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Abstract The holographic entanglement entropy (HEE)
of the minimal geometric deformation (MGD) procedure,
and its extensions (EMGD), is scrutinized within the mem-
brane paradigm of AdS/CFT. The HEE corrections of the
Schwarzschild and Reissner–Nordström solutions, due to a
finite fluid brane tension, are then derived and discussed in
the context of the MGD and the EMGD.

1 Introduction

The AdS/CFT duality generally states that weakly-coupled
gravity in (d + 1)-dimensional anti-de Sitter (AdS) space is
the theory dual to a strongly-coupled conformal field the-
ory (CFT), whose underlying hydrodynamical limit corre-
sponds to the Navier–Stokes equations – at thed-dimensional
AdS boundary [1–3]. The membrane paradigm is usually
deployed into the fluid/gravity correspondence, as a low-
energy regime of AdS/CFT [4]. In the membrane paradigm
setup, black holes were studied in the infrared (IR) limit [5–
7]. In addition, the seminal Refs. [8–10] present important
features of this duality. For a N number of colours, index-
ing a SU(N ) (gauge) theory, AdS/CFT duality asserts that
N = 4 superconformal Yang–Mills theory in 4D is dual to
type IIB string theory on AdS5 × S5. In the original setup,
the AdS5 boundary is a 4D Minkowski spacetime, and the
D3-brane near horizon geometry is the AdS5 space, whereas
the far away brane geometry remains flat.

In the membrane paradigm of AdS/CFT, encompassing
general relativity (GR), the so called method of geometric
deformation (MGD) places itself as an important procedure
to generate new solutions of the effective Einstein’s field
equations on the brane [5,7,11–14], including anisotropic
solutions, describing compact stellar distributions, in a Weyl
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fluid flow in the bulk [15,16]. The MGD and its extensions
take into account the brane Einstein’s field equations [17,18],
where the effective stress-energy tensor has additional terms,
in particular regarding the Gauss–Codazzi equations from the
bulk stress-energy tensor projected onto the brane [8]. Impor-
tant terms, constituting the effective brane stress-tensor, are
the bulk dark radiation, the bulk dark pressure, the electric
part of the Weyl tensor and quadratic terms on the brane
stress-energy tensor. This last one is derived for regimes of
energy that are beyond the (finite) brane tension in the the-
ory. Being our universe described by a brane with tension σ ,
the MGD leads to a deformation of the Schwarzschild metric
proportional to a positive length scale � ∼ σ−1 [7,11,12].

The MGD and its extensions [5] have been recently
equipped with experimental, phenomenological, and obser-
vational very precise bounds, physically constraining their
running parameters. MGD gravitational lensing effects were
explored in Ref. [19] and the classical tests of GR imposed
bounds on the brane tension in Ref. [16]. The most pre-
cise values of the brane tension range were obtained in
Refs. [20,21]. In fact, in these references, the information
entropy was used to provide account for the critical stel-
lar densities, in the MGD and EMGD setups, deriving ana-
logue of the Chandrasekhar’s critical stellar densities, that are
also extremal points of the system associated configurational
entropy [20,21]. Besides, MGD black hole analogues were
explored in Ref. [22]. Sound waves into and out of de Laval
nozzles derives experimental data about the bulk Weyl fluid.
Acoustic perturbations in MGD nozzles were shown to play
the role of MGD quasinormal modes. Besides, MGD black
branes was also studied in Ref. [23] and 2+1 MGD solu-
tions were scrutinized in Ref. [24]. Reference [25] showed
that any static and spherically symmetric anisotropic solu-
tion of the Einstein’s field equations can be thought of as
being a system sourced by certain deformed isotropic sys-
tem, in the context of MGD approach. Anisotropic MGD
solutions were obtained in Refs. [26–28] and [29]. Besides,
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anisotropic MGD-like solutions were obtained by gravita-
tional decoupling [7,11,30,31], whereas conformal sectors
were analyzed in Ref. [32]. The MGD was also used to
study bulk effects on realistic stellar interior distributions [33]
and the in the analysis of hydrodynamics of black strings,
in the AdS/CFT membrane paradigm [23]. Recently, the
MGD corrections to the gravitational lensing was estimated
in Ref. [19], and it was shown that the merging of MGD stars
may be easier detected by the eLISA experiments, when com-
pared with their Schwarzschild counterparts [6]. MGD black
strings were shown to be stable under small linear perturba-
tions [29]. EMGD stellar distributions were also employed
to study dark hidden gauge sectors, in the context of glue-
balls stars, and their observational signatures in Ref. [34].
Besides, the MGD was employed in the context of the gener-
alized uncertainty principle, where Hawking fermions were
analyzed [35].

Another relevant setup, primarily motivated to describe
black hole physics, is entanglement entropy (EE), that has
been explored in several fields. Here the AdS/CFT corre-
spondence setup will be employed in this context. One can
investigate how to approach the inverse problem to that
one solved in Ref. [36], namely how to use the entangle-
ment entropy for a given quantum system to reconstruct
the geometry of the corresponding bulk. The holographic
entanglement entropy (HEE) was employed to compute
the entanglement entropy of a subsystem in the dual the-
ory. When the bulk theory is the Einstein’s gravity, the
HEE was conjectured, for a subsystem on the boundary,
to be identical to the Bekenstein–Hawking formula, relat-
ing the area of a minimal surface that has the entangling
surface as its own boundary. As the so-called Ryu and
Takayanagi formula involves a minimal surface, it is impor-
tant to analyze such minimal surfaces in various asymptot-
ically AdS spacetimes [37,38]. The HEE derivation can
be found in Ref. [39]. Our main aim in this paper is to
emulate previous formulations of the HEE and apply the
MGD and the EMGD in this context, therefore scrutiniz-
ing the physical consequences and their deviations from the
Schwarzschild and Reissner–Nördstrom (RN) solutions as
well.

This paper is organized as follows: in Sect. 2 we pro-
mote a general review of the MGD and EMGD setup. The
HEE for spherically symmetric spacetimes anchored in the
Ryu–Takayanagi formula is then briefly presented. The com-
putations of the HEE corrections for a MGD spacetime is
described and showed in Sect. 3 either with boundaries far
from the event horizon or almost on it. In Sect. 4 we develop
the computation of the HEE corrections for EMGD space-
times. Further discussions, analysis, conclusions and per-
spectives are outlined in Sect. 5.

2 The MGD setup in the membrane paradigm

The MGD procedure can be realized as a mechanism that
is usually employed to derive high energy corrections to the
GR. The MGD is a well-established method that controls
the strong non-linearity of Einstein’s field equations, with
more intricate stress-energy tensor, in such a way not to pro-
duce inconsistencies in the obtained gravitational solutions.
The MGD is naturally seen into the AdS/CFT correspon-
dence, which can bind higher-dimensional models to 4D
theories that are strongly-coupled. According to the mem-
brane paradigm of AdS/CFT, that has been used to realize the
deformation method, a finite brane tension plays the role of
the brane energy density, σ . There is a fine-tuning between
σ , and the running brane and bulk cosmological parame-
ters [8]. Systems with energy E � σ neither feel the self-
gravity effects nor the bulk effects, which then allows the
recovery of GR in such a regime. An infinitely rigid brane
scenario, representing the 4D brane manifold, can be imple-
mented in the σ → ∞ limit. The most strict brane tension
bound, σ � 2.83 × 106 MeV4, was derived in the extended
MGD (EMGD) context in Ref. [21].

The Gauss–Codazzi equations can be used to represent the
brane Ricci tensor to the bulk geometry, when the disconti-
nuity of the extrinsic curvature is related to the brane stress-
tensor. Hence, the bulk field equations [17] yield the effective
Einstein’s field equations on the brane, whose corrections
consist of a byproduct of an AdS bulk Weyl fluid. This fluid
flow is implemented by the bulk Weyl tensor, whose projec-
tion onto the brane, the so-called electric part of the Weyl
tensor, reads

Eμν(σ
−1)= −6σ−1

[
U
(
uμuν+1

3
hμν

)
+Q(μuν)+Pμν

]
,

(1)

where hμν denotes the projector operator onto the brane
that is orthogonal to the 4-velocity, uμ, associated to
the Weyl fluid flow. Besides, U = − 1

6σEμνuμuν is the

effective energy density; Pμν = − 1
6σ

(
h ρ

(μh
σ
ν) − 1

3h
ρσ hμν

)
Eμν is the effective non-local anisotropic stress-tensor; and
the effective non-local energy flux on the brane, Qμ =
− 1

6σh ρ
μEρνuν , is originated from the bulk free gravitational

field. Local corrections are encoded in the tensor [17]:

Sμν = T

3
Tμν − TμκT

κ
ν + gμν

6

[
3TκτT

κτ − T 2
]
, (2)

where Tμν is the brane matter stress-tensor. Higher-order
terms in Eq. (2) are neglected, as the brane matter density
is negligible. Denoting by Gμν the Einstein tensor, the 4D
effective Einstein’s effective field equations read

Gμν − Tμν − Eμν(σ
−1) − σ−1

4
Sμν = 0. (3)
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Since Eμν ∼ σ−1, it is straightforward to notice that in the
infinitely rigid brane limit, σ → ∞, GR is recovered and the
Einstein’s field equations have the standard formGμν = Tμν .

On the other hand, the AdS/CFT setup yields the effective
equations on the brane [40–44]:

Gμν = 8πG4Tμν + 4

l
√|g|

(
δSct

δgμν

+ δΓCFT

δgμν

)
, (4)

where l = 4/K (here K is the trace of the extrinsic curvature
tensor) and ΓCFT corresponds to the effective action of CFT
in the boundary, whose trace anomaly reads [43,44]:

gμν δΓCFT

δgμν

= l3

16

√|g|
(
RμνR

μν − 1
3 R

2
)

, (5)

where Rμν and R are the Ricci tensor and scalar of the four-
dimensional metric. The quantity Sct encodes R2 terms of
the counter-term, making the action finite, and δSct/δgμν is
traceless,

δSct

δgμν

� − l3

32

[
1

6
DμDνR − 1

2
�Rμν

+1

4
gμν

(
1

3
�R + 1

3
gμνR

2 − 1

4
Rαβ R

αβ

)

+Rαβ Rμανβ − 1

3
RRμν

]
. (6)

Then, the trace part of Eq. (4) reads R = −8πG4T −
l2
4

(
RμνRμν − 1

3 R
2
)

. Hence, in the linear order the energy-

momentum tensor of CFT is governed by the electric part of
the Weyl tensor [41–43]:

Eμν
� − K√|g|

δΓCFT

δgμν

. (7)

The effective Einstein’s equations read

Rμν − 1

2
R gμν = 8 π GN T eff

μν − Λ gμν , (8)

where GN = �p/mp, with mp and �p the four-dimensional
Planck mass and scale, respectively and Λ is the cosmologi-
cal constant, which will be neglected hereafter. The effective
stress tensor in Eq. (8) contains the matter energy-momentum
tensor on the brane, the electric component of the Weyl tensor
and the projection of the bulk energy-momentum tensor onto
the brane [8]. For static and spherically symmetric metrics,
compact stellar distributions in 4D, which must be solutions
of Eq. (3), can be described in Schwarzschild-like coordi-
nates as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2dΩ2, (9)

The MGD provides a solution to Eq. (8) by deforming
the radial metric component of the corresponding GR solu-
tion [12,13]. For the GR Schwarzschild metric, and dismiss-
ing terms of order σ−2 or higher, one obtains [12]

eν(r) = 1 − 2 M

r
, (10a)

e−λ(r) = eν(r)
[

1 + 2 �

2 r − 3 M

]
, (10b)

where � � − 1.352
(

1− 3M
2R

)

σ R
(

1− 2M
R

) is the length scale previously dis-

cussed in the Sect. 1, being M the ADM mass. In Eqs. (10a)
and (10b) geometrized units, GN = c = 1, are adopted.
There are two solutions of the equation e−λ(r) = 0, namely

r̊ = 2 M, (11a)

r− = 3

4
r̊ − �, (11b)

so that r̊ > r− for any � > 0. For studying the Hawking
radiation, one is interested in the region outside r̊ , that effec-
tively acts as the event horizon, and just note that r− is not a
(Cauchy) horizon [12].

We just mention in passing that an explicit expression for
� in terms of σ−1 can be obtained by first considering a com-
pact source of finite size r0 and proper mass M0 [11,12],
and then letting the radius r0 decrease below r̊ . However,
for practical purposes, it is more convenient and general to
show the dependence on the length �. For example, obser-
vational data impose bounds on the length �, from which
bounds on σ can be straightforwardly inferred according to
the underlying model [16,20]. The MGD and EMGD black
holes were respectively used in Refs. [6,34] to explore the
observational signatures of SU(N ) dark glueball condensates
and their gravitational waves.

A more general solution for the exterior radial metric com-
ponent was derived in Ref. [5], under the extended minimal
geometric deformation, EMGD, with

eν =
(

1 − 2M

r

)k+1

, (12)

where k is a constant known as the exponential defor-
mation parameter. Naturally, k = 0 results no temporal
geometric deformation, being directly associated with the
Schwarzschild metric when σ → ∞. For k = 1, one has [5]

eν(r) = 1 − 4M

r
+ 4M2

r2 ,

e−λ(r) = 1 − 2M − κ1

r
+ 2M2 − κ1M

r2 , (13)

for κ1 = Mχ

1 − M/R
. Now, in order to the radial metric com-

ponent asymptotically approach the Schwarzschild behav-
ior with ADM mass M1 = 2M , e−λ(r) ∼ 1 − 2M1

r +
O(r−2), one must necessarily have κ1 = −2M . In this
case, the temporal and spatial components of the metric
will be inversely equal to each other (as it is the case
of the Schwarzschild solution), containing a tidal charge
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Q1 = 4M2 reproducing a solution that is tidally charged
by the Weyl fluid [45]:

eν = e−λ = 1 − 2M1

r
+ Q1

r2 (14)

It is worth to emphasize that the metric of Eq. (14) has a
degenerate event horizon at rh = 2M = M1. Since the
degenerate horizon lies behind the Schwarzschild event hori-
zon, rh = M1 < rs = 2M1, bulk effects are then respon-
sible for decreasing the gravitational field strength on the
brane.

Now the exterior solution for k = 2 can be constructed,
making Eq. (12) to yield

eν(r) = 1 − 2M2

r
+ Q2

r2 − 2Q2M2

9r3 , (15)

where Q2 = 12M2 and M2 = 3M . The radial component,
on the other hand, reads

e−λ(r) = 1

1 − 2M2
3r

8∑
m=0

cm
rm

, (16)

where the coefficients cm ≡ cm(M2, Q2, s) are

c0 = 1, c1 = s − 4M2

3
, c2 = 1

6
(5Q2 − 7sM2) , (17a)

c3 = M2

12
(7sM2 − 5Q2), c4 = 25Q

2
2

288
− 7

216
sM3

2,

c5 = 35

1296
sM4

2 − 35

1728
Q

2
2M2, (17b)

c6 = 5Q
3
2

20736
− 7sM5

2

2592
, c7 = 28sM6

2 − 15Q
3
2M2

186624
,

c8 = 5Q
4
2

4644864
− sM7

2

279936
, (17c)

and s = Rχ (1 − 2M2/3R) / (2 − M2/3R)7. The asymp-
totic Schwarzschild behavior is then assured when s =
−M2/96. In this case, the degenerate event horizon is at
re ≈ 1.12M2 [5]. Hence, the bulk Weyl fluid weakens grav-
itational field effects. The classical tests of GR applied to
the EMGD metric provide the following constraints on the
value of the deformation parameter, k � 4.2 for the gravi-
tational redshift of light. The standard MGD corresponds to
k = 0, whereas the Reissner–Nordström solution represents
the k = 1 case with the ADM mass M1, instead.

3 HEE in MGD spacetimes

The EE SA in QFTs represents the von Neumann entropy
of the reduced density matrix, when one spreads degrees of
freedom inside a 3D spacelike submanifold B in a given
4D QFT, which is a complement of a manifold A. SA ia
responsible to quantify the correlation between A and B, seen
as two physical subsystems. In other words, SA corresponds

to the entropy observed in A, by an observer that has no
access to B. The EE does not vanish at the zero temperature
limit (Fig. 1). As the amount of information in the subsystem
B can be computed by the EE SA, one may argue which
component of the AdS5 bulk is in charge for computing SA
in the dual gravity.

The definition of EE can be implemented, once one con-
siders QFTs [36]. At zero temperature, the quantum system
is described by the pure ground state |Ψ 〉. Then, the den-
sity matrix is that of the pure state ρtot = |Ψ 〉〈Ψ |. The
von Neumann entropy of the total system is clearly zero
Stot = −tr ρtot log ρtot = 0. Splitting the total system into
two subsystems A and B, the observer that has access only to
the subsystem Awill feel as if the total system is described by
the reduced density matrix ρA = trB ρtot . Now one defines
the EE of the subsystem A as the von Neumann entropy of the
reduced density matrix ρA, namely, SA = −trA ρA log ρA. If
the density matrix ρtot is pure, then as B is the complement
of A, it follows that SA = SB . This equality is violated at
finite temperature. One can find the subadditivity relation,
SA+B ≤ SA + SB .

More precisely, considering a QFT on a 4D spacetime
splitting, R×Σ3, into timelike vector field and a 3D spacelike
manifold, Σ3. Define a 3D submanifold B ⊂ Σ3 at fixed
time t = t0 as the complement of A with respect to Σ3.
The boundary ∂A of A, divides the manifold Σ3 into two
complementary submanifolds A and B. As the EE diverges
in the continuum limit, an UV cutoff a is needed. Then the
coefficient of the divergence is proportional to the area of the
boundary ∂A,

SA ≈ α · Area(∂A)

a2 , (18)

where α is a constant. Employing the Poincaré metric of
AdS5 with radius R,

ds2 = R2

z2

(
dz2 − dx2

0 + dxidx
i
)

, (19)

the dual CFT4 is supposed to live on the boundary of AdS5

which is R1,3 at z → 0 spanned by the coordinates (x0, xi ).
The bulk conformal coordinate z in AdS5 is interpreted as
the length scale of the dual CFT4. Since the metric diverges
in the limit z → 0, we put a cutoff by imposing z ≥ a. Then
the boundary is situated at z = a.

Although AdS/CFT is based on an AdS spacetime (19),
it can be also used to any asymptotically AdS5 spacetime,
encompassing AdS black branes. Now we are in a position
to present how to calculate the entanglement entropy in CFT4

from the gravity on AdS5. In the setup (19), one extends ∂A
to a surface γA, such that ∂γA = ∂A. One has to choose the
minimal area surface among them. In this setup the EE SA in
CFT4 can be computed [36–38].
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Fig. 1 Ryu and Takayanagi prescription of the HEE. The light blue
codimension 2 minimal surface γA, anchored on the boundary ∂A of
the entangling region A in the AdS5 boundary, has hypersurface area
determining the EE related to the region A

SA = Area(γA)

4G5
. (20)

To choose the minimal surface as in (20) means that one
defines the severest entropy bound [46] so that it has a chance
to saturate the bound.

There is an identification of the 4D entanglement entropy
QFT with a certain geometrical quantity in 5D gravity, then
generalizing the black hole entropy. In the particular case of
the membrane paradigm, this identification implements the
relationship between black hole entropy and entanglement
entropy in the induced gravity setup [46].

We will study the HEE from two perspectives: the MGD,
in this section, and the EMGD solutions, in the next one. For
both of them, one needs to understand how the first law of
HEE holds in the context of the membrane paradigm. The
dual theory can be defined on a boundary located at two
kind of distance ranges: (i) far from the horizon – a finite
large radial coordinate denoted by r∞, and (ii) almost on
the horizon – a small displacement from the horizon, named
δr ≡ r − r̊ , where r̊ is the horizon situs on spacetime. The
MGD HEE will be implemented under these perspectives
and scrutinized in what follows. The metric in Eq. (9) is
employed, where the temporal and radial components are
respectively set by Eqs. (10a) and (10b).

3.1 Far from the horizon

In the region far from the horizon, the boundary manifold is
placed at r = r∞ that is far away from the event horizon. Let

one considers a circle, in spherical coordinates defined by the
azimuthal angle θ = θ0, responsible to enclose the entangling
surface. The radial coordinate function, r = r(θ), describes
the minimal surface whose boundary is the entanglement
surface. In addition, the minimization of the area function,

Area(γA) = 2π

∫ θ0

0
dθ

⎧⎨
⎩r sin θ

[
eλ(r)

(
dr

dθ

)2

+r2

]1/2
⎫⎬
⎭ ,

(21)

with boundary condition r(θ0) = r∞, plays a prominent
role in computing the minimal surface. Obtaining the global
minimum of the area yields the HEE, by employing Eq. (20).
Equation (21) reads

Area(γA) =
∫ 1

y0

dy LMGD, (22)

where LMGD = 2πr
[
(1 − y2)F ṙ2 + r2

]1/2
, y = cos θ and

y0 = cos θ0. The dot designates the derivative with respect
to y and F = F (r(y)) ≡ eλ(r(y)). Applying the variational
method, one varies Eq. (22) with respect to r(y), yielding the
following ODE:

(y2 − 1)

[
2Fr2r̈ − 2yF2ṙ3 +

(
r

dF
dr

− 6F
)
rṙ2

]

+ 4yFr2ṙ + 4r3 = 0. (23)

Equation (23) is strongly nonlinear. Therefore, a way to atten-
uate it is to attributeF ≡ F (r(y)) = 1, to yield r = w0/y as
the simplest solution to be achieved. In addition, according
to Ref. [47], one can derive nontrivial solutions of Eq. (23),
working with series expansions, respectively for F (r(y))
and r(y):

F (r(y)) = 1 −
∞∑
j=1

g j (y)ε
j , (24a)

r(y) = w0

y
+

∞∑
j=1

r j (y)ε
j . (24b)

Here ε denotes a small dimensionless parameter, relating the
black hole mass M to r∞ by ε = M

r∞ . The O(ε) terms in the
expansions (24a) and (24b) may indicate corrections regard-
ing the black hole collapse itself. It is worth to emphasize
that the 0th-order term, r(y) = w0/y, in (24b) is the solu-
tion corresponding to F = 1.

Now, considering the F function for the MGD spacetime,
encoded in Eq. (10b), one finds, up to the 2nd-order in the
g j (y) functions in the series (24a),
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g1(y) = (ξ − 2)yr∞
w0

, (25a)

g2(y) = y2r∞
2w2

0

[
r∞(−8 + 7ξ − 2ξ2) + 2(ξ − 2)r1(y)

]
,

(25b)

where due to dimensional analysis, the MGD parameter
related to the expansion parameter can be written as � = ξM .
Higher order terms in Eq. (24a) can be forthwith derived.
The set of auxiliary functions {g1(y), g2(y), . . .} in Eq. (25)
is important to solve Eq. (23) order by order [47,48]. We
intend here to pursuit the possible modifications to the HEE
up to the 2nd-order. Hence, the calculation of the r -functions
immediately follows, which are necessary to provide the HEE
corrections up to 2nd-order.

The 1st-order ODE, taking 1st-order terms in ε, reads

r̈1(y) +
(
5y2 − 3

)
y
(
y2 − 1

) ṙ1(y) +
(
3y2 − 1

)
y2
(
y2 − 1

)r1(y)

=
(
3y2 + 1

)
(2 − ξ)r∞

y2
(
y2 − 1

) . (26)

Equation (26) carries D1 and D2 as constants of integra-
tion, whose values are determined by the finiteness con-
dition. Hence, to avoid divergences at y = 1, as y =
cos θ ∈ [cos θ0, 1], one needs to set D2 = (2 − ξ)r∞.
Besides, using the boundary condition r1(y) = 0 yields
D1 = (ξ − 2)r∞{y0 + 2 log[y0/(1 + y0)]}. Therefore, the
first r -function reads

r1(y) = (2−ξ)r∞
2y

[
y−y0−2 log

(
1+y

1+y0

)
+2 log

(
y

y0

)]
.

(27)

Importantly, there is a subtle restriction due to limitations in
the perturbative expansion, as aforementioned in Ref. [47].
In fact, the y = 0 point is never reached. Hence, the validity
of the solution r1(y) is contained in the interval θ0 < π/2 or,
equivalently, y ∈ (0, 1).

Going to the 2nd-order in ε, and employing the r1(y) solu-
tion in Eq. (27), yields

r̈2(y) +
(
5y2 − 3

)
y
(
y2 − 1

) ṙ2(y) +
(
3y2 − 1

)
y2
(
y2 − 1

)r2(y) = P(y).

(28)

with

P(y) = r2∞
2w0

[
(ξ − 2)2(y3 + 3y − 4) + 2ξ y3

y2
(
y2 − 1

)
]

. (29)

Proceeding analogously as in the solution of Eq. (26) implies
that

r2(y) = D3

y
+ r2∞

16w0y

[
H1(ξ)y2 − H2(ξ) log(1 − y)

+H3(ξ) log(1 + y)
]+D4

[
2 log y− log(1−y2)

]
2y

,

(30)

where H1(ξ) = (ξ − 2)2 + 2ξ , H2(ξ) = 36 − 38ξ + 9ξ2,
and H3(ξ) = 92 − 90ξ + 23ξ2. Once more, computing of
D4 and D3 requires the preclusion of divergences at y = 1
and the boundary condition r2(y0) = 0, respectively. With
this setup, they read

D4 = − r2∞
8w0

H2(ξ), (31a)

D3 = − r2∞
16w0

[
H1(ξ)y2

0−2H2(ξ) log(y0)+J(ξ) log (1+y0)
]
,

(31b)

with J(ξ) = 32(ξ − 2)2. Hence, the complete form of the
second r -function is given by

r2(y) = r2∞
16w0y

[
H1(ξ)(y2 − y2

0 ) − 2H2(ξ) log

(
y

y0

)

+ J(ξ) log

(
1 + y

1 + y0

)]
. (32)

As the last step, we proceed to the expansion LMGD =
LMGD

0 +εLMGD
1 +ε2LMGD

2 +· · · , within the formula for the
area shown in Eq. (22). From now, as formerly mentioned, the
r -functions are employed to compute each order of the con-
tribution for the HEE, SMGD = S0 + SMGD

1 + SMGD
2 + · · · .

Besides this expansion will be considered, including terms
of 2nd-order. Next, the detailed computation of each order is
provided.

For the 0th-order, one has the following expression:

SMGD
0 = A0

4
= 1

4

∫ 0

y0

dyL0 =
∫ 0

y0

dy
2πw2

0

y3

= 1

4
πw2

0

(
1

y2
0

− 1

)
, (33)

whereas the 1st-order reads

SMGD
1 = A1

4
= ε

4

∫ 0

y0

dyL1 = (2 − ξ)

4
πr∞M(1 − y0)

2.

(34)

Compared with the results obtained in Ref. [47], our results
show an interesting novelty. Although the 0th-order term of
the entanglement entropy remains the same, the 1st-order cor-
rections for the HEE display the MGD parameter, ξ , which
carries the signature of the finite brane tension, within this
order of correction, into the HEE. The general relativistic
limit, σ → ∞, yields ξ → 0, recovering the 1st-order cor-
rection to the HEE in Schwarzschild spacetime. Besides,
the 0th-order of the entropy is proportional to r2∞, since
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w0 = r∞ cos θ0, whereas the 1st-order one is proportional
to r∞, with the MGD parameter increasing the numerical
factor. This indicates a small contribution of the 1st-order,
compared to the 0th-order – as pointed out in [47] – even in
the presence of the MGD parameter ξ .

To analyze the signature of the MGD parameter on the
correction, at a given order, in the HEE, a new quantifier can
be introduced. We define the nth-order corrections ratio as

ΦMGD
n = SMGD

n

SSchw
n

, (35)

where SMGD
n and SSchw

n are the nth-order corrections to the
HEE in MGD and Schwarzschild spacetimes, respectively.
Hence, one has ΦMGD

0 = SMGD
0 /SSchw

0 = 1, as the 0th-order
corrections are equal. Meanwhile, the 1st-order corrections
yield

ΦMGD
1 = SMGD

1

SSchw
1

= 1 − ξ

2
. (36)

As ξ = �/M and � < 0, then both SMGD
1 and SSchw

1 are
positive, representing, at this order of correction, a linear
increment of the EE depending on the MGD parameter.

Now, the next order reads

SMGD
2 = A2

4

= ε2

4

∫ 0

y0

dyL2 = πM2

32
[U1(ξ, y0)

+U2(ξ) log

(
2

1 + y0

)
+ U3(ξ) log(y0)

]
,

with ancillary functions U1(ξ, y0) = [
2ξ(13 − 3y0) − (ξ2

+4)(7 − y0)] (1 − y0), U2(ξ) = 16(ξ − 2)2 and U3(ξ) =
2
[
(ξ − 2)2 − 2ξ

]
. One can notice the contribution of the

MGD parameter, encoding the finite brane tension, as one
compares with the HEE for the Schwarzschild spacetime,
corresponding to � → 0 and, hence, ξ → 0. Henceforth, in
the general relativistic case of a rigid brane, σ → ∞, one
recovers the 2nd-order correction for Schwarzschild space-
times. On the other hand, the 2nd-order corrections ratio are
given by

ΦMGD
2 = SMGD

2

SSchw
2

= 1 + ξ

4
(ξ − 6)

+4ξ

⎡
⎣ 1 − y0 − 2 log

(
2

1+y0

)

7−8y0+y2
0−2 log y0−16 log

(
2

1+y0

)
⎤
⎦ .

(37)

Both corrections, the 1st- and the 2nd-order ones, have the
MGD parameter as a dominant variable, when considering
the minimal surface in large range, the lower limit very close

Fig. 2 Ratio according with the brane tension and the range of the
boundary

Fig. 3 S2 for MGD spacetimes for specific values of the brane tension
and related to the lower limit of integration y0

to zero. The 1st-order ratio does not depend on such range.
However, the 2nd-order ratio has the limit

ΦMGD
2 |y0→0 = 1 + ξ

4
(ξ − 6). (38)

As ξ < 0, it is observed an increment of the value of this
order of correction to the HEE. Irrespectively of the limit
taken, the limit ξ → 0 recovers the 2nd-order correction for
the HEE in a Schwarzschild spacetime.

In general, the ratio depends on the finite brane tension
and the lower limit of the minimal area. Figure 2 displays
such behavior. It is particularly important to notice that, since
ξ < 0, a decrement of such contribution is observed, provid-
ing another relevant signature of the MGD parameter. Here,
lower values of the brane tension contribute to diminish the
HEE in MGD black holes.

By completeness, let us examine a restriction on ξ to
obtain the 2nd-order contribution to the HEE in both MGD
and Schwarzschild spacetimes. In such situation, the equality
ΦMGD

2 = 1 holds, whenever the terms on the rhs of Eq. (37)
equal to 1. Let us denote the values of ξ (eventually depen-
dent on y0) that satisfy this condition by ξ0. Looking at Eq.
(37), there are two solutions: the trivial one, ξ0 = 0, and
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Fig. 4 The 2nd-order corrections for MGD spacetimes for ξ = −0.1, ξ = −1, ξ = −10 and ξ = −100 – from the top to the bottom, from the left
to the right, respectively – varying the mass parameter

ξ0(y0) = 6+16

⎡
⎣ y0 − 1+2 log

(
2

1+y0

)

y2
0 − 8y0 + 7 + 2 log y0 − 16 log

(
2

1+y0

)
⎤
⎦ .

(39)

This result is quite relevant. In fact, the MGD parameter could
produce an equal correction ratio, depending on the lower
limit of integration to compute the minimal area. However,
as ξ < 0, such an exclusive value is not allowed, due to the
fact that ξ0(y0) > 0, for any value of y0 in (0, 1).

Besides, Fig. 3 displays the behavior of the 2nd-order cor-
rection to the HEE in MGD spacetimes. It shows that the
order of the correction in MGD spacetime is always nega-
tive and more intense than the same order of correction in
Schwarzschild spacetime. This fact could be noticed by real-
izing the positivity of the ratio between both of them. Figure 4
considers the 2nd-order correction for the MGD spacetime,
by fixing ξ and y0 to different values of the black hole mass.
For comparison, Fig. 5 displays the increment of the 2nd-
order correction in a Schwarzschild black hole, as a function
of the mass.

One can notice the increment of this order of correction
as the black hole mass increases and, simultaneously, the
decrement of y0, which contributes with the extension of the
minimal area. The smaller the brane tension, the greater the
magnitude of correction in this order is, even with a min-

Fig. 5 Profile of the HEE 2nd-order corrections in Schwarzschild
black hole related to the mass parameter M , for distinct values of y0

imal surface of small size. Besides, Fig. 6 illustrates the
behavior of the HEE 2nd-order corrections in both MGD
and Schwarzschild spacetimes, whereas the minimal surface
size is a function of the black hole mass, M .

A small value of the brane tension contributes to the incre-
ment of the HEE 2nd-order correction in a MGD spacetime
more intensely than the same correction in Schwarzschild
spacetimes. The surface representing the HEE 2nd-order cor-
rection in Schwarzschild spacetimes has an almost steady
declination, when compared to the declination to the HEE
2nd-order correction in a MGD spacetime.
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Fig. 6 The behavior of the HEE 2nd-order corrections in both MGD
and Schwarzschild spacetimes

Finally, one can notice the first law of HEE, as δS =
S − S0 ∝ M , regarding a vast range of the brane tension,
within precise phenomenological bounds [20,21].

3.2 Almost on the horizon

Inspired and motivated by Refs. [47,49], the MGD black hole
entropy, underlying the almost on the horizon boundary will
be analyzed, using Eqs. (10a, 10b). To simplify, the notations
r̊ = 2M and r = ρ2 + r̊ makes implicit that ρ > 0 and r > 0.
Clearly, the event horizon is located at ρ = 0. Hence,

ds2 =
(
r − r̊

r

)
dt2 +

(
r

r − r̊

)[
1 + �(

r − 3
4 r̊
)
]−1

dr2

+ r2(dθ2 + sin2 θdϕ2). (40)

One sets a boundary almost on the horizon considering ρ0 =
ε
√
r̊ , where ε � 1. The entangling surface is shaped as

the θ = θ0 circumference. Such a configuration yields an
induced metric on the t-constant manifold, described by

dŝ2 =
[

4h(ρ)

(
dρ

dθ

)2

+ g(ρ)2

]
dθ2 + [g(ρ) sin θ ]2dϕ2,

(41)

where h(ρ) = g(ρ) f (ρ), g(ρ) = ρ2 + r̊ and f (ρ) =[
1 + �(

ρ2+ 1
4 r̊
)
]−1

, with ρ ≡ ρ(θ).

Finding ρ means to minimize the surface area

A =
∫ 1

y0

dy L̃MGD, (42)

where L̃MGD = 2π g(ρ)
[
4h(ρ)(1 − y2)ρ̇2 + g(ρ)2

]1/2
and,

once again, y = cos θ is employed, in such a way that ρ ≡
ρ(y). The minimization of Eq. (42) with respect to y, namely,
δA = 0, gives the following ODE:

2(y2 − 1) f gρ̈ + 8y(1 − y2) f 3ρ̇3

+(1 − y2)

[
5 f

dg

dρ
− g

d f

dρ

]
ρ̇2 + 4y f gρ̇ + g

dg

dρ
= 0,

(43)

where the notation g = g(ρ) and f = f (ρ) was employed
for simplicity. To solve Eq. (43), the perturbative method
must be applied, due to the lack of an analytical solution. For
this purpose, the following expansion is then adopted,

ρ(y) = ερ1(y) + ε2ρ2(y), (44)

with ρ1(y0) = √
r̊ and ρ2(y0) = 0, with boundary condition

ρ(y0) = 0.
The 0th-order term in Eq. (44) is absent to avoid an area

that is greater than one, at the point (ρ0, θ0). In Eq. (42)
the constraint ρ < ρ0 defines a consistent value of the area.
Therefore, looking for the ρ-functions up to second order,
we insert Eq. (44) into Eq. (43). It yields, at 1st-order in ε,
the expression

(y2 − 1)ρ̈1 + 2yρ̇1 + (1 + α)ρ1 = 0, (45)

where α ≡ 4�/r̊ . The solution of Eq. (45) reads ρ1(y) =
C1Pη(y), withC1 =√

r̊/Pη(y0), η = 1
2

(−1 + √−(3 + 4α)
)
,

and Pη(y) is a Legendre polynomial of first kind. Such solu-
tion presents regularity at y = 1 and has boundary condition
ρ1(y0) = √

r̊ .
At 2nd-order in ε, Eq. (43) is then a Legendre equation

similar to Eq. (45),

(y2 − 1)ρ̈2 + 2yρ̇2 + (1 + α)ρ2 = 0, (46)

with ρ2(y) = C2Pη(y). Notwithstanding, the boundary con-
dition ρ2(y0) = 0 demands C2 = 0. Thus ρ2(y) = 0, leaving
only the 1st-order in ε.

With the ρ-functions, we can compute and analyze the area
of the entangling surface. First, the expansion of the integrand
in Eq. (42) is adopted after the appropriate expansion in ε,

L̃MGD = 2π r̊2 + 4π r̊
[
(1 − y2)ρ̇2

1 + ρ2
1

]
ε2 + · · · . (47)

Inserting Eq. (47) into Eq. (42) and executing the expansion
of A, which reads A = A0+A1+A2+· · · , that is, the expan-
sion of L̃MGD, implying that corresponding HEE corrections
yield

SMGD
0 = π r̊2

2
(1 − y0) ,

SMGD
1 = 0,

SMGD
2 = π r̊ρ2

0

P2
η(y0)

∫ 1

y0

dy

[(
1 − y2

1 + α

)
Ṗ2

η(y) + P2
η(y)

]
.

(48)

The calculation of SMGD
2 is awkward enough to handle ana-

lytically. For solving it numerically, we plot the SMGD
2 func-

tion in Fig. 7, for different values of α.
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Fig. 7 The evolution of the HEE 2nd-order correction, in units ofπ r̊ρ2
0,

related to the MGD parameter, according to the size of the subsystem

With the MGD parameter � = 0, meaning α = 0, one
recovers the HEE 2nd-order correction for a Schwarzschild
black hole. As the MGD parameter � increases, one can
observe the displacement – upwards and to the left – of the
maximum of this order of correction looking at Fig. 7, as
y0 decreases. This means that the MGD HEE 2nd-order cor-
rection increases simultaneously to the requirement of the
extension of the range of integration, that is, the size of the
dual quantum subsystem.

4 HEE in EMGD spacetimes

As the HEE was already scrutinized in the last section for the
MGD solution, the next step is to analyze the HEE for the
EMGD metrics, where the notations EMGD1 and EMGD2

are adopted for the k = 1 and k = 2 cases, respectively.

4.1 EMGD k = 1 case

The EMGD k = 1 case, represented by the solution in
Eq. (14), deals with the ADM mass M1 and the tidal charge
Q1, being a Reissner–Nordström-like metric.

4.1.1 Far from the horizon

Considering such boundaries far away from the horizon, the
outcomes for the HEE corrections are similar to those ones
found in Ref. [47], once the direct replacements M �→ M1

and Q2 �→ Q1 – up to the 2nd-order correction of HEE –
emulate the results presented in [47]. Therefore, the 1st and
2nd-order corrections read

SEMGD1
1 = π

2
M1 (1 − y0)

2 r∞, (49)

Fig. 8 Global profile of the factor between the HEE 2nd-order correc-
tions with respect to y0

SEMGD1
2 = π

8

{
M

2
1

[
(7 − y0)(y0 − 1) + 2 log(y0)

+16 log

(
2

1 + y0

)]
+Q1

[
1−y2

0+2 log(y0)
]}

.

(50)

We opt not to display the 0th-order, as it is the same as the
one presented in Ref. [47], being independent of the ADM
mass M1, for this case.

Assigning the ADM mass M1 and tidal charge Q1 to the
mass parameter M , which is the black hole Misner–Sharp
mass function in the Reissner–Nordström metric, the contri-
bution from the MGD can be then closer investigated. Hence,
after those respective identifications, one gets

SEMGD1
2 = πM2

[
−y2

0+4y0−3+2 log(y0)+8 log

(
2

1 + y0

)]
.

(51)

Thus, the corrections to the HEE can be compared to the
Schwarzschild solution. For this task, in compliance with
what has been established in Sect. 2, that is, M1 = 2M and
Q1 = 4M2, we determine the following factors between
each order of correction to the HEE. First, Eq. (35) yields
Φ

EMGD1
0 = 1 and Φ

EMGD1
1 = 2. Hence, the 2nd-order cor-

rections may be written as

Φ
EMGD1
2 = 8

⎡
⎣ y2

0−4y0+3−2 log(y0)−8 log
(

2
1+y0

)

y2
0−8y0+7 − 2 log(y0) − 16 log

(
2

1+y0

)
⎤
⎦ .

(52)

Such factor varies independently of the mass parameter, M ,
and limy0→0 Φ

EMGD1
2 = 8, whereas limy0→1 Φ

EMGD1
2 →

∞. Figure 8 shows the global profile of this factor.
The Φ

EMGD1
2 function is not monotonic, presenting an

inflection point. Looking closely to values of y0, one may
observe the transitions from an initial increment to an inter-
mediate lowering, and next, increases again. Figure 9, which
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Fig. 9 Profile of the factor between the HEE 2nd-order corrections
when y0 is close to 0

magnifies Fig. 8 for y0 near the origin, displays this behav-
ior. In addition, there are two brief and important features to
emphasize. Firstly, at the first sight, inspecting Eq. (50) and
setting Q1 → 0, one promptly verifies that the 2nd-order
correction, considering the ADM mass related to the mass
parameter M , is four times the same order correction to the
Schwarzschild spacetime. Second, the HEE 2nd-order cor-
rection in the EMGD1 case, related to the mass parameter
M , is always negative. It can be interpreted as an increment
of attenuation in the entropy function, as the HEE 2nd-order
correction in the Schwarzschild spacetimes is also negative.

Hereon, let us take a look at the mass parameter after
choosing a specific size of the entangling surface, which
means to delimitate the minimal area. For y0 values close
to zero, the increment of the mass parameter M , accentu-
ates the 2nd-order contribution for EMGD1, when one works
with an entangling surface with a specific size. On the other
hand, there is no such accentuation when the y0 integration
limit equals 1, even when the black hole mass increases. It
is very illustrative to display the profile of such correction in
Fig. 10, to compare with the same order of correction of the
Schwarzschild black hole displayed in Fig. 5. As the black
hole mass increases, the attenuation becomes greater. In addi-
tion, the attenuation increases faster for small values of y0.
Otherwise, the attenuation continues to increase in a slower
rate. Let us implement the same procedure for the 2nd-order
correction in EMGD1 related only to M .

One can notice that the same analysis can be accomplished
to the EMGD1 related only to M . Moreover, the attenuation
is more intense in the EMGD1 case, when compared to the
Schwarzschild one. It is also worth to emphasize that such
analysis considered the tidal charge and the ADM mass as
functions of the mass parameter M . To clarify this point, we
take two values for y0, one of them close to 0 and another
one close to 1, displaying both corrections in Fig. 11.

Finally, both corrections can be plotted making M and y0

to run in their specific ranges, as shown in Fig. 12. As one

Fig. 10 Behavior of the HEE 2nd-order correction in EMGD1 space-
time related to the mass parameter M corresponding to different values
of y0

can observe, a more restrictive interval for y0 is considered,
to realize the profile of each minimal surface.

It is straightforward to observe how the range of inte-
gration characterized by y0 establishes a major difference
between both 2nd-order corrections, as the black hole mass
increases. On the other hand, the difference is insignifi-
cant when the size of the minimal surface is reduced as y0

increases.

4.1.2 Almost on the horizon

From now on, we initiate the analysis of the EMGD1 black
hole entropy, concerning the boundary almost on the horizon.
The solution for this case is based on the metric in Eq. (14).
According to Ref. [5], this metric corresponds to an extremal
black hole, which has degenerate horizons represented by
r̊ = M1. In this sense, the functions

eν = e−λ =
(
r − r̊

)2

r2 , (53)

describe the constant t-fold induced metric as

ds2 = p(ρ)dρ2 + q(ρ)2
(

dθ2 + sin2 θdϕ2
)

, (54)

which is built with the variable change q(ρ) = ρ2+r̊ . Above,

one also denotes p(ρ) = 4(ρ2+r̊)2

ρ2 . Proceeding to the compu-
tation of the area functional and its minimization yields the
highly nonlinear ODE,

ρ̇(1 − y2)
[
−2pq2ρ̈ + 2yp2ρ̇3 −

(
ṗq2 − 6pqq̇

)
ρ̇
]

+ 4ypq2ρ̇2 + 4q3q̇ = 0. (55)

Next, similar steps implemented from Eqs. (42) to (44)
will be employed. In fact, it consists of a perturbation pro-
cedure to obtain an approximated solution up to 2nd-order
of Eq. (55). The expanded ODE is awkward and difficult to
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Fig. 11 The difference between the HEE corrections for large [small] entangling surfaces, initiating at y0 = 0.01 [y0 = 0.99]

solve through analytical methods. On the other hand, one can
look at the 0th-order in ε, which is
(

1 − y2
) (

−ρ2
1ρ̈1 + 4yρ̇3

1 + ρ1ρ̇
2
1

)
+ 2yρ2

1ρ̇1 = 0. (56)

We employ the boundary conditions, constraining Eq. (44),
to filter the infinite possible analytical solutions to Eq. (56),
implying that

ρ(y) = ρ0. (57)

In full agreement with [47], such constant solution is the only
one that attends strictly the boundary condition. It disposes
quite differently of the Schwarzschild or MGD spacetimes
looking for a minimal surface almost on the horizon. Such so
restrictive solution only could emphasize that Eq. (55) needs
to be investigated at higher orders, once the constant solution
shown by Eq. (57) is not a solution of the full Eq. (56). Finally,
we reinforce the solution Eq. (57) as a completely safe one,
up to 2nd-order. Thus, with the solution (57), we are able to
estimate the entropy as follows:

SEMGD1 = π

2

∫ 1

y0

dyq
[
(1 − y2)pρ̇2 + q2

] 1
2

(58)

and Eq. (57) yields

SEMGD1 = π

2
(1 − y0)

(
ρ2

0 + r̊
)2

≡ π

2
(1 − y0)

(
REMGD1

Bound

)2
, (59)

which has REMGD1
Bound = ρ2

0 + r̊ representing the boundary sur-
face radius. Since r̊ = M1 = 2M , the entropy is increased,
compared to that one established for the extremal RN black
hole in Ref. [47]. Such an entropy increment is explicit
through the ratio

SEMGD1

SextRN =
(
REMGD1

Bound

RextRN
Bound

)2

=
⎛
⎝1 + 2M

ρ2
0

1 + M
ρ2

0

⎞
⎠

2

, (60)

Fig. 12 The HEE corrections for different values of M and 0 < y0 <

0.5

Fig. 13 The ratio of the HEE in EMGD1 spacetime to HEE in the
extremal RN one. M has units of ρ2

0 and M/ρ2
0 ∈ [

10−2, 102
]

standingSextRN = π/2 (1 − y0)
(
ρ2

0 + M
)2

as the entropy of
an extremal RN black hole, where the horizon is r̊extRN = M .
With that, we obtain the entropy gain without any mention
to the range of the minimal surface. Importantly, the ratio
is positive, indicating the increment of the entropy in the
EMGD1 scenario for extremal black holes. Figure 13 points
out such profile.

Fixing ρ2
0 provides a first range with a fast-growing

entropy until M = 10ρ2
0. After this, there is a very slow-

growing, stabilizing at a ratio equal to 4. On the one hand, it
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does not matter how large the black hole is, the ratio stabilizes
at 4, even with the displacement of the extremal horizon in
the EMGD1 case. On the other hand, entropies of black holes
with 10−2ρ2

0 � M � 20ρ2
0 have meaningful increments,

which shows simply and directly the contribution from the
EMGD1 approach.

4.2 EMGD k = 2 case

We settle here an analogue construction to the one in Sect. 3.1,
using the EMGD metric with the temporal and radial com-
ponents respectively given in Eqs. (15) and (16), for k = 2.

4.2.1 Far from the horizon

Let us consider the steps in Eqs. (21) and (22). The replace-
ment LMGD �→ LEMGD2 is then necessary, as a distinct F
must be taken into account. In fact, using the EMGD2 metric,
one gets a quite similar ODE shown in Eq. (23), which is the
metric radial component. Once again, that similar Eq. (23)
with the current F must be solved perturbatively. Before it,
one establishes the parameter of expansion ε = M2/r∞ and
the corresponding parameters Q2 = κ2

M
2
2 and s = ωM2,

that follow a similar reasoning of the previous cases.1

Applying a similar procedure realized in Sect. 3.1, we need
to compute the auxiliary g-functions for the series expansions
necessary to find the r -functions, which are crucial to calcu-
late the HEE corrections up to 2nd-order. Hence, applying
the expansions (24a, 24b), we find the g-functions:

g1(y) = yr∞
3w0

(3ω − 2) , (61)

g2(y) = y2r∞
18w2

0

[(
15κ − 18ω2 + 15ω − 16

)
r∞

+ 6(2 − 3ω)r1(y)] , (62)

that are necessary functions to find the respective ODEs that
lead us to determine the r1(y) and r2(y) functions. Each one
of them is solved strictly as engaged in Sect. 3.1, using the
boundary conditions to compute the constants of integration
for each function. Hence, at 1st and 2nd orders, as follows,
it implies respectively that

r̈1(y) +
(
5y2 − 3

)
y
(
y2 − 1

) ṙ1(y) +
(
3y2 − 1

)
y2
(
y2 − 1

)r1(y)

=
(
3y2 + 1

)
(3ω − 2) r∞

6y2
(
1 − y2

) , (63)

whose solution is

1 The only difference here is the use of κ2 instead of κ , as the aux-
iliary parameter in the corresponding expansion parameter Q2. Since
there is no numerical difference, we adopt this form to follow the same
exponentiation of the mass term M2.

r1(y) = (2 − 3ω)r∞
y

[
y − y0 − 2 log

(
1 + y

1 + y0

)

+ 2 log

(
y

y0

)]
; (64)

and

r̈2(y) +
(
5y2 − 3

)
y
(
y2 − 1

) ṙ2(y) +
(
3y2 − 1

)
y2
(
y2 − 1

)r2(y) = R(y) (65)

with

R(y) = r2∞
18w0

⎡
⎣ y3

(
30κ2 − 9ω2 − 6ω − 20

)
+ (4 − 3y) (2 − 3ω)2

y2
(
1 − y2

)
⎤
⎦ ,

(66)

which has solution given by

r2(y) = r2∞
144w0y

[(
y2−y2

0

)
V1(κ, ω)−2V2(κ, ω) log

(
y

y0

)

+V3(ω) log

(
1 + y

1 + y0

)]
. (67)

with V1(κ, ω) = 20 − 30κ2 + 9ω2 + 26ω, V2(κ, ω) =
20 + 30κ2 + 81ω2 − 126ω, and V3(ω) = 32(3ω − 2)2.

Once again, we use the r -functions to proceed with the
expansion of LEMGD2 towards the computation of the area
and, consequently, the HEE expression up to 2nd-order.
Thereupon, the 0th- and 1st-order of the HEE corrections
are, respectively,

SEMGD2
0 = πw2

0

4

(
1

y2
0

− 1

)
, (68)

SEMGD2
1 = πr∞M2

4
(1 − y0)

2
(

2

3
− s

M2

)
. (69)

It is worth to emphasize that Eq. (69) has the presence of
the EMGD2 parameter. It is quite different, compared with
the k = 1 case, where there is no EMGD2 parameter in such
order of correction. One can notice a growth like the 1st-order
correction from [47] as well as succeeded in the EMGD1.
This occurs due to the ADM mass, which corresponds to 3M
in this k = 2 case. Hence, SEMGD2

1 = SMGD
1 . Again, there

is no contribution from the charge as well as one noticed in
Ref. [47] to RN spacetimes.

Carrying on, the 2nd-order of the HEE correction reads

SEMGD2
2 = π

288

{
4M

2
2 [(y0 − 1) (3y0 + 11)

− 6 log(y0) + 16 log

(
2

1 + y0

)]

+ 30Q2

[
1 − y2

0 + 2 log(y0)
]

+9s2
[
(1 − y0) (y0 − 7) + log

(
65536 y0

(1 + y0)16

)]
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Fig. 14 Behavior of the HEE 2nd-order correction depending on M for fixed values of y0. We adopt ζ = −0.1 (heavy tension) in the plot on the
left, while ζ = −100 (light tension) was adopted on the right

Fig. 15 Behavior of the HEE 2nd-order correction depending on M for ζ = −0.1 and setting y0 = 0.01 [y0 = 0.99] on the left [right]

Fig. 16 Behavior of the HEE 2nd-order correction depending on M for ζ = −100 and setting y0 = 0.01 [y0 = 0.99] on the left [right]

+ 6sM2
[
(y0 − 1) (5y0 − 11) − 10 log(y0)

−32 log

(
2

y0 + 1

)]}
. (70)

Looking at the previous cases, the MGD and EMGD1,
there is a leading difference here. Even in the s → 0
regime, there is a numerical difference, when compared to
the EMGD1. It would be nice to plot some comparison with
the Schwarzschild black hole or, strictly, with the RN without
the s parameter, to scale the numerical contribution.

Following an analogue procedure established in EMGD1

case, let us put the ADM mass and the tidal charge in terms
of Schwarzschild mass parameter, which are M2 = 3M and
Q2 = 12M2, respectively. Besides, we use ζ = s/M as well
as it has been done in the MGD case. Over again, the main
purpose here is also fixing M to analyze the influence of a
finite brane tension at this order of HEE correction. Continu-
ing, the expression below carries only the lower-limit of the
integration in the area functional and the parameter ζ . In this
sense, we clearly could investigate the ratio related with the
2nd-order correction for Schwarzschild spacetimes, that is,
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Fig. 17 The 2nd-order corrections to EMGD2 and Schwarzschild
spacetimes pondering light and heavy tension on the brane as well as
the full range of y0

S̃EMGD2
2 = πM2

32

[
W3 (ζ, y0) + 2W2 log (y0)

+2W3 log

(
2

1 + y0

)]
, (71)

where

W3 (ζ, y0) = W1(ζ )y0 − W2(ζ )y2
0 + (22 − 7ζ ) ζ − 4,

(72)

W2(ζ ) = 28 − 10ζ + ζ 2, (73)

W3(ζ ) = 8 (ζ − 2)2 . (74)

Next, Fig. 14 illustrates, for two values of ζ – the first one
representing a high brane tension and another one depicting
a low brane tension – how the size of the minimal2 surface
affects the 2nd-order correction.

To compare the HEE 2nd-order correction in EMGD2 to
the one of a Schwarzschild one, for different M values, we set
ζ = −0.1, in Fig. 15, and ζ = −100 in Fig. 16, specifying
two kinds of ranges: a first one close to 0, and another one
close to 1.

To analyze a wide range scenario to ζ and y0, we plot
Fig. 17. Besides, the ratio to this order is

Φ
EMGD2
2 = 1

4

⎧⎨
⎩28 − 10ζ + ζ 2

−48 (ζ−4)

⎡
⎣ y0−1+2 log

(
2

1+y0

)

−7+8y0−y2
0 log

(
65536 y0
(1+y0)16

)
⎤
⎦
⎫⎬
⎭ ,

(75)

which graphically is presented in Fig. 18.

2 The importance of the range in the integration to obtain the entropy
through the area functional can be analyzed as follows. According to
Ref. [47], HEE is a short form to calculate the entanglement entropy of
a subsystem in the dual theory. Therefore, y0 defines uniquely the size
of the subsystem.

Fig. 18 The 2nd-order correction of the HEE in EMGD2 for fixed
values of ζ

Fig. 19 The 2nd-order correction of the HEE in EMGD2 for values of
ζ and y0

In a general framework, leaving ζ and y0 free to run within
their valid interval of values, Fig. 19 shows the 2nd-order
ratio.

For completeness, we establish

Φ
EMGD2
0 = 1, (76)

Φ
EMGD2
1 = 1 − ζ

2
. (77)

Note that both ratios above are identical to those ones
obtained in the MGD case.

Some features can be extracted out of Eq. (75) and Fig. 19:
(i) when the size of the minimal area is reduced, which is
implemented with y0 � 0.9, a low brane tension hugely
contributes to the increment of the ratio; (ii) when y0 → 0,
the parameter related to the brane tension is dominant.

4.2.2 Almost on the horizon

Specifically, we now deal with the metric (9), which carries
the time component (15) and the radial one (16), with coef-
ficients cm’s displayed in (17), as
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e−λ =
(

1

r − μr̊

) 8∑
m=0

cm
rm−1 , (78)

where r̊ = re = 1.12M2 stands for the degenerate event
horizon determined in [5] and μ ≈ 0.4533. We must imple-
ment the subtle displacement of the event horizon, that is,
r = ρ + r̊ , ρ > 0, and fix the boundary on the horizon with
ρ0 = εr̊ with ε � 1. Once again, the θ = θ0 circumference
maps the entangling surface. Hence, the resulting induced
metric on the t-constant manifold is

dŝ2 =
[
p(ρ)

(
dρ

dθ

)2

+ q(ρ)2

]
dθ2 + [q(ρ) sin θ ]2 dϕ2,

(79)

where r �→ q(ρ) and

p(ρ) = (
ρ + μr̊

) (
ρ + r̊

)7

[
8∑

m=0

cm
(
ρ + r̊

)8−m

]−1

. (80)

Finding ρ ≡ ρ(θ) means to minimize the surface area

A =
∫ 1

y0

dy L̃EMGD2 , (81)

where L̃EMGD2 = 2πq(ρ)
[
p(ρ)(1 − y2)ρ̇2 + q(ρ)2

]1/2
, y =

cos θ is employed to attainρ ≡ ρ(y). The variation of Eq. (42)
with respect to y, and taking δA = 0, gives

4q3 dq

dρ
+ 4ypq2ρ̇ + (1 − y2)

[(
−q2 dp

dρ
+ 6pq

dq

dρ

)
ρ̇2

+2yp2ρ̇3 − 2pq2ρ̈
]

= 0, (82)

where q = q(ρ), p = q(ρ). Now, the perturbation procedure
previously used in Sect. 3.2 is also applied here to build two
ODEs up to 2nd-order in ε by the expansion ρ = ερ1 +
ε2ρ2 into the Eq. (82). Such ρ-functions are important to
execute the series expansion of the integrand in Eq. (81) up
to 2nd-order, which will be substantial to determine the HEE
corrections in the present case. Thus, the first one of them,
that is, the 1st-order in ε ODE is(
y2 − 1

)
ρ̈1 + 2yρ̇1 + γ ρ1 = 0, (83)

where

γ = 6

μ

8∑
m=0

cm
r̊m

. (84)

Equation (83) has the general solution

ρ1(y) = A1Pη(y) + A2Qη(y), (85)

with Pη(y) and Qη(y) as Legendre polynomials of the first
and second kind, respectively, and η=1/2

(−1+√
1 − 4γ

)
.

Requiring regularity at y = ±1, one needs to set A2 =

0 since Qη(y) is not regular in such points. The boundary
condition ρ0 = ερ1(y0) determines A1 and leaves us with

ρ1 ≡ ρ1(y) = r̊Pη(y)

Pη(y0)
. (86)

The 2nd-order ODE reads(
y2 − 1

)
ρ̈2 + 2yρ̇2 + γ ρ2 + Ω(y, γ, β) = 0, (87)

where

Ω(y, γ, β) = 1

r̊

[
1

2
(β−8)

(
y2−1

)
ρ̇2

1 + β
(
y2 − 1

)
ρ1ρ̈1

+ γ ρ2
1 + 2βyρ1ρ̇1

]
(88)

and

β = 9 + 1

μ
−
∑7

j=0(8 − j)c j r̊ (8− j)

∑8
i=0 ci r̊

(8−i)
. (89)

Equation (87) is a linear non-homogeneous ODE. The pres-
ence of the Ω(y, γ, β) permits a variety of solutions condi-
tioned to the parameters β and γ , which by themselves are
constrained to the physical parameters of EMGD2 case, i.e.,
the ADM mass M2, the tidal charge Q2 and the EMGD2

parameter s within c-coefficients explicitly detailed in (17).
Therefore, the general analytical solution for Eq. (87) is writ-
ten as

ρ2(y) = B1Pη(y) + B2Qη(y)

+ η

γ

∫ y

1
Ω(ψ, γ, β)

[
Pη(y)Qη(ψ) − Qη(y)Pη(ψ)

Pη̃(ψ)Qη(ψ) − Pη(y)Qη̃(ψ)

]
dψ,

(90)

where η̃ = 1/2
(
1 + √

1 − 4γ
)
. Therefore, we may pursuit a

wide family of solutions to Eq. (87) depending on the afore-
mentioned parameters, which are crucial to estimate the final
shape of the ρ2(y) in Eq. (90). The constants of integration
B1 andB2 depend on the computation of the integral carrying
the Ω-function.

Hereon we opt to work with two main scenarios. The first
one consists to regard only the 1st-order at ε, considering
ε2ρ2(y) insignificant, compared to ερ1(y). In fact, it is also
consistent with the MGD and EMGD1 scenarios, where ρ2 =
0. The second one goes to the 2nd-order with some kind
of simplifications to the Ω(y, γ, β) through free choice of
values for the γ and β parameters to fit consistent solutions.

First scenario: cutting off ε2ρ2 In this case, only the ε-
order for ρ-function is imperative, leading us to deal with a
simplified solution.

Next, it is important to expand the integrand in the Eq. (81),
which yields

L = 2π r̊2 +
[

4π r̊2 Pη(y)

Pη(y0)

]
ε
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+ π r̊2

P2
η(y0)

[
P2

η(y) − 3

γ

(
y2 − 1

)
Ṗ

2
η(y)

]
ε2 + · · ·

(91)

and calculate the perturbative entropy function S = S0 +
S1 +S2 + · · · . It is crucial to keep in mind that we stand for
up to second order.

Now, using only ρ1(y), we determine the contributions to
the entropy, order by order, up to the second one. Thus, the
0th, 1st and 2nd-orders are, respectively,

SEMGD2
0 = π r̊2

2
(1 − y0) , (92)

SEMGD2
1 = πρ0r̊

Pη(y0)

∫ 1

y0

Pη(y)dy, (93)

SEMGD2
2 = πρ2

0

2P2
η(y0)

∫ 1

y0

[
P2

η(y) − 3

γ

(
y2 − 1

)
Ṗ

2
η(y)

]
dy.

(94)

A first novelty concerns about a non-vanishing 1st-order
correction for the HEE, which did not happened either in
the MGD or in the EMGD1 cases. The computation of a
numerical value depends on the parameters γ and y0. Then
we must plot Eqs. (93) and (94) considering some values
for those parameters. Figure 20 shows three values for γ –
the parameter gathering the c-coefficients with information
about the ADM mass and the tidal charge as well. Meanwhile,
the range −1 < y0 < 1 is imposed, regarding the lower limit
of integration that determines the size of the boundary.

On the one hand, there is a change of sign of the HEE
1st-order correction between the asymptotes, for each value
of γ . It indicates a substantial contribution from the EMGD
parameters. On the other hand, we see only negative correc-
tions at 2nd-order correction.

It is worth to emphasize that chosen values for γ generate
the simplest polynomials as a manner to investigate a partic-
ular behavior of such order of correction. In a more realistic
scenario, we will need precisely the physical values for both
the ADM mass and the tidal charge, to fully understand the
contribution at this order.

Additionally, in fact, for a set of values implying that
Ω(ψ, γ, β) → 0 in Eq. (90), aggregating the boundary con-
dition ρ2(y0) = 0 yields ρ2(y) = 0. Under such circum-
stances, we obtain the same result found in this scenario.

Second scenario: samples for the Ω(y, γ, β) function At
this point, first, we choose two pair of values for γ and β to
determine Ω(y, γ, β), permitting us to determine the HEE
corrections. Second and last, we attribute a value for γ to find
the corresponding numerical value for the EMGD2 parameter
dealing with a unit value for the mass parameter M .

As a first example, we take γ = −2 and β = 0.
Hence the boundary condition ρ1(y0) = r̊ , Eq. (83), pro-

vides ρ1(y) = r̊ y
y0

. These values also permit us to write

Ω(y,−2, 0) = 2
(
2−3y2

)
r̊

y2
0

. Replacing it into Eq. (87) yields

ρ2(y) = r̊

2y3
0

(y − y0) (3yy0 − 1) . (95)

With the ρ-functions, the expansion of the integrand in
Eq. (81) can be found, resulting

L = 2π r̊2 +
(

4π r̊2y

y0

)
ε + π r̊2

y3
0

[
2y0 + 8y0y

2

− 2y
(

1 + 3y2
0

)
+ 3

(
y2 − 1

)
y0

]
ε2 + · · · . (96)

The next step comprise to calculate the HEE corrections
up to 2nd-order, as implemented, employing Eq. (96). Also, it
is necessary to remember that ε = ρ0/r̊ . Therefore, it implies
that

SEMGD2
0 = π r̊

2
(1 − y0) , (97)

SEMGD2
1 = π r̊ρ0

2y0

(
1 − y2

0

)
, (98)

SEMGD2
2 = πρ2

0

4y3
0

(
−1 + 8y0

3
+ 5y2

0 − 20y4
0

3

)
. (99)

Figure 21 illustrates the last two outcomes above. Once again,
one can notice the appearance of the 1st-order correction,
which is not present in cases like the MGD or the EMGD1.
In addition, there is a sign change of such correction as well
as can be observed in the case where ρ2 is insignificant.

As a second example, let us take γ = −6 and β = 8. Sim-
ilarly proceeding as in the previous example, the ρ-functions
can be derived, as

ρ1(y) = r̊
(
3y2 − 1

)
(
3y2

0 − 1
) . (100)

Hence, one obtains Ω(y,−6, 8) = 42r̊
(
1−3y2

)2
/(

1 − 3y2
0

)2
, yielding

ρ2(y) = −9r̊
(
y2 − y2

0

)
5
(
3y2

0 − 1
)3

[
13 − 15y2

0 + 15y2
(

3y2
0 − 1

)]
.

(101)

One more time, with these ρ-functions, we expand the inte-
grand in Eq. (81), which leave us with

L = 2π r̊2 +
[

4π r̊2
(
3y2 − 1

)
3y2

0 − 1

]
ε

+ 2π r̊2

5
(
3y2

0−1
)3

[
−5+249y2

0−270y4
0−225y4

(
3y2

0 − 1
)
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Fig. 20 Behavior of the 1st-order (on the left) and 2nd-order (on the
right) corrections of the HEE. For the former, the thick lines stand
for γ = −12, with asymptotes at y0 = 0, y0 ≈ −0.7746 and
y0 ≈ 0.0.7746; the dot-dashed lines stand for γ = −6, with asymptotes

at y0 ≈ −0.5774; and y0 � 0.5774. The dashed lines stand for γ = −2
with a single asymptote at y0 = 0. For the latter, all curves share the
same asymptotes at y0 = 0, y0 ≈ −0.7746 and y0 ≈ 0.7746

Fig. 21 Profile of the 1st-order (on the left) and 2nd-order (on the right) corrections of the HEE for γ = −2 and β = 0. In both plots, the asymptote
is localized at y0 = 0. The asymptotes are localized at y0 = 0 for the both corrections

+ 6y2
(
−34 − 15y2

0 + 135y4
0

)

+ 279y2
(
y2 − 1

) (
3y2

0 − 1
)]

ε2 + · · · . (102)

Finally, after employing Eq. (81), the calculations of the
HEE corrections, order by order up to the second one, read

SEMGD2
0 = π r̊

2
(1 − y0) , (103)

SEMGD2
1 = π r̊ρ0

(
y0 − y3

0

3y2
0 − 1

)
, (104)

SEMGD2
2 = 2πρ2

0

5

[
8 + 5y0 − 24y2

0 − 271y3
0 + 579y5

0 − 297y7
0(−1 + 3y2

0

)3

]
.

(105)

Figure 22 brings the profile of the last two entropy functions.
The appearance of the 1st-order correction happens again,

with the sign-changing noticed before in the first example.
As a third example, we adopt the mass parameter M = 1,

which leaves us with M2 = 3M = 3, Q2 = 12M2 = 12 and
r̊ = 3.36. Once the numerical value of s is not available to
determine entirely the c-coefficients in (17), then γ is fixed

with respect to a well known Legendre polynomial. With the
choice γ = −20, hence, we figure out that s ≈ −17.9841
and, consequently, β ≈ 3.3942. The underlying computation
is usual with truncations made on the numerical values for
all parameters, up to four decimal places.

Therefore, performing strictly as in the previous two
examples, we obtain the first ρ-function as a solution of
Eq. (83), that is,

ρ1(y) = 3.36

(
3 − 30y2 + 35y4

3 − 30y2
0 + 35y4

0

)
. (106)

With the numerical values, then

Ω(y,−20, 3.3942)

= 1.1820 − 0.9015y2 + 1.9291y4 − 45.8903y6 + 37.0863y8

(
0.0857 − 0.8571y2

0 + y4
0

)2

permits to determine the second ρ-function solving the
Eq. (87), i.e.,

ρ2(y) = −0.7131
(
y2 − y2

0

)
p3

6

∑
a

pa y
a, (107)
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Fig. 22 Profile of the 1st-order (on the left) and 2nd-order (on the right) corrections of the HEE for γ = −6 and β = 8. For both orders, the
asymptotes are situated at y0 = ∓0.5773

where a ∈ {0, 2, 4, 6} and

p0 = 0.0857y6
0 − 0.0325y4

0 + 0.0439y2
0 − 0.0659,

p2 = −0.8571y6
0 + 0.4108y4

0 + 0.2975y2
0 + 0.0439,

p4 = y6
0 − 1.2364y4

0 + 0.4108y2
0 − 0.0325,

p6 = y4
0 − 0.8571y2

0 + 0.0857.

Now, we proceed with the expansion of the integrand in
Eq. (81) to help us to determine the HEE corrections, which
yields

L = L0 +
[

4.7286 × 101

(
3 − 30y2 + 35y4

3 − 30y2
0 + 35y4

0

)]
ε

+
⎡
⎣
(

1.12

D2
0

)2 14∑
a=0

4∑
b=0

Nab

(
y2

0

)a (
y2
)b⎤⎦ ε2 + · · · ,

(108)

with L0 = 7.0934 × 10. The numerical coefficients Nab are
displayed in Appendix A. Meanwhile,

D0 =
4∑

i=0

D0i (y
2
0 )i ,

with D00 = 7.3457 × 10−3, D01 = 1.4692 × 10−1, D02 =
9.0607 × 10−1, D03 = −1.7142 and D04 = 1.

With the integrand in hands, we can compute the HEE
corrections, order by order, up to second one, as follows

SEMGD2
0 = 17.7337 (1 − y0) , (109a)

SEMGD2
1 =

(
−0.9047y0 + 3.0159y3

0 − 2.1111y5
0

0.0857 − 0.8571y2
0 + y4

0

)
ρ0,

(109b)

SEMGD2
2 = ρ2

0

D4
0

33∑
i=0

Ki y
i
0. (109c)

where the numerical coefficients Ki are listed in Appendix B.
Figure 23 shows the shape of the last two entropy functions

above. The profile of the 1st-order correction has a sign-
changing noticed before in both previous examples. Besides,
there is an alternate behavior looking at the two last correc-
tions. Now, there is a sign-changing with an attenuation in
the increment of the values for both corrections.

5 Conclusions

About the MGD case, we calculated the HEE of the MGD
solution to investigate the influence of high energy effects
caused by the MGD parameter �, encoded in the ξ parame-
ter, from the AdS/CFT membrane paradigm. There are two
perspectives, namely, the almost on the horizon and far from
the horizon regimes. Far from the horizon, the HEE 0th-order
is not affected by ξ , which is a good feature of the deforma-
tion, as Eq. (33) exactly matches the HEE for Schwarzschild
spacetimes, as pointed out in Ref. [47]. The novelty clearly
appears when one reaches the HEE 1st-order correction,
since the ξ parameter is present in Eq. (34) as well as in the
ratio casted by Eq. (36). The fact that ξ < 0, due to the same
sign of �, contributes to an increment of the correction term,
however without any modification of its sign, which is made
explicit by Eq. (36). Once more, the MGD parameter carrying
on brane effects is featured in the HEE 2nd-order correction,
as revealed by Eq. (37). Computations in this direction shed
new light about holography in asymptotically flat spaces.

Comparatively with the HEE for Schwarzschild black
hole, one notices the exponential rise of such order of cor-
rection, when the brane tension is lowered, as illustrated by
Fig. 2. Therefore, lower brane tension values have profound
influence in the increment of this order of correction, as one
can see in Fig. 3. Another feature is the agreement with the
first law for the HEE, evinced by Eqs. (34) and (37). Figure 4
shows that the more the MGD black hole mass increases, the
higher the magnitude of the 2nd-order correction is, concomi-
tantly to the rise of the size of the subsystem, which is char-
acterized by y0. Figure 5 permits us to obtain a better com-
parison of this feature, while one looks at the HEE 2nd-order
correction for a Schwarzschild black hole. As expected, when
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Fig. 23 Profile of the 1st-order (on the left) and 2nd-order (on the right) corrections of the HEE for γ = −20, s ≈ −17.9841 and β = 3.3942.
Both the plots display their asymptotes at y0 = ∓0.8611 and ∓y0 = −0.3399

ξ = 0, the HEE corrections for Schwarzschild spacetimes are
recovered at 1st- and 2nd-order, accordingly. Even when one
considers the boundary far away from the event horizon of the
MGD black hole, it is observed substantial differences when
confronted to the HEE of a typical Schwarzschild black hole.

Regarding the entangling surface almost on the horizon,
the MGD parameter, �, that encodes the finite brane tension,
demonstrated its strength to modify the HEE 2nd-order cor-
rection, as one can notice in Fig. 7. The MGD influence is
codified by the parameter α, which is correspondent, in a
brief mode, to �. The 0th-order and 1st-order are not suscep-
tible to such parameter and both of them match to those ones
established in Ref. [47]. On the other hand, the low brane
tension weighs significantly to lift the maximum value of the
HEE 2nd-order correction, according to Fig. 7. Here, so close
to the event horizon of a MGD black hole, the correction at
2nd-order is more sensitive to the MGD parameter.

In the EMGD1 case, a similar scenario to the Reissner–
Nordström spacetime occurs. Far from the horizon, similarly
to the HEE for the Schwarzschild spacetime, a subtle numer-
ical shift of the HEE 1st-order correction is verified with
Φ

EMGD1
1 = 2. It happens due to the presence of the ADM

mass in Eq. (49). Meanwhile, the 0th-order is not altered. It is
worth to emphasize that the correspondence between the tidal
charge, Q1, and the ADM mass, M1, with the Schwarzschild
mass M , is mostly necessary to analyze the relative behavior
of the HEE corrections for the EMGD1 spacetime. The ratio
(52) shows the peculiarity of such correspondence, which is
sustained by Fig. 8. The influence of the black hole mass is
notorious with the large size of the entangling surface char-
acterized by y0, as shown by Fig. 12. The increments in
the HEE 2nd-order correction are accentuated accordingly
with the mass increment and the enlargement of the mini-
mal area. Figures 11 and 12 make us to comprehend that the
greater the mass, the greater the deviation of the HEE 2nd-
order correction for the EMGD1 is, related to that one for the
Schwarzschild spacetime.

Considering the entangling surface almost on the horizon
for the k = 1 scenario, we have only an extremal black

hole with the degenerate horizon r̊ = M1. The HEE for this
case is very close to the HEE for the Reissner–Nordström
spacetime. The crucial distinction relies on the numerical
value of the full entropy displayed by Eq. (59) in consequence
of the weakening of the gravitational field carried by the
position of the event horizon in an EMGD1 spacetime, that
is, r̊ = M1 = 2M . The relationship between those entropies
displays a limit equal to 4 and it is sustained by Eq. (60)
and exhibited by Fig. 13, where it is possible to notice a
fast-growing ratio as the mass of the black hole increases.

The EMGD2 case brings on the possibility to settle addi-
tional HEE corrections to a certain class of black holes
beyond Reissner–Nordström spacetimes. Far from the hori-
zon, the HEE 0th-order is not affected, behaving like a con-
stant, as the HEE for all cases are confronted. As occurred
in the MGD case, the HEE 1st-order correction displays
already the specific quantifier related to the brane tension,
i.e., the parameter s, as shown by Eq. (69). Besides, the HEE
2nd-order correction is richer, despite its structural similar-
ity when faced up to the same order in either the MGD or
the EMGD1 cases. The mass terms are preserved, which is
a welcome feature to hold the first law of HEE. The new
establishment has tuned with the quadratic term in s and the
mixed one with M2 and s, as supported by Eq. (70).

The Φ-ratios were also computed, scaling with Schwarzs-
child mass M . In Fig. 14, we observe two simple scenar-
ios fixing the brane tension parameter. It unveils the fast-
growing of the HEE 2nd-order correction according to the
mass parameter and the size of the minimal area. Figure 18
exposes how the brane tension affects, relatively, the HEE
2nd-order correction, where it is clear that lower tension
branes have exponential gains, consonantly with the size of
the minimal area, that is, the range of the dual subsystem
that entanglement entropy stands for. In addition, looking
at Figs. 15 and 16, one can notice the significant deviation
between the HEE for a Schwarzschild black hole and the HEE
for the EMGD2 spacetime. For completeness, Fig. 19 shows
how the 2nd-order ratio behaves under the simultaneous vari-
ation of the brane tension and the size of the dual subsystem.
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With the entangling surface almost on the horizon, we
employ the expansion of an auxiliary function characterizing
the proximity to the horizon which head us to general analyt-
ical solutions depending on parameters related to the ADM
mass, tidal charge, and brane tension. Therefore, we expend
efforts to analyze some possible scenarios towards the profile
of HEE corrections in this present case. Firstly, based on a
meaningless ρ2, we determine HEE corrections very similar
to the previous cases, i.e., MGD and EMGD1, as shown by
Eqs. (92) and (94). The dependence of the starting point at
horizon ρ0 is sustained at 1st-order and 2nd-order correc-
tions. In addition, this approximation requires using values
to γ and the plots in Fig. 20, even dealing with simple Leg-
endre polynomials, displaying the sign-changing demeanor
of the two orders of corrections for the HEE. Of course, if
we limit ourselves to a certain region into the boundaries,
which means to limit the size of the dual subsystem, we
get away from the asymptotic regions. Besides, among the
asymptotes we observe the similar behavior of both HEE
orders of corrections. Secondly, we scrutinize three exam-
ples, each one of them demonstrates sign-changing behavior
of the HEE 1st- and 2nd-order corrections. The 0th-order, as
usual, remains immutable. According to the rank of the Leg-
endre polynomials corresponding to the choices for β and γ ,
we handled with one to two asymptotes marking the regions
where the change of sign of that order of correction occurs,
as one can realize in Figs. 21 and 22. The last example was
built attributing a mass reference and, subsequently, fixing
the brane tension parameter, s, with determined value for γ ,
which is purposely attached to the order of a rank-4 Legen-
dre polynomial. Its functionality as a toy model reveals the
same sign-changing aspect of the orders of corrections for the
respective HEE. The new aspect noticed here was in virtue

to the local maxima and minima presented at HEE 2nd-order
correction as showed by Fig. 23. Such presence of extremal
points reveals a real constraint to the corrections for the HEE.
Finally, specific values for the physical parameters bring to us
the most realistic results for the HEE in EMGD2 spacetimes.
Without lose of clarity the constructions of the toy models
aforementioned was essential to the simplest landscapes.
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Appendix A: The numerical coefficients: part I

To simplify, the Nab parameters in Eq. (108), a ∈ {0, 1, 2,

. . . , 14} and b ∈ {0, 1, . . . , 4}, are displayed as a matrix
form below, wherein a stands for rows and b for columns.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.8294 × 10−8 −6.4935 × 10−7 7.9329 × 10−6 −1.4964 × 10−5 7.4078 × 10−6

−1.9118 × 10−6 4.7106 × 10−5 −4.8551 × 10−4 8.9794 × 10−4 −4.4451 × 10−4

6.9972 × 10−5 −1.4322 × 10−3 1.2938 × 10−2 −2.3498 × 10−2 1.1632 × 10−2

−1.3191 × 10−3 2.4156 × 10−2 −1.9684 × 10−1 3.5175 × 10−1 −1.7413 × 10−1

1.4700 × 10−2 −2.5062 × 10−1 1.8861 −3.3237 1.6454
−1.0277 × 10−1 1.6725 −1.1869 × 101 2.0683 × 101 −1.0239 × 101

4.6293 × 10−1 −7.3164 4.9859 × 101 −8.6183 × 101 4.2664 × 101

−1.3661 2.1186 × 101 −1.4043 × 102 2.4133 × 102 −1.1947 × 102

2.7082 −4.1192 × 101 2.6502 × 102 −4.525 × 102 2.2401 × 102

−3.7624 5.5047 × 101 −3.3213 × 102 5.5875 × 102 −2.7661 × 102

3.9379 −5.296 × 101 2.7061 × 102 −4.3552 × 102 2.156 × 102

−3.3659 3.9715 × 101 −1.3944 × 102 1.9419 × 102 −9.6133 × 101

2.3127 −2.4305 × 101 4.6461 × 101 −3.776 × 101 1.8693 × 101

−1.0665 1.0665 × 101 −1.2443 × 101 0 0
2.2863 × 10−1 −2.2863 2.6674 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


1035 Page 22 of 23 Eur. Phys. J. C (2019) 79 :1035

Appendix B: The numerical coefficients: part II

With i ∈ {0, 1, 2, . . . , 32, 33}, the numerical coefficients Ki

for the Eq. (109c) are

K0 = 1.8435 × 10−8 K1 = −4.5735 × 10−9 K2 = −1.1061 × 10−6 K3 = 5.3205 × 10−7 K4 = 2.8944 × 10−5

K5 = −2.1815 × 10−5 K6 = −4.3326 × 10−4 K7 = −4.7394 × 10−4 K8 = 4.0938 × 10−3 K9 = −6.3671 × 10−3

K10 = −2.5474 × 10−2 K11 = 5.7270 × 10−2 K12 = 1.0614 × 10−1 K13 = −3.6230 × 10−1 K14 = −2.9721 × 10−1

K15 = 1.6682 K16 = K17 = −5.7199 K18 = −6.8807 × 10−1 K19 = 1.4757 × 101

K20 = 5.3631 × 10−1 K21 = −2.8627 × 101 K22 = −2.3912 × 10−1 K23 = 4.1341 × 101 K24 = 4.6496 × 10−2

K25 = −4.3596 × 101 K26 = 1.1102 × 10−16 K27 = 3.2502 × 101 K28 = 7.6328 × 10−17 K29 = −1.6193 × 101

K30 = 0.0000 K31 = 4.8316 K32 = 0.0000 K33 = −6.5262 × 10−1
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