor (2) can be written
as,

3 Ȧ2 − 3A′2 + 2AA′′ + 4

r
AA′

= ρ + 1

2
A2φ̇2 + 1

2
A2φ′2 + V (φ), (6)

2 ÄA − 3 Ȧ2 + 3A′2 − 4

r
AA′

= pr + 1

2
φ′2A2 + 1

2
A2φ̇2 − V (φ), (7)

2 ÄA − 3 Ȧ2 + 3A′2 − 2

r
AA′ − 2AA′′

= pt + 1

2
A2φ̇2 − 1

2
φ′2A2 − V (φ), (8)

and

2 Ȧ′

A
= φ̇φ′ − q

A2 , (9)

where dot and prime denote differentiation with respect to t
and r respectively.

In terms of the self-similar variable z, Eq. (9) can be writ-
ten as,

1

B

d2B

dz2 = 1

2

(
dφ

dz

)2

+ q

2zB2
. (10)

Equation (10) suggests that if φ is constant and q = 0, B
will be proportional to z. Similarly, we can write down Eqs.
(6)–(8) in terms of z as,

1

B

d2B

dz2 − 3

B2

(
dB

dz

)2

+ 2z

z2 − 1

1

B

dB

dz
+ 1

z2 − 1

= ρ

(z2 − 1)B2 − q(1 + z2)

2z(z2 − 1)B2 + V (φ)

(z2 − 1)B2 , (11)

1

B

d2B

dz2 − 3

B2

(
dB

dz

)2

+ 2z

z2 − 1

1

B

dB

dz
+ 1

z2 − 1

= − pr
(z2 − 1)B2 + q(1 + z2)

2z(z2 − 1)B2 + V (φ)

(z2 − 1)B2 , (12)
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1

B

d2B

dz2 − 3

B2

(
dB

dz

)2

+ 4z

z2 − 1

1

B

dB

dz
− 1

z2 − 1

= − pt
(z2 − 1)B2 − q

2zB2 + V (φ)

(z2 − 1)B2 , (13)

where Eq. (10) has been used to replace terms containing
derivatives of the scalar field. Using Eqs. (11) and (12), one
can easily show that,

ρ = −pr + q(1 + z2)

z
, (14)

while Eqs. (12) and (13) will give,

1

B

dB

dz
= 1

z
+ pr − pt

2zB2 − q

2B2 . (15)

2.2 Conservation equations

We shall now write down the conservation equations for
this system under the assumption that the energy momen-
tum tensors corresponding to the fluid and the scalar field are
conserved independently. The conservation equation for the
scalar field yields the wave equation,

�φ − dV

dφ
= 0. (16)

For the present metric (1), this Eq. (16) translates into,

φ̈ − φ′′ − 2
Ȧ

A
φ̇ − 2

φ′

r
+ 2

φ′A′

A
+ 1

A2

dV

dφ
= 0. (17)

In terms of the self-similar variable z, we have,

d2φ

dz2 − 2
dφ

dz

[
1

B

dB

dz
+ z

1 − z2

]
+ 1

B2(1 − z2)

dV

dφ
= 0.

(18)

The conservation equations for the fluid is given by,

∇μT
μν
fluid = 0, (19)

from which we will get two non-trivial equations,

ρ̇ + q ′ = 3 Ȧ

A
(ρ + pt ) + Ȧ

A
(pr − pt ) + 4q A′

A
− 2q

r
, (20)

and

pr
′+ q̇ =

(
3A′

A
− 2

r

)
(pr − pt )+ A′

A
(ρ+ pt )+ 4q Ȧ

A
. (21)

For the self similar case, if we use Eq. (14), both Eqs. (20)
and (21) yield the same equation as,

dρ

dz
− z

dq

dz
= 2

B

dB

dz
(ρ + pt ) + (1 − 3z2)q

zB

dB

dz
+ 2q. (22)

3 Raychaudhuri equation

For a timelike congruence having velocity vector uμ, the
Raychaudhuri equation is given by [15,16],

dθ

dτ
= −1

3
θ2+∇μa

μ−σμνσ
μν +ωμνω

μν −Rμνu
μuν, (23)

where θ = ∇μuμ is the expansion scalar, τ is affine param-
eter, σμν = ∇(νuμ) − 1

3hμνθ + a(νuμ) is the shear tensor
where hμν is the spatial metric, ωμν = ∇[νuμ] − a[νuμ] is
the rotation tensor, aμ = uν∇νuμ is the acceleration vector
and Rμν is the Ricci tensor.

3.1 Focusing condition

We have chosen a comoving observer, so that uα = Aδα
0 .

As the metric is conformally flat, the shear term and rotation
term will vanish.

Now, we know that the congruence will focus [37] within
a finite affine parameter value if,

dθ

dτ
+ 1

3
θ2 ≤ 0, (24)

which, with Eq. (23), leads to,

Rμνu
μuν ≥ ∇μa

μ. (25)

Here the left hand side of the expression is related to the
matter sector via the Einstein equations and the right hand
side is the divergence of acceleration. Focusing may be for-
bidden when the divergence of acceleration opposes the grav-
itational attraction and its contribution dominates over that
due to the matter part. If the divergence of acceleration term
is sufficiently high, the evolution may lead to a complete
dispersal.

For the metric (1), the condition (25) in terms of the con-
formal factor A(r, t) is given by,

∂

∂t

(
Ȧ

A

)
≥ 0. (26)

For the self similar case, the above condition (26)
becomes,

d

dz

(
1

B

dB

dz

)
≥ 0. (27)
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3.2 Raychaudhuri equation and the dynamics of spacetime

It is difficult to find exact solutions of the field equations
for our system without any simplifying assumptions. The
Raychaudhuri equation can be applied to provide generic
conditions, regarding the dynamics of the spacetime. These
conditions may lead us to some useful information about the
evolution. We will now try to find such conditions.

We have the condition for focusing (27) from the Ray-
chaudhuri equation as,

d

dz

(
1

B

dB

dz

)
≥ 0. (28)

Using Eq. (15) this condition can be written as,

d

dz

(
pr − pt
2zB2 − q

2B2

)
≥ 1

z2 . (29)

These generic conditions like (28) or (29), may appear
useful. These are generic conditions if satisfied by the con-
formal factor or the energy momentum tensor components,
will lead to the formation of a singularity. Thus, there is an
important role of these conditions in dictating the dynamics
of the spacetime. Let us illustrate this point with a simple
but very important example. If the fluid is a perfect isotropic
fluid having no radial heat flux, the left hand side of the con-
dition (29) is equal to zero. Thus, the condition is satisfied
only when z → ∞ which means that there will be a central
singularity at r = 0 or a singularity forms as t → ∞ which
is inconsequential.

Thus, the possibility of the formation of a singularity at
a finite future or the avoidance of a central singularity will
depend on pressure anisotropy or heat flux.

We will discuss a few more examples. The condition (28)
or (29) can be recast into different forms using the field equa-
tions. For example, if we use Eqs. (10) and (15), the condition
(28) can be written as,

1

2

(
dφ

dz

)2

+ q

2zB2 ≥
(

1

z
+ pr − pt

2zB2 − q

2B2

)2

. (30)

Now, let us consider the case where the scalar field is absent
or a constant (equivalent to a cosmological constant) and
q = 0. In this case the above condition (30) will be satisfied
only when

1

z
+ pr − pt

2zB2 = 0, (31)

which implies
dB

dz
= 0 [using Eq. (15)] and there will not be

any evolution of the spacetime. Therefore, we can conclude
that formation of a singularity in this case can be avoided.

However, q �= 0 or
dφ

dz
�= 0 or both may lead to the formation

of a singularity. If we have a large rate of change of the scalar
field, compared to the other terms, present in the condition
(30), singularity formation is inevitable.

Let us discuss another example where
dφ

dz
= 0 and pr =

pt . The condition (30) then translates into,

q2

4B4 − 3q

2zB2 + 1

z2 ≤ 0, (32)

which gives,

(3 − √
5)B2

z
≤ q ≤ (3 + √

5)B2

z
. (33)

Thus, there will be singularity formation only when the heat
flux of the fluid satisfies this constraint (33).

3.3 Exact solutions and the Raychaudhuri equation

We have not used exact solutions of the field equations in our
discussion so far. It is worthwhile to check the consistency
of the conclusions arrived at using the Raychaudhuri equa-
tion with those using exact solutions whenever available. For
many special cases, i.e., with various sources, exact solutions
for the metric can be found out. Some of them are listed in
the Appendix A. With an exact solution, one can explicitly
find whether there is a collapse or an expansion and whether
the collapse, if there is any, results in a singularity. We have
checked that in all such cases the conclusions are consistent
with those obtained from the focusing condition (27) found
out from the Raychaudhuri equation. One such nontrivial
example is described in detail below.

We will discuss the case where a scalar field and a fluid
both are present and we make an assumption that pr �= pt
but q = 0. For details, see Appendix A.5. The solution for
B and A in this case are respectively given by,

B =
(
Fz2β − k

) 1
2β

, (34)

and

A =
(
Ft2β − kr2β

) 1
2β

, (35)

where β is a constant given by pt = βpr . For β > 0, there
may be a zero proper volume singularity when t → ∞ and/or
r → ∞, which can be excluded from the discussion. There

will be a dispersal in this case at z =
(
k

F

) 1
2β

. When β < 0,

formation of a singularity at z =
(
k

F

) 1
2β

is inevitable. In this
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case, a dispersal occurs at t = 0. There may be a dispersal at
r = 0 which is not physically significant.

Using the solution for B [Eq.(34)], one can show,

d

dz

(
1

B

dB

dz

)
= −2F2βz(4β−2)

(
Fz2β − k

)2 + F(2β − 1)z(2β−2)

(
Fz2β − k

) . (36)

When z → ( k
F

) 1
2β , the first term in the right hand side of the

above expression dominates. Only when β < 0, the condition
(28), obtained using the Raychaudhuri equation, is fulfilled
in this region and a singularity within finite z is unavoidable.
On the other hand if β > 0, a dispersal will occur in this
region. Singularity formation as z → ∞ is a possibility in
this case. For β < 0, it is easy to show that the right hand
side of the Eq. (36) must be negative as z → 0 which makes
a dispersal possible here.

3.4 Critical phenomena and the Raychaudhuri equation

From the exact solutions in Appendix A, we have found that

collapse or dispersal correspond to the quantity d
dz

(
1
B
dB
dz

)

being positive or negative, respectively. Therefore, a transi-
tion from collapse to dispersal or vice versa will be accom-
panied with a change of the sign of this quantity. Thus, a rela-
tion between focusing condition and the critical phenomena
seems to be indicated. We will illustrate this point using the
example discussed in the previous section.

In this example, let us take the z → ( k
F

) 1
2β into consider-

ation. When β is negative a singularity forms at z = ( k
F

) 1
2β

while dispersal occurs when β is positive. Thus, β can be
treated as a critical parameter. We have seen in the previous
section that positive or negative β corresponds to the situation

when the quantity d
dz

(
1
B
dB
dz

)
is negative or positive respec-

tively as z → ( k
F

) 1
2β . This shows that the critical parameter

β determines the signature of d
dz

(
1
B
dB
dz

)
which in turn deter-

mines the focusing (collapse) or dispersal of the spherically
symmetric distribution and the critical value of β is zero.

4 Conclusion

We have found the focusing condition (28) for a self similar
matter distribution in a conformally flat spherically symmet-
ric spacetime. Although the spacetime, we have considered,
has a stringent symmetry requirement, the matter distribu-
tion is quite general and includes anisotropic fluid pressure,
heat flux, as well as a minimally coupled scalar field. The
nature of the conclusions drawn from this condition is veri-
fied against quite a few exact solutions that are available, and
one of them is discussed in detail.

Thanks to the investigations as in references [8–10] and
others, it is now well known that a scalar field collapse may
have a critical phenomenon associated with it. The condition
developed from the Raychaudhuri equation helps visualiz-
ing the critical phenomena in general. This remains valid
even when the matter distribution includes a fluid. We have
discussed one example, where exact solution is available, in
detail. In this example, we could see the existence of a crit-
ical parameter, and could also determine the critical value
(β = 0). It is intriguing to note that the parameter has noth-
ing to do with the scalar field in this case and is determined
only by the fluid, as β is simply a parameter connecting the
radial and transverse fluid pressure. With the help of this
example we have explicitly discussed the relation between
the focusing condition and the critical phenomena.
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Appendix A: A few exact solutions

Some examples of exact solutions with the assumption of
self similarity, for a conformally flat, spherically symmetric
spacetime in presence of a scalar field and a fluid, imperfect
in general, are given here. Some of the solutions included are
already there in the literature.

Appendix A.1: Massless scalar field

Let us first consider the simplest case where the contribution
to the matter part comes only from a massless scalar field.
From the Eq. (15) we have,

1

B

dB

dz
= 1

z
, (A.1)
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which gives,

B = mz, (A.2)

where m is constant of integration. Thus, the solution for
A(r, t) is,

A = r B = mt. (A.3)

But we should note that with Eq. (A.1), Eqs. (11), (12) and
(13) all yield,

3

z2(z2 − 1)
= 0, (A.4)

which is inconsistent for finite z values. Thus, a consistent
solution of the field equations with a massless scalar field as
matter source is not possible under the mentioned assump-
tions.

Appendix A.2: Scalar field with a non-zero potential

Even if we include a potential in the energy momentum tensor
of the scalar field, we have the same solutions for B and A
as in the previous case [Eqs. (A.2) and (A.3) respectively].
Here with Eq. (A.2), Eqs. (11), (12) and (13) all yield,

V (φ) = 3m2. (A.5)

Therefore, the potential must remain constant.
From Eq. (10) we have,

φ = constant, (A.6)

which is consistent with the Eq. (18). Thus, the net energy
momentum tensor effectively behaves like that of a cosmo-
logical constant.

From Eq. (A.3), we can conclude that there is a singular-
ity only when t approaches infinity where the scale factor
(inverse of A) becomes zero which signifies an ever collaps-
ing solution. At t = 0, A = 0 i.e. the scale factor becomes
infinite which signifies a dispersal.

Appendix A.3: Scalar field along with a perfect fluid

If we include perfect isotropic fluid (pr = pt and q = 0)
along with the scalar field, the solution for B will not change
as dictated by Eq. (15). From Eq. (14) we have,

ρ = −p. (A.7)

ρ, p, φ and V (φ) will remain constant in this case. Thus the
matter turns out to be the cosmological constant for a con-

sistent solution. Clearly, the conclusions in this case remain
the same as in the previous case.

In the examples, discussed so far we have not observed
any possibilities of singularity formation within finite time
and the matter turns out to be the cosmological constant.

Appendix A.4: Fluid with isotropic pressure and radial heat
flux

This particular case, with pr = pt and q �= 0, has already
been studied by Chan et al. [29]. They found that there is a
singularity formation due to collapse as t → 0. In this case
from Eqs. (15) and (10) we have,

z

B

d2B

dz2 + 1

B

dB

dz
− 1

z
= 0. (A.8)

The solution for B is given by,

B = Cz2 + 2D

2z
, (A.9)

where C and D are constants of integration. From the above
Eq. (A.9) we have,

A = Ct2 + 2Dr2

2t
. (A.10)

The expression for A confirms that there is a zero proper
volume singularity at t = 0. The scale factor also becomes
zero when t → ∞ and/or r → ∞. These possibilities are not

worth considering. There may be a dispersal at z2 = t2

r2 =
−2D

C
only if C and D are of opposite signs.

Appendix A.5: Scalar field along with an anisotropic fluid

In this case, we have pr �= pt but q = 0. Now, from Eqs.
(14) and (15) we have,

ρ = −pr , (A.11)

and

1

B

dB

dz
= 1

z
+ pr − pt

2zB2 . (A.12)

The same equation of state as in Eq. (A.11) was obtained
by Brandt et al. [32] from the requirement of self-similarity
even with a relaxation of the conformally flat condition. In
this case, the conservation equation for the fluid [Eq. (22)]
takes the form,

dpr
dz

= 2

B

dB

dz
(pr − pt ). (A.13)
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It is difficult to find a solution for the conformal factor
in this case without further simplifications. Thus, we will
assume that the tangential pressure is proportional to radial
pressure i.e. pt = βpr . Brandt et al. worked with a similar
assumption for a spherically symmetric spacetime which is
not conformally flat [31]. With this assumption, solving Eq.
(A.13) we have,

pr = nB2(1−β), (A.14)

where n is constant of integration. If we replace this in Eq.
(A.12), the solution for B comes out as,

B =
(
Fz2β − k

) 1
2β

, (A.15)

where F is constant of integration and k = n(1 − β)

2
. Con-

sequently, the solution for A is,

A =
(
Ft2β − kr2β

) 1
2β

. (A.16)

From Eq. (A.11) one can see that the radial pressure of the
fluid comes out to be negative. For consistency, we may con-
sider the fluid to be a viscous fluid.
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