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Abstract In the case of a spatially flat Friedmann–Lemaître–
Robertson–Walker Universe in f (R)-gravity we write the
Wheeler–DeWitt equation of quantum cosmology. The equa-
tion depends upon the functional form of f (R). We choose
to work with four specific functions of f (R) in which the
field equations for the classical models are integrable and
solvable through quadratures. For these models we deter-
mine similarity solutions for the Wheeler–DeWitt equation
by determining Lie–Bäcklund transformations. In addition
we show how the classical limit is recovered by the similar-
ity solutions of the Wheeler–DeWitt equation.

1 Introduction

Modified theories of gravity [1,2] are an alternate approach to
the dark energy models to explain recent observational phe-
nomena [3–6]. The common characteristic of the modified
theories of gravity is the modification of the Einstein-Hilbert
Action by adding new invariant terms to the gravitational
Action. The novelty of that approach is that new geometro-
dynamical components are introduced into the field equations
which drive the dynamics to explain the observations.

In the literature there have been proposed a plethora of dif-
ferent modified theories of gravity. A specific class of models
which have drawn the attention are the so-called f -theories.
In f -theories of gravity a function f (Q) is introduced into
the Einstein-Hilbert Action, where Q is an invariant func-
tion. Some theories which belong to that class of models

are the: f (R)-gravity in the metric formalism [7], f
(
R̂
)

-

gravity in the Palatini formalism [8], f (G)-Gauss Bonnet
theory [9], while in the Teleparallel formalism of gravity the
f (T )-theory has been widely studied the last decade [10–
13]. For other modified theories which belong to that class
we referee the reader to [14–28] and references therein.
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In this work we are interested in f (R)-gravity in the
metric formalism [29], where Action Integral in a four-
dimensional manifold is given by the expression S =∫
dx4√−g f (R). In this theory, variable R corresponds to

the Ricci scalar of the underlying geometry with line ele-
ment gμν ; consequently, General Relativity with or with-
out the cosmological constant is fully recovered when f (R)

is a linear function. Various specific functional forms of
f (R)-theory have been proposed in the literature in order
to describe the various phases of the universe. The quadratic
model f (R) = R + αR2 can describe well the inflationary
era of our universe [30,31]. The natural extension of the latter
inflationary model is the f (R) = R+αRn model [32] which
provides power-law attractors. For other f (R)-models with
applications in the late acceleration phase of the universe see
[33–36] and references therein.

f (R)-theory is a fourth-order theory and it is dynamical
equivalent to the Brans–Dicke theory with zero value for the
Brans–Dicke parameter. The scalar field attributes the extra
degree of freedom such that the theory is written as a second-
order theory but with extra dependent variables so that the
total degrees of freedom are the same. The theory is nonlin-
ear and there are few exact solutions, either for spacetimes
with one free function such as the Friedmann–Lemaître–
Robertson–Walker metric (FLRW) which is usually applied
in modern cosmology. Indeed, in the case of a spatially flat
FLRW spacetime the de Sitter solution, R = R0, is recov-
ered when there exists a solution to the algebraic equation
R0 f ′ (R0) = 2 f (R0) [31]. In addition, power law solutions,
which describe an ideal gas with constant equation parameter,
are recovered when f (R) = f0Rn , n �= 0, 1, 2. However,
the latter exact solutions do not describe the generic analytic
solution for the corresponding field equations because they
are valid only for specific initial conditions. Some analytic
solutions have been found by searching for conservation laws
for the field equations and making a conclusion about the
integrability of the gravitational model by writing the ana-
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lytic solution with the use of closed-form functions or making
use of theorems from the theory of Analytic Mechanics, for
instance see [37–40].

We focus on the determination of exact solutions of the
Wheeler–DeWitt (WdW) equation [41] in f (R)-cosmology.
The WdW equation is mainly applied in quantum cosmol-
ogy. Recall that in modern cosmology we assume that the
spacetime is described by the FLRW metric with zero spatial
curvature. WdW is an equation of Klein–Gordon type, where
the dependent variable is denoted to describe the wavefunc-
tion of the universe and the independent variables are the
dynamical variables of the classical system. There are var-
ious issues such that there is not a unique way for one to
define probability [42,43]. Also there is the so-called prob-
lem of time, because time is involved in the wavefunction
through the dynamical variables [44–47].

A previous analysis of the exact solutions of WdW in
f (R)-cosmology was published in [48–50]. Specifically in
[48] there was found that for the special power-law theory

f (R) = R
3
2 , the classical solution can be recovered from

the solution of the WdW equation. The case f (R) = R
3
2

describes an integrable cosmological model which admits
a conservation law linear in the momentum. That approach
has been extended and applied in other gravitational models,
such as anisotropic universes [43], static spherical symmet-
ric spacetimes [51–53], inhomogeneous spacetimes [54] and
electromagnetic three-dimensional pp-wave spacetimes [55].

In our consideration we determine a family of Lie–
Bäcklund transformations for the WdW equation for some
specific models of f (R)-cosmology. The models of f (R)-
cosmology that we study form integrable dynamical systems
where the conservation laws which ensure the integrability
are constructed by point transformations which leave the vari-
ational integral invariant. The plan of the paper is as follows.

In Sect. 2 we present the basic equations of f (R)-
cosmology. The main mathematical materials necessary for
the analysis of the present work are given in Sect. 3. Specif-
ically, we show how Lie–Bäcklund transformations can
be constructed for the conformally invariant Klein–Gordon
equation by using the point symmetries of the classical
Hamiltonian system. In addition we show how the Lie–
Bäcklund operators are applied in order to determine similar-
ity solutions for the WdW equation. The context of the one-
dimensional optimal system is discussed. Section 4 includes
the main material of our analysis. For four integrable classi-
cal models of f (R)-cosmology we write the WdW equation
and we determine the infinitesimal generators of the point
transformations where the WdW equation is invariant. From
the infinitesimal generators we construct the Lie–Bäcklund
operators and we find the similarity solutions. In order our
results to be completed the one-dimensional optimal system
is determined for each model. For the models of our study we

observe that the classical limit is always recovered. Finally in
Sect. 5, we discuss our results and we draw our conclusions.

2 f (R)-cosmology

For a spatially flat FLRW background space with line element

ds2 = −dt2 + a2 (t)
(
dx2 + dy2 + dz2

)
, (1)

and Ricciscalar

R = 6
(
Ḣ + 2H

)
, (2)

the gravitational field equations of f (R)-gravity are calcu-
lated to be [7]

3 f ′H2 = f ′R − f

2
− 3H f ′′ Ṙ, (3)

2 f ′ Ḣ+3 f ′H2= − 2H f ′′ Ṙ −
(
f ′′′ Ṙ2+ f ′′ R̈

)
− f − R f ′

2
,

(4)

where H (t) is the Hubble function, H (t) = ȧ(t)
a(t) , dot indi-

cates derivative with respect to the independent variable “t”;
and a prime denotes derivative with respect to the Ricciscalar,
that is, f ′ (R) = d f (R)

dR .
The latter field equations can be written in an equivalently

form as follows [7]

Gμ
ν = kef f T

μ
f ν (5)

where now Gμ
ν , is the Einstein tensor, kef f is a varying

“Einstein-constant” defined as kef f = 1
f ′(R)

, and Tμ
f ν is

the effective energy momentum tensor which attributes the
geometrodynamical degrees of freedom of the higher-order
of gravity. Indeed, the energy–momentum tensor Tμ

f ν is
defined as

Tμν = (
ρ f + p f

)
uμν + p f gμν,

where the energy density ρ f and pressure term p f are defined
as [7]

ρ f = f ′R − f

2
− 3H f ′′ Ṙ, (6)

p f = 2H f ′′ Ṙ +
(
f ′′′ Ṙ2 + f ′′ R̈

)
+ f − R f ′

2
. (7)

Hence, the field equations are

3H2 = kef f ρ f , 2Ḣ + 3H2 = −ke f f p f , (8)

while the equation of state parameter for the effective fluid

w f = p f

ρ f
= −

(
f − R f ′) + 4H f ′′ Ṙ + 2

(
f ′′′ Ṙ2 + f ′′ R̈

)

( f − R f ′) + 6H f ′′ Ṙ
,

(9)
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Note that the latter expression for f (R) = R − 2� gives
w f = −1 which means that the theory of General Relativity
with the cosmological constant is recovered.

2.1 Minisuperspace approach

The gravitational field equations (2), (3) and (4) can be
derived by a variation principle of the Action integral

A =
∫

L
(
N , a, ȧ, R, Ṙ

)
dadRdN (10)

where L
(
N , a, ȧ, R, Ṙ

)
is defined as [38]

L
(
N , a, ȧ, R, Ṙ

) = 1

N

(
6a f ′ȧ2 + 6a2 f ′′ȧ Ṙ

)

+Na3 (
f ′R − f

)
(11)

where N (t) is a generic lapse function for the FLRW met-
ric, such that the Hubble function is defined H (t) = 1

N
ȧ
a .

We note that Lagrangian (11) is a singular Lagrangian since
∂L
∂ Ṅ

= 0. Lagrangian (11) defines a constraint system, with

constraint equation ∂L
∂N = 0. The two-second order differ-

ential equations follow by the variation with respect to the
variables {a, R}, that is, d

dt
∂L
∂ ȧ − ∂L

∂a = 0 and d
dt

∂L
∂ Ṙ

− ∂L
∂R = 0.

Lagrangian (11) is of the form

L
(
N , a, ȧ, R, Ṙ

) = 1

2N
GAB

dq A

dt

dqB

dt
− NU(qC ) (12)

where q A = (a, R), U
(
qC

) = −a3
(
f ′R − f

)
and GAB is

the minisuperspace defined as

GAB =
(

12a f ′ 6a2 f ′′
6a2 f ′′ 0

)
. (13)

The second-rank tensor GAB defines the space where the
dynamical variables {a, R} evolve.

We can define a canonical momenta for the variable {a, R},
and write the point-like Lagrangian (11) as a Hamiltonian
system. It follows that the two momentum pa = ∂L

∂a , and
pR = ∂L

∂ Ṙ
are

Npa = 12a f ′ȧ + 6a2 f ′′ Ṙ, NpR = 6a2 f ′′ȧ (14)

so the Hamiltonian function is

H = N

[
pa pR
6a2 − f ′ p2

R

6a3 − a3 (
f ′R − f

)
]

, (15)

or equivalently

H = N

(
1

2
GAB PAPB + U(qC )

)
. (16)

where PA = (pa, pR) is the canonical momentum.

Hence, the constraint equation provides

H (a, R, pa, pR) ≡ 0, (17)

while the rest of the field equations are given by the Hamilton
equations

ȧ = ∂H
∂pa

, Ṙ = ∂H
∂pR

, (18)

ṗa = −∂H
∂a

, ṗR = −∂H
∂R

, (19)

that is

1

N
ȧ = pR

6a2 ,
1

N
Ṙ = pa

6a2 − f ′ pR
3a3 (20)

1

N
ṗa = − pa pR

3a3 + f ′ p2
R

2a4 + 3a2 (
f ′R − f

)
, (21)

and

1

N
ṗR = f ′′ p2

R

6a3 + a3 f ′′R. (22)

2.2 Wheeler–DeWitt equation

Constraint Eq. (17) yields the WdW equation Ĥ�(q) = 0,
where Ĥ is the Hamiltonian operator under canonical quan-
tization, PA = 1√

G
∂

∂q A .

The operator Ĥ is defined as [56]

Ĥ�(q) =
(

1

2
�L + U(q)

)
�(q) ≡ 0, (23)

in which �L is the conformal Laplace operator defined as

�L = � + n − 2

4(n − 1)
R, (24)

where R is the Ricciscalar of the minisuperspace GAB and
n = dim GAB and � is the Laplace operator, that is,

� = 1√−G ∂A

(√−GGAB∂B

)
. (25)

For the second-rank tensor (13) we calculate n = 2, which
means that �L = �. The conformal Laplace operator �L

has the property that it is invariant under conformal trans-
formations, such a requirement it is necessary in the case
of quantum cosmology since the theory should be confor-
mal invariant because of the arbitance of the lapse function
N (t). While in the case where n = 2 operator �L follows
from the canonical quantization PA � 1√

G
∂

∂q A , for higher-
dimensional spaces, n ≥ 3, the conformal Laplace operator
�L follows from the canonical quantization only for confor-
mally flat spaces, and in general the term n−2

4(n−1)
R should be

added by hand. However, which quantization process which
provides the operator �L for n ≥ 3 from a point-Lie Hamil-
tonian function is still an open problem.
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In general and in terms of the 1+3 decomposition notation
of GR the WdW equation it follows from the Hamiltonian
constraint

H� =
[
−4κ2Gi jkl

δ2

δhi j δhkl
+

√
h

4κ2

(
−R+2� + 4κ2T 00

)]
�=0,

(26)

where Gi jkl is defined as

Gi jkl = 1

2
√
h

(
hikh jl + hilh jk − hi j hkl

)
, (27)

is the metric of superspace, the space of all 3-geometries with
metric hi j and Ricci scalar R, and the matter configuration.

We note that in general the WdW equation (26) is a hyper-
bolic functional differential equation on superspace, where
in the case of the minisuperspace approximation it is reduced
to a single equation for all the points of the superspace.

As far as our model of f (R)-cosmology is concerned,
with constraint equation (15), the WdW equation in the min-
isuperspace approach is found to be

1

a2 f ′′ �,aR − f ′

a3 ( f ′′)2 �,RR +
(

f ′ f ′′′

a3 ( f ′′)3 − 1

a3 f ′′

)
�,R

−6a3 (
f ′R − f

)
� = 0. (28)

For the latter linear second-order partial differential equa-
tion we shall determine exact solutions for specific forms
of f (R) function. In the following section we present the
main mathematical tools which will be applied in order to
determine solutions for Eq. (28).

3 Constructing similarity solutions

Consider the partial differential equation H
(
q A, �,�,A,

�,AB, . . .
) ≡ 0 where q A = (

q1, q2, . . . , qn
)

denotes the
n-independent variables and � = �

(
q A

)
is the dependent

variable. Let the differential equation H
(
q A, �,�,A, �,AB ,

. . .) be invariant under the infinitesimal one-parameter point
transformation qn → qn + ε, then the differential equa-
tion can be rewritten as H̄

(
qα,�,�,α,�,αβ, . . .

)
, where

� = � (qα) and qa = (
q1, q2, . . . , qn−1

)
. This process

is called similarity transformation or similarity reduction,
while the solutions which follow by that kind of transforma-
tions are called similarity solutions.

When the differential equation H
(
q A, �,�,A, �,AB, . . .

)
is invariant under the infinitesimal one-parameter point trans-
formation qn → qn+ε, then we shall say that the differential
equation admits the Lie point symmetry X = ∂qn and vice
versa.

In general, the differential equation H
(
q A, �,�,A,

�,AB, . . .
)

is invariant under the infinitesimal one-parameter
point transformation

q A → q A + εξ A
(
qB, �

)
, � → � + εη

(
qB, �

)
(29)

if and only if there exists a function λ
(
qB, �

)
such that ξ

[
X [k], H

]
= λH, (30)

where X [k] is the kth extension of the vector field X =
ξ A∂A + η∂� in the jet-space

{
q A, �,�,A, �,AB, . . .

}
. The

transformation q A → q̄ A
(
qB

)
which transforms the generic

field X = ξ A
(
qB, �

)
∂A + η

(
qB, �

)
∂� in the form X =

∂qn is called canonical transformation.
The Lie symmetries for the conformal invariant Klein–

Gordon equation (23) have been studied before in [57].
Specifically it has been found that the generic Lie symmetry
has the form

X = ξ A
(
qB

)
∂A +

(
2 − n

2
ψ

(
q A

)
� + a0� + b

(
q A

))
∂�,

(31)

in which a0 is a constant, b
(
q A

)
is a solution of the origi-

nal Eq. (23) and represents the infinity number of solutions,
since the equation is linear, and ξ A

(
q A

)
is a conformal vec-

tor field for the minisuperspace GAB
(
qC

)
, with conformal

factor ψ
(
qB

)
, that is,

LξGAB

(
qC

)
= 2ψ

(
qC

)
GAB

(
qC

)
,

Lξ denotes the Lie derivative with respect to the vector field
ξ .

In addition, the conformal vector field and the potential
U(qC ) satisfy the constraint condition

LξU(qC ) + 2ψ
(
qC

)
U(qC ) = 0. (32)

By definition, if X = ξ A
(
qB , �

)
∂A + η

(
qB, �

)
∂� is a

Lie point symmetry for the differential equation H
(
q A, �,

�,A, �,AB, . . .
)
, the symmetry vector X̂ = (

η
(
qB, �

) −
ξ A

(
qB, �

)
�,A

)
∂� is a Lie–Bäcklund symmetry. Vector

field X̂ is the canonical form of the vector field X .
A Lie–Bäcklund symmetry preserves the set of solutions

for the differential equation, that is,

X̂ (�) = λ0�, λ0 = cons � t. (33)

Condition (33) provides a constraint equation which will be
used in the following to solve the WdW equation (28).

The symmetry condition (32) where ξ A
(
qB

)
is a con-

formal vector field of the minisuperspace has been found
before in [37] for the variational symmetries for singular
Lagrangians of the form of (11). Indeed, for every variational
symmetry of (11) a Lie point symmetry and consequently a
Lie–Bäcklund can be constructed for the WdW equation (28).
However, that it is not the only relation between variational
symmetries of classical Lagrangians and Lie symmetries of
the WdW equation.
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If we consider that the lapse-function N (t) in the
Lagrangian (11) is fixed, then we can apply the results for
the variational symmetries of regular Lagrangians [38]. As
we shall see for the f (R)-theory we recover the results of
[58] while also we found new Lie–Bäcklund operators which
will be used to determine new similarity solutions for equa-
tion (28).

However, the Lie point symmetries of regular systems
can be time-dependent, something which is not true for the
WdW equation. Below we show two cases of important inter-
est where we show how Lie–Bäcklund operators are con-
structed by using the time-dependent symmetries of the reg-
ular Lagrangian.

3.1 Higher-order Lie–Bäcklund operators

We show, for two models of special interest, how to construct
Lie–Bäcklund operators for the conformal Laplace equation
(23) by using time-dependent point symmetries of regular
Lagrangians.

3.1.1 Oscillator

Consider the point-like regular Lagrangian

L = 1

2

(
ẋ2 + hAB

(
yC

)
ẏ A ẏB

)
+ 1

2
μ2x2 + F

(
yC

)
. (34)

where hAB
(
yC

)
and F

(
yC

)
are arbitrary functions.

Lagrangian (34) admits the variational symmetries, ∂t and
e±μt∂x , with respective gauge function f

(
t, x, yA

) =
μe±x . Consequently, from the two-latter variational sym-
metries for the dynamical system with Lagrangian (34) we
can construct the time-dependent conservation laws

I± = e±μt ẋ ∓ μe±μt x . (35)

It is easy to show that the combined integral I0 = I+ I− is
time independent and equals

I0 = ẋ2 − μ2x2. (36)

The corresponding conformal invariant Klein–Gordon
equation is

�xx + hAB
(
yC

)
�A�B − �A

(
yC

)
�A

+ n − 2

4 (n − 1)
R

(
yC

)
� − μ2x2� − F

(
yC

)
� = 0.

(37)

Equation (37) does not admit any Lie point symmetry for
general hAB, F

(
yC

)
while R

(
yC

)
is the Ricciscalar for the

metric hAB .
We observe that Eq. (37) is separable with respect to x .

Indeed the solution can be written in the form �
(
x, yA

) =

w (x) S
(
yA

)
. This implies that the operator

Î = Dx Dx − μ2x2 − I0 (38)

satisfies Î� = Ī0�, where Di is the operator Di = ∂A +
�A∂� + �AB∂�A + · · · .

From the latter it follows that the Klein Gordon equation
(37) possesses a Lie–Bäcklund symmetry with generating
vector

X̂ =
(
�xx − μ2x2�

)
∂�. (39)

3.1.2 Ermakov–Pinney system

The second case we consider is that of the Ermakov–Pinney
system. Let us assume the generic regular Lagrangian func-
tion

L = 1

2

(
ṙ2 + r2hAB

(
yC

)
ẏ A ẏB

)
+ 1

2
μ2r2 − F

(
yC

)

r2

(40)

where hAB
(
yC

)
and F

(
yC

)
are arbitrary functions.

The dynamical system described by the Lagrangian (40)
admits the time-dependent conservation laws

I+ = h

μ
e2μt − e2μsr ṙ + μe2μt r2 (41)

I− = h

μ
e−2μt + e−2μt r ṙ + μe−2μt r2. (42)

where h is the value for the integral of motion described by
the Hamiltonian for Lagrangian (40).

In a similar way as before we construct the autonomous
first integral [59]

�0 = h2 − I+ I−, (43)

which equals

�0 = r4hDB ẏ
A ẏB + 2F

(
yC

)
. (44)

This is the well known Ermakov invariant, also known as
Lewis invariant.

Consider now the conformal invariant Klein–Gordon
equation

�rr + 1

r2 h
AB�AB + n − 1

r
�r − 1

r2 �A�A

+ n − 2

4 (n − 1)

1

r2 R
(
yC

)
�+μ2r2�+ 1

r2 F
(
yC

)
� = 0,

(45)

where R
(
yC

)
is the Ricciscalar of the metric hAB

(
yC

)
. The

latter equation does not have any Lie point symmetries.
However, the latter Klein–Gordon equation is separable,

in the sense that �
(
r, yC

) = w (r) S
(
yC

)
. Then we shall

say that the operator
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�̂ = hABDADB−�ADA+F
(
yC

)
+ n−2

4 (n−1)
R

(
yC

)
−�0,

(46)

satisfies the equation �̂� = 0 which means that the Klein
Gordon equation (45) admits the Lie–Bäcklund symmetry
with generator

X̄ =
(
hABDADB� − �ADA� + F

(
yC

)
�

+ n − 2

4 (n − 1)
R

(
yC

)
�

)
∂�. (47)

3.2 One-dimensional optimal system

However, Lie symmetries are used to find new similarity solu-
tions for other similarity solutions by applying the adjoint
representation of the admitted Lie group for the given dif-
ferential equations. Hence, it is important to determine the
one-dimensional optimal system for the admitted Lie algebra
for the equation of our study. In that case we will determine
all the unique similarity solutions which can not derived by
adjoint transformation. In the following we give the definition
of the adjoint operator as also when two Lie point symmetries
are connected through the adjoint representation.

Let a given differential equation H
(
q A, �,�,A, �,AB ,

. . .) to admit a n-dimensional Lie algebra Gn with elements
X1, X2, . . . , Xn . Then we shall say that the two vector fields
[60,61]

Z =
n∑

i=1

ai Xi , W =
n∑

i=1

bi Xi , ai , bi are constants,

(48)

are equivalent if and only if W = limn
j=i Ad (exp (εi Xi )) Z

or bi
ai

= c, c = const, in which Ad (exp (εi Xi )) is the
adjoint operator defined as

Ad (exp (εXi )) X j = X j − ε
[
Xi , X j

]

+1

2
ε2 [

Xi ,
[
Xi , X j

]] + · · · . (49)

4 Similarity solutions of the Wheeler–DeWitt equation

As we discussed before, in order to solve the WdW equa-
tion (28) we will construct differential operators by using
the variational symmetries for the classical system. Such an
analysis was performed before in [38] where the unknown
function f (R) which defines the theory is constrained by the
requirement the field equations in f (R)-cosmology to admit
conservation laws generated by point symmetries.

In Lagrangian (11) we assume that N (t) = 1. There-
fore, for arbitrary function f (R) the dynamical system is
autonomous and admits the point symmetry ∂t . However ,the

latter symmetry does not provide any differential operator for
the WdW equation (28).

In addition, there are four specific functions of f (R)-
function where Lagrangian (11) is transformed such that the
variation of the Action Integral (10) to be invariant. Specif-

ically, the cases we shall study are (A) f (R) = R
3
2 ; (B)

f (R) = R
7
8 ; (C) f (R) = (R − 2�)

3
2 and (D) f (R) =

(R − 2�)
7
8 . The first two models are power-law models;

however models D and E, belong to a family of models which
are called �bcCDM with general form f (R) = (

Rb − 2�
)c

[14]. Indeed, model D is the �1 3
2
CDM while model E cor-

responds to the �1 7
8
CDM.

At this point it is important to mention that because the
WdW equation (28) is a linear second-order partial differen-
tial equation, it admits for arbitrary function f (R) the two
symmetry vectors X� = �∂� and Xb = b (a, R) ∂� , in
which b (a, R) is a solution of (28). Symmetry Xb denotes
the infinity number of solutions for the partial differential
equations. However, Xb plays no role in the derivation of
similarity solutions and for that reason we will omit it.

4.1 Case A: power law model R
3
2

For the first model of our consideration, with f (R) = R
3
2 ,

the point-like Lagrangian of the classical field equations
becomes

L
(
a, ȧ, R, Ṙ

) = 9a
√
Rȧ2 + 9a2

2
√
R
ȧ Ṙ + a3

2
R

3
2 . (50)

However, under the change of coordinates {a, R} → {z, w}
with the relation a = ( 9

2

)− 1
3
√
z , R = w2

z the point-like
Lagrangian (50) is simplified as follows,

L (z, w, ż, ẇ) = żẇ + 1

9
w3 (51)

Consequently, the field equations in the Hamiltonian for-
malism become

H = pz pw − 1

9
w3 ≡ 0 (52)

ż = pw, ẇ = pz, ṗz = 0, ṗw = 1

3
w2. (53)

The latter system can be easily integrated and the exact solu-
tion is presented in [38].

From the Hamiltonian (52) results the WdW equation

�zw − 1

9
w3� = 0. (54)

which admit the Lie point symmetries

X1 = ∂z, X2 = 1

w3 ∂w, X3 = z∂z − w

4
∂w, X� = �∂�,

(55)
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Table 1 Commutators of the admitted Lie point symmetries for the
WdW equation (54)

[ , ] X1 X2 X3 X4

X1 0 0 X1 0

X2 0 0 −X2 0

X3 −X1 X2 0 0

X4 0 0 0 0

Table 2 Adjoint representation of the admitted Lie point symmetries
for the WdW equation (54)

Ad
(
e(εXi )

)
X j X1 X2 X3 X4

X1 X1 X2 −εX1 + X3 X4

X2 X1 X2 εX2 + X3 X4

X3 eεX1 e−εX2 X3 X4

X4 X1 X2 X3 X4

or in canonical form the Lie–Bäcklund operators

X̂1 = �z∂�, X̂2 = 1

w3 �w∂�,

X̂3 =
(
z�z − w

4
�w

)
∂�, X̂� = �∂� (56)

The commutators and the Adjoint representation of the
admitted Lie algebra are presented in Tables 1 and 2.

Therefore, from the Adjoint representation we determine
the one-dimensional optimal system

{X1} , {X2} , {X3} , {X1 + γ X2} , {X1 + δX�} ,

{X2 + δX�} , {X3 + δX�} and {X1 + γ X2 + δX�} .

Hence, we shall determine seven invariant solutions for the
WdW equations (54) which are not related through adjoint
transformation

By using {X1} and X2 we infer that � (z, w) = 0, which
is a trivial solution. On the other hand by using {X3} we find

�3 (z, w) = �0
3(1) I0

(
w2√z

3

)
+ �0

3(2)K0

(
w2√z

3

)
,

(57)

where I0 (x) , K0 (x) are the modified Bessel functions and
�0

3(1), �0
3(2) are constants.

In addition, from the symmetry vector {X1 + γ X2} we
calculate the travel-wave like wavefunction

�12 (z, w) = �0
12(1) exp

(
i
w4 − 4γ z

12
√

γ

)

+�0
12(1) exp

(
−i

w4 − 4γ z

12
√

γ

)
. (58)

In a similar way, the rest of the similarity solutions are
determined to be

{X1 + δX�} : �̄1 (z, w) = �0
1 exp

(
δz + w4

36δ

)
(59)

{X2 + δX�} : �̄2 (z, w) = �0
2 exp

(
z

9δ
+ w4δ

4

)
(60)

{X3 + δX�} : �̄3 (z, w) =
(
w−2δz

δ
2

) (
�̄0

3(1) Iδ

(
w2√z

3

)

+�̄0
3(2)Kδ

(
w2√z

3

))
(61)

and

{X1 + γ X2 + δX� } : �̄4 (z, w)

= �0
12(1) exp

⎛
⎝

(
3δ + i

√
4γ − 9δ2

) (
w4 − 4γ z

)

24γ
+ δz

⎞
⎠

+ �0
12(2) exp

⎛
⎝

(
3δ − i

√
4γ − 9δ2

) (
w4 − 4γ z

)

24γ
+ δz

⎞
⎠ .

(62)

We observe that solutions �̄1 (z, w) , �2 (z, w) and
�12 (z, w) are equivalent, hence we have found in total five
independent similarity solutions. Because the WdW equation
is linear the generic similarity solution by point transforma-
tions is written as

� (z, w) =
∑

ᾱ1�̄1 (z, w) +
∑

α3�3 (z, w)

+
∑

ā3�̄3 (z, w) +
∑

ā4�̄4 (z, w) , (63)

where the sum is on all the free parameters of the solutions.
Recall that no boundary conditions have been applied to con-
strain the similarity solutions. The boundary conditions in
quantum cosmology is still an open problem.

However, for the classical system and specifically from
(52) the Hamilton–Jacobi equation follows ∂S

∂z
∂S
∂w

− w3

9 =
0 with the constraint equation ∂S

∂z = S0, which is nothing
else than the conservation law ṗz = 0. Consequently, the
generic solution of the Hamilton–Jacobi equation is

S (z, w) = S0z + w4

36S0
(64)

which is nothing else than the exponent function of the sim-
ilarity solution �̄1 (z, w). Therefore, we can infer that solu-
tion �̄1 (z, w) is the one which recovers the classical solu-
tion where parameter δ is related with the conservation law
pz = S0.

In addition, we observe that the solution of the Hamilton–
Jacobi equation is included in solution �̄4 (z, w), but not in
the rest of the solutions, namely �3 (z, w) and �̄3 (z, w).
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Fig. 1 Qualitative evolution of the wavefunction Im
(
�̄1 (a, R)

)
for

δ = i
10 , that is, Im

(
�̄1 (a, R)

) ∼ sin (S (a, R)) with S (a, R) be the
solution of the Hamilton–Jacobi equation

In Fig. 1 we give the qualitative evolution of the wavefunc-
tion Im

(
�̄1 (a, R)

)
for δ = i

10 , that is, Im
(
�̄1 (a, R)

) ∼
sin (S (a, R)) where S (a, R) is the solution of the Hamilton–
Jacobi equation.

4.2 Case B: power law model R
7
8

For the power-law model f (R) = R
7
8 we prefer to work on

the new coordinates {ρ, σ }

a =
(

21

4

)− 1
3 √

ρeσ , R = e12σ

ρ4 , (65)

where the point-like Lagrangian takes the simple form

L (ρ, ρ̇, σ, σ̇ ) = 1

2
ρ̇2 − 1

2
ρ2σ̇ 2 + V0

e12σ

ρ2 . (66)

The latter Lagrangian describes the two-dimensional Erm-
akov–Pinney system without the oscillatory term, while con-
stant V0 has the value V0 = − 1

42 .
The Hamiltonian constraint is

H = 1

2
p2
ρ − 1

2ρ2

(
p2
σ − 2V0e

12σ
)

≡ 0, (67)

where

�0 =
(
p2
σ − 2V0e

12σ
)

, (68)

is the Ermakov–Pinney invariant, also known as Lewis invari-
ant.

Table 3 Commutators of the admitted Lie point symmetries for the
WdW equation (69)

[ , ] Y1 Y2 Y3 Y4

Y1 0 −6Y2 6Y3 0

Y2 6Y2 0 0 0

Y3 −6Y3 0 0 0

Y4 0 0 0 0

Table 4 Adjoint representation of the admitted Lie point symmetries
for the WdW equation (69)

Ad
(
e(εYi )

)
Y j Y1 Y2 Y3 Y4

Y1 Y1 e6εY2 e−6εY3 Y4

Y2 Y1 − 6εY2 Y2 Y3 Y4

Y3 Y1 + 6εY3 Y2 Y3 Y4

Y4 Y1 Y2 Y3 Y4

As far as the WdW equation (28) is concerned it is calcu-
lated to be

�ρρ − 1

ρ2 �σσ + 1

ρ
�ρ − 2V0

e12σ

ρ2 � = 0. (69)

The later partial differential equation is invariant under the
one-parameter point transformations with generators the vec-
tor fields

Y1 = ρ∂ρ, Y2 = ρ−5e−6σ ∂ρ + ρ−6e−6σ ∂σ ,

Y3 = ρ7e−6σ ∂ρ − ρ6e−6σ ∂σ , Y� = �∂�.

where in the canonical forms are

Ŷ1 = ρ�ρ∂�, Ŷ2 = ρ−5e−6σ
(
�ρ + �σ

)
∂� + ρ−6e−6σ ∂σ ,

Ŷ3 = ρ6e−6σ
(
ρ�ρ − �σ

)
∂�, Ŷ� = �∂�.

In Tables 3 and 4 we present the commutators and the
adjoint representation of the admitted point symmetries.
From Table 4 we find that the one-dimensional optimal sys-
tem to be

{Y1} , {Y2} , {Y3} , {Y2 − γY3} , {Y1 + δY4} ,

{Y2 + δY4} , {Y3 + δY4} , {Y2 − γY3 + δY4} .

From the one-dimensional algebras {Y2} and {Y3} we find
the trivial solutions � (ρ, σ ) = 0. From the other one-
dimensional algebras it follows

{Y1} : �1 (ρ, σ ) = �0
1(1) I0

(√
21

126
e6σ

)

+�0
1(2)K0

(√
21

126
e6σ

)
(70)
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{Y2 − γY3} : �23 (ρ, σ ) = �0
23(1) sin

( √
21

252
√

γ
e6ζ

)

+�0
23(2) sin

( √
21

252
√

γ
e6ζ

)
,

ζ = y + 1

6
ln

⎛
⎝

(
γρ12 − 1

)

ρ6

⎞
⎠ (71)

{Y1 + δY4} : �̄1 (ρ, σ ) = ρδ

(
�0

1(1) I δ
6

(√
21

126
e6σ

)

+�0
1(2)K δ

6

(√
21

126
e6σ

))
(72)

{Y2 + δY4} : �̄2 (ρ, σ ) = �̄0
2 exp

(
δ

12
ρ6e6y + 1

252δ
ρ−6e6y

)
, (73)

{Y3 + δY4} : �̄3 (ρ, σ ) = �̄0
2 exp

(
− δ

12
ρ−6e6y − 1

252δ
ρ6e6y

)
,

(74)

while from {Y3 + δY4} we get the solution of �23 (ρ, σ ) mul-

tiplied by the function exp
(

δ
12γ

ρ−6e6y
)

.

However as we discussed in the previous section for the
Ermakov–Pinney system the Lewis invariant (68) can be used
to construct the Lie–Bäcklund operator

�σσ + 2V0e
12� = (cJ )

2 � (75)

By using the later constraint we find the wavefunction

�LB (ρ, σ ) = (
a1ρ

cJ + a2ρ
−cJ

) ([
b1 JcJ

6

(
1

6

√
2V0e

6σ

)

+b2YcJ
6

(
1

6

√
2V0e

6σ

)])
(76)

where a1, a2, b1 and b2 are integration constants and Ji (x) ,

Yi (x) are the Bessel functions. We observe that solutions
�1 (ρ, σ ) and �̄1 (ρ, σ ) are included in the latter generic
solution. In total we have found four different solutions,
hence, the generic wavefunction is expressed as

� (ρ, σ ) =
∑

ᾱ1�LB +
∑

α23�23 (ρ, σ )

+
∑

ā2�̄2 +
∑

ᾱ23�̄23 (ρ, σ ) . (77)

In order to relate any quantum solution with the classical
universe, we should solve the Hamilton–Jacobi equation (67)
with the use of the constraint (68) where pρ = ∂S

∂ρ
and pσ =

∂S
∂σ

. We find that

S (ρ, σ ) = √
�0 ln ρ + 1

6

√
2V0e12σ + �0

+�0

6
arctan h

(√
2V0e12σ + �0

�0

)
,

�0 �= 0, (78)

or

S (ρ, σ ) = −
√

2V0

6
e6σ , �0 = 0. (79)

Fig. 2 Qualitative evolution of the real part of the wavefunction (76)
Re (�LB (a, R)) for cJ = 3i

We observe that there is not any direct relation between the
similarity solutions for the WdW equation and the Hamilton-
Jacobi for the classical system. However, if we focus on the
limits of the Bessel functions we shall see that the classical
limit is recovered.

Consider the similarity solution �LB (ρ, σ ) , with cJ =
i
√

�0 and a2, then in the limit e6σ → +∞ it follows that

�LB (ρ, σ ) � e−3σ ei
(√

�0 ln ρ+√
2V0e6σ

)
. (80)

which is actually the imaginary exponent of the wavefunction
correspond to the limit of S (ρ, σ ) as e6σ → +∞. Hence, we
can see that the classical limit is recovered. The qualitative
evolution of the similarity solution �LB (ρ, σ ) is presented
in Fig. 2 for cJ = 3i .

4.3 Case C: model (R − 2�)
3
2

For the third model of analysis, namely model C with f (R) =
(R − 2�)3/2, we work on the coordinates {z, w} similar to
that of model A, that is

a =
(

9

2

)− 1
3 √

z, R = 2� + w2

z

the point-like Lagrangian is written in the canonical form as

L (z, ż, w, ẇ) = żẇ + 1

9
w3 + ω2zw, (81)

where parameter ω is defined as ω = √
2�/3. The term

with coefficient ω2 in the latter point-like Lagrangian it is an
oscillator term, that can be easily seen if someone writes the
latter Lagrangian in diagonal coordinates.
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Hence, from (81) it follows that the Hamiltonian constraint
is

H = pz pw − 1

9
w3 − ω2zw ≡ 0, (82)

while the field equations are

ż = pw, ẇ = pz, (83)

ṗz = ω2w, ṗw = 1

3
w2 + ω2z. (84)

From the latter system we construct the quadratic conserva-
tion law I0 = p2

z − ω2w2.

The solution of the Hamilton–Jacobi equation by using
the quadratic conservation law I0 is found to be

S (z, w) =
√
I0 + ω2w2

ω4

(
ω2w2 + 27ω4z − 2I0

)
(85)

The WdW equation for this specific model is written in
the coordinates {z, w} as

�zw −
(

1

9
w3 + ω2zw

)
� = 0. (86)

The linear partial differential equation (86) is invariant under
the point transformations with infinitesimal generators the
vector fields

Z1 = 2∂z − 9

w
ω2∂w, Z� = �∂�.

The one-dimensional optimal system consists of by the vector
fields {Z1} , {Z1 + δZ�}. In canonical form the vector field
Z1 is written as Ẑ1 = (

2�z − 9
w

ω2�w

)
∂� .

From the point transformation {Z1 + δZ�} the similarity
solution follows

�1 (z, w) = exp

(
δ

4
z − δ

36ω2 w2
) (

�0
1(1)Ai (ζ ) + �0

1(2)Bi (ζ )
)

,

(87)

where Ai (ζ ) , Bi (ζ ) are the Airy functions and ζ =
− 6

2
3

288ω
8
3

(
1 + √

3i
) (

δ2 + 72ω4z + 8ω2w2
)
. It is not a sur-

prise that the wavefunction is expressed by the Airy func-
tions. Recall that the Airy functions solve the Schrödinger
equation for a particle confined by a triangular well [62].

However, by using the differential operator generated by
the quadratic conservation law I0, that is,

Î0� ≡ �zz − ω2w2� + cJ� (88)

we find the similarity solution

�LB (z, w) = �0
LB(1) sin (ξ) + �0

LB(2) cos (ξ) (89)

where parameter ξ is defined as

ξ =
√
cJ − ω2w2

ω4

(
ω2w2 + 27ω4z + 2cJ

)
. (90)

Fig. 3 Qualitative evolution of the wavefunction �LB (a, R) for neg-
ative value of � and specifically for � = − 1

5

Consequently, we can see that ξ (w, z) is nothing else than the
solution of the Hamilton–Jacobi for the classical system (85).
Therefore we observe that the classical solution is recovered
by the wavefunction �LB (z, w).

In Fig. 3 the qualitative evolution of �LB (a, R) is pre-
sented for negative value of � and �0

LB(2) = 0

4.4 Case D: model (R − 2�)
7
8

Model f (R) = (R − 2�)
7
8 , describes the Ermakov–Pinney

system with a nonzero oscillator term. Indeed in the coordi-
nates {ρ, σ }the point-like Lagrangian for the field equations
is written as

L (ρ, ρ̇, σ, σ̇ ) = 1

2
ρ̇2 − 1

2
ρ2σ̇ 2 + V0

m

4
ρ2 + V0

e12σ

ρ2 (91)

where m̄ = −28�, V0 = − 1
42 , and

a =
(

21

4

)− 1
3 √

ρeσ , R = 2� + e12σ

ρ4 . (92)

In the new coordinates, the Hamiltonian constraint is writ-
ten

H ≡ 1

2
ρ̇2 − 1

2
ρ2σ̇ 2 − V0

m

4
ρ2 − V0

e12σ

ρ2 = 0 (93)

while the field equations becomes

ρ̇ = pρ, σ̇ = pσ

ρ2 , ṗσ = 12V0

ρ2 e12σ (94)

ṗρ = − 1

ρ3 p
2
σ + V0m

2
ρ − 2V0

ρ3 e12σ . (95)
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Finally, the field equations admit the Lewis invariant which
is written as

� = σ̇ 2 + V0e
12σ . (96)

The WdW equation (28) is written as follows

�ρρ − 1

ρ2 �σσ + 1
ρ
�ρ − 2

(
V0

m

4
ρ2 + V0

e12σ

ρ2

)
� = 0,

(97)

and has no other point symmetries except the trivial ones.
However, as we discussed in Sect. 3 from the Lewis-invariant
we construct the differential operator

�̂� ≡ �σσ + V0e
12σ � − �0�. (98)

Hence from (97) and (98), with �̂� = 0 we find the
similarity solution

�LB (ρ, σ )

=
(

�0
LB(1) I

√
�0
6

(√
42

252
e6σ

)
+�0

LB(2)K
√

�0
6

(√
42

252
e6σ

))

× J√
�0
2

(√−6�

12
ρ2

)
+

(
�0
LB(3) I

√
�0
6

(√
42

252
e6σ

)

+�0
LB(4)K

√
�0
6

(√
42

252
e6σ

))
Y√

�0
2

(√−6�

12
ρ2

)
(99)

where, Ia (x) , Ja (x), Ka (x) and Ya (x) are the Bessel func-
tions. We observe that in order the wavefunction to be total
periodic, then � < 0. As far as concerns the classical limit, in
a similar approach with Model B, that is recovered in the limit
where e6σ → +∞. The qualitative evolution of �LB (ρ, σ )

for �0
LB(2) = �0

LB(3) = �0
LB(4) = 0 and for � < 0 is

presented in Fig. 4.

5 Conclusions

In this work we focused on the determination of similarity
solutions for the WdW equation in quantum cosmology and
more specifically in f (R)-gravity in a spatially flat FLRW
universe. The WdW equation is a linear equation of Klein–
Gordon class which by definition is conformal invariant. For
the cosmological of our consideration the WdW equation
provides the solution of the wavefunction � in terms of the
two independent variables of the theory, the scale factor a (t)
and the Ricciscalar R (t).

We recall, that f (R) is a fourth-order theory and the Ric-
ciscalar R (t) has been added as a Lagrangian multiplier in
order to attribute the higher-order derivatives, such that the
f (R)-gravity to be of second-order but with more degrees of
freedom. Because of the latter property the theory is dynam-
ical equivalent with scalar-tensor theories while a point-like

Fig. 4 Qualitative evolution of the wavefunction �LB (ρ, σ ) for
�0

LB(2) = �0
LB(3) = �0

LB(4) = 0 and for � < 0.

Lagrangian description is possible, which is necessary for
our approach on the problem.

For the function form of f (R) which specifies the the-
ory, we considered four models which were found before
and are integrable by one-parameter point transformations.
Two of the models are power-law while the other two models
belong to the family of �bcCDM. For these specific models
we write the WdW equation and we determine the infinites-
imal generators of the one-parameter transformations where
the WdW equations are invariant. We use the infinitesimal
generators to define Lie–Bäcklund operators which are used
as constraint equations to solve the WdW equation. These
solutions are called similarity solutions.

A novel observation for the solutions that were found by
that approach is that in the classical limit, that is, in the WKB
approximation, the solution of the Hamilton–Jacobi equation
for the classical system is recovered, consequently the classi-
cal limit is recovered. We can say that the similarity solutions
which provide the classical limit are preferred. Indeed there
are not initial and boundary conditions to constrain the solu-
tions of the WdW equation, however by the requirement the
similarity solution to provide the classical limit we can con-
struct a family of boundary conditions. Because a similarity
solution is invariant under the infinitesimal transformations
which have been applied for the determination, the boundary
conditions should be also invariant under the same infinites-
imal transformations [63,64].

The similarity solutions can be used to define probability,
or calculate the quantum potential of Bohmiam mechanics.
However such applications is not the scope of the present
work and such analysis will be published elsewhere.
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