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Abstract We propose a simple non-supersymmetric grand
unified theory (GUT) based on the gauge group SO(10) ×
U (1)ψ . The model includes 3 generations of fermions in 16
(+1), 10 (−2) and 1 (+4) representations. The 16-plets con-
tain Standard Model (SM) fermions plus right-handed neu-
trinos, and the 10-plet and the singlet fermions are introduced
to make the model anomaly-free. Gauge coupling unification
at MGUT � 5 × 1015−1016 GeV is achieved by including
an intermediate Pati–Salam breaking at MI � 1012−1011

GeV, which is a natural scale for the seesaw mechanism. For
MI � 1012−1011, proton decay will be tested by the Hyper-
Kamiokande experiment. The extra fermions acquire their
masses from U (1)ψ symmetry breaking, and a U (1)ψ Higgs
field drives a successful inflection-point inflation with a low
Hubble parameter during inflation, Hin f � MI . Hence, cos-
mologically dangerous monopoles produced from SO(10)

and PS breakings are diluted away. This is the first SO(10)
model we are aware of in which relatively light interme-
diate mass (∼ 1010−1012 GeV) primordial monopoles can
be adequately suppressed. The reheating temperature after
inflation can be high enough for successful leptogenesis.
With the Higgs field contents of our model, a Z2 symme-
try remains unbroken after GUT symmetry breaking, and the
lightest mass eigenstate among linear combinations of the10-
plet and the singlet fermions serves as a Higgs-portal dark
matter (DM). We identify the parameter regions to repro-
duce the observed DM relic density while satisfying the cur-
rent constraint from the direct DM detection experiments.
The present allowed region will be fully covered by the
future direct detection experiments such as LUX-ZEPLIN
DM experiment. In the presence of the extra fermions, the
SM Higgs potential is stabilized up to MI .

a e-mail: okadan@ua.edu
b e-mail: draut@udel.edu
c e-mail: shafi@udel.edu

1 Introduction

The lure of Grand Unified Theories (GUTs) is that the Stan-
dard Model (SM) gauge symmetry, SU (3)c × SU (2)L ×
U (1)Y , is unified into a single gauge group, so that the
three SM gauge interactions originate from a single theory.
Accordingly, the SM quarks and leptons are unified into cer-
tain representations of the GUT gauge group, leading to the
quantization of their electric charges [1–3]. Supersymmetric
(SUSY) GUT models have been commonly studied in the lit-
erature, motivated by the fact that three SM gauge couplings
are successfully unified at the GUT scale MGUT � 1016

GeV with the weak scale SUSY [4–11]. However, there is
no evidence of the weak scale SUSY in the current data of
the Large Hadron Collider experiments. This fact drives a
renewed interest of non-SUSY GUTs in recent years.

Among GUT models, an SO(10) framework is arguably
one of the most appealing scenario [12], where the SM
fermions in each generation are nicely unified into a sin-
gle 16 representation of the SO(10) gauge group along
with a SM singlet right-handed neutrino (RHN). In the non-
SUSY SO(10) GUT framework, we may consider the spon-
taneous symmetry breaking (SSB) of SO(10) in two steps
down to the SM gauge groups [13–22]: for example, the
SO(10) group is first broken down to the Pati–Salam (PS)
group SU (4)c × SU (2)L × SU (2)R at MGUT � 1016

GeV. Next, the PS gauge group is broken to the SM gauge
group SU (3)c × SU (2)L × U (1)Y at an intermediate scale
MI � 1011 GeV. Associated with the PS SSB, the Majorana
masses for the RHNs are generated, which play the key role in
the seesaw mechanism [23–28] for generating light SM neu-
trino masses. The mass scale of RHNs at the intermediate
scale is a natural scale for the seesaw mechanism. Lepto-
genesis [29,30] is a very simple mechanism to generate the
observed baryon asymmetry through the CP-violating out-
of-equilibrium decay of Majorana RHNs. This scenario is
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automatically implemented in the SO(10) GUT framework.
Using a minimal set of Higgs fields, one 10-plet and one 126-
plet, realistic fermion mass matrices can be reproduced (see,
for example, Refs. [13–22]).

In general, GUT SSB produces stable topological defects
such as monopoles and strings [31–41]. In the above exam-
ple of two-step SO(10) breaking, both the SO(10) and the
PS SSBs produce monopoles with their masses of order of
the SSB scales [39,40]. Since such super-heavy monopoles
would be over-abundant before the Big Bang Nucleosynthe-
sis [41], a mechanism to significantly reduce the monopole
density is necessary for reproducing our universe. One of
the original motivation of the cosmological inflation scenario
was to solve this monopole problem by diluting the monopole
density [42,43]. To sufficiently dilute the monopoles, the
inflation must take place after the SSB, or equivalently, the
Hubble parameter during the inflation (Hin f ) must be smaller
than the SSB scale. For well-known simple inflation sce-
narios, such as an inflation with a Coleman–Weinberg type
potential [44] and quartic inflation with non-minimal gravita-
tional coupling, we estimate Hin f � 1013−14 GeV [45,46].
Although such inflationary scenarios can inflate away the
GUT scale monopoles, the intermediate scale monopoles
still survive if MI < Hin f [47]. Hence, we need a “low-
scale inflation scenario” with Hin f < MI to dilute the
intermediate-sale monopoles.

Hybrid inflation [48] is a well-known example of low-
scale inflation scenario where the introduction of multi-scalar
fields is crucial for realizing inflation. Another interesting
example is the so-called inflection-point inflation (IPI) sce-
nario which can be realized with a single scalar field. In IPI,
the inflaton potential exhibits an approximate inflection-point
and slow-roll inflation occurs in the vicinity of the inflection-
point. In Refs. [49,50], a successful IPI scenario has been pro-
posed in the context of a U (1) Higgs-Yukawa model where
the Higgs field is identified with the inflaton field. In the
model, the renormalization group (RG) improved effective
potential of the inflaton/Higgs field realizes an approximate
inflection-point at a scale M if the running inflaton/Higgs
quartic coupling λ exhibits a minimum with almost vanish-
ing value at M , namely λ(φ = M) � 0 and its beta-function
βλ(φ = M) � 0. To satisfy these conditions, it is crucial for
the inflaton field to have both gauge and Yukawa interactions,
and the gauge and Yukawa couplings at φ = M must be bal-
anced to achieve βλ(φ = M) � 0. A successful IPI scenario
in Refs. [49,50] leads to an upper bound, Hinf � 1010 GeV.

In this paper, we propose a simple non-SUSY GUT model
based on the gauge group SO(10) × U (1)ψ . In addition to
the SO(10) 16-plet SM fermions with a U (1)ψ charge of
+1, the model includes three generations of SO(10) 10-
plets and SO(10) singlet fermions with U (1)ψ charges −2
and +4, respectively. Each generation of these fermions can
be embedded into a 27 representation of the E6 group, and

hence our model is free from all the gauge and mixed gauge-
gravitational anomalies. As previously mentioned, we con-
sider a two-step SSB of the SO(10) gauge group to the
SM gauge symmetry, with the PS gauge symmetry appear-
ing at an intermediate scale. The U (1)ψ symmetry is also
broken at the intermediate scale by the vacuum expecta-
tion value (VEV) of a SO(10) singlet Higgs field. This
field is identified with the inflaton field which drives the
IPI inflation in our model, such that all monopoles associ-
ated with the GUT and the PS SSBs are adequately diluted.
After inflation, the inflaton decays into the SM particles
to reheat the universe. We show that a suitable parameter
choice yields a reheating temperature smaller than the PS
SSB scale but large enough to thermalize the RHNs for suc-
cessful baryognesis via leptogenesis [51–53]. The SO(10)

group has a center Z4 with a subgroup Z2. In our model, all
the Higgs representations are Z2-even, hence the Z2 sym-
metry remains unbroken even after the SSB down to the SM
[54], and as a result the lightest mass eigenstate among elec-
trically neutral components in the new 10-plet and singlet
fermions serves as a dark matter (DM) in our universe (for
an axion DM scenario in the context of SO(10) models, see,
for example, Refs. [13–22]). If the DM particle is mostly
composed of a SO(10) singlet fermion, it communicates
with the SM particles mainly through the SM Higgs portal
interactions. We identify the allowed parameter region for
this Higgs-portal fermion DM scenario, which will be fully
explored by the direct DM detection experiments in the near
future. In addition to the discussion about the IPI scenario
and the DM scenario, we consider other phenomenologi-
cal constraints and theoretical consistencies, such as suc-
cessful gauge coupling unification, the proton decay con-
straint, and the stability of the effective SM Higgs potential.
We identify a model parameter space for which our GUT
model is phenomenologically viable and theoretically con-
sistent.

The rest of this paper is organized as follows. In the next
section, we define our SO(10) × U (1)ψ GUT model. In
Sect. 3, we first give a brief review of the IPI scenario and
then implement the IPI in our model. We conclude the section
with an evaluation of the reheating temperature after infla-
tion. In Sect. 4, we examine gauge coupling unification in
the presence of the new fermions and Higgs fields, and we
investigate its consistency with the current lower bound on
the proton lifetime. In Sect. 5, we discuss the DM scenario
in our model. We identify a parameter region to reproduce
the observed DM relic density that is consistent with the
current direct DM detection bound. In Sect. 6, we examine
the stability of the effective SM Higgs potential and find a
parameter region which can stabilize the SM Higgs potential
up to the PS SSB scale. Our conclusion are summarized in
Sect. 7.
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Table 1 Particle contents of the SO(10) × U (1)ψ model. Here, ω =
eiπ/2 = i

SO(10) U (1)ψ Z4

Fermions 16(i)
SM 16 + 1 ω

10(i)
E 10 − 2 ω2

1(i)
E 1 + 4 1

Scalars 10H 10 − 2 ω2

45H 45 + 4 1

126H 126 + 2 ω2

210H 210 0 1

�A 1 + 4 1

�B 1 − 8 1

2 SO(10) × U(1)ψ

The particle content of the SO(10) ×U (1)ψ model is listed
in Table 1. The model includes three generation of fermions
in 16 (+1), 10 (−2), and 1 (+4) representations of SO(10)×
U (1)ψ . Each 16-plet fermion (16(i)

SM, i = 1, 2, 3) includes the
i-th generation SM fermions plus one SM singlet RHN. The
10-plets (10(i)

E ) and singlets (1(i)
E ) are new fermions. With the

U (1)ψ charge assignments for the fermions in Table 1, each
generation of these fermions can be embedded into a 27 rep-
resentation of the E6 group, and hence the model is free from
all the gauge and mixed gauge-gravitational anomalies. Var-
ious representations of Higgs (scalar) fields are introduced
in the table which break the SO(10) × U (1)ψ group into
the SM gauge group via the intermediate PS gauge group.
The SO(10) group has a center Z4, under which a 16-plet
transforms as 16 → i16. The Z4 charges of all other rep-
resentations are fixed by this transformation law, which are
listed in the last column of Table 1. By VEVs of the various
Higgs fields in the table, the Z4 symmetry is broken to its
sub-group Z2 [54]. Under this Z2 symmetry, only the SM
16(i)

SM are Z2-odd while other remaining particles are Z2-
even. Together with Z2 and Lorentz invariance, it ensures
that the lightest mass eigenstate among the Z2-even 10-plets
and the singlet fermions is stable and hence a DM candidate.
See, for example, Ref. [55] for a variety of DM candidates
whose stability is ensured by Z2 and Lorentz invariance in
the SO(10) model context.

We assume a suitable Higgs potential for the Higgs fields
listed in Table 1 such that their VEVs break SO(10) ×
U (1)ψ to the SM gauge group. Consider the decomposi-
tion of Higgs representations under the PS gauge group of
SU (4)c × SU (2)L × SU (2)R :

210 = (1, 1, 1) ⊕ (15, 1, 1) ⊕ (6, 2, 2)

⊕ (15, 3, 1) ⊕ (15, 1, 3) ⊕ (10, 2, 2) ⊕ (10, 2, 2),

126 = (6, 1, 1) ⊕ (10, 1, 3) ⊕ (10, 3, 1) ⊕ (15, 2, 2),

Table 2 The Higgs mass
spectrum; all other components
have GUT scale masses

MI

126H (10, 1, 3), (15, 2, 2)

45H (15, 1, 1)

10H (1, 2, 2)

45 = (1, 1, 3) ⊕ (1, 3, 1) ⊕ (6, 2, 2) ⊕ (15, 1, 1),

10 = (1, 2, 2) ⊕ (6, 1, 1). (2.1)

We consider the following path for the SSBs:

SO(10) ×U (1)ψ
〈210H 〉−−−−→ SU (4)c

×SU (2)L × SU (2)R ×U (1)ψ

〈126H 〉,〈45H 〉, 〈�A,B 〉−−−−−−−−−−−−−→ SU (3)c × SU (2)L ×U (1)Y
〈10H 〉−−−→ SU (3)c ×U (1)EM . (2.2)

Here, the PS (and U (1)χ ) singlet component of 210H ,
(1, 1, 1), develops a GUT scale VEV (〈210H 〉 = MGUT),
which spontaneously breaks the SO(10) gauge symmetry to
the intermediate PS gauge group at the GUT scale. The PS
gauge group is then spontaneously broken to the SM gauge
group when (10, 1, 3) of 126H , (15, 1, 1) of 45H and �A,B

develop VEVs. For simplicity, we fix a common intermediate
scale VEV for 〈126H 〉 = 〈45H 〉 = 〈�A,B〉 ≡ MI . Under
the PS group decomposition, we assume that only the Higgs
components listed in Table 2 have intermediate-scale masses
while the other components have GUT-scale mass. The mass
spectrum of the scalars �A,B will be discussed later. Under
the SM gauge groups, there are four Higgs doublets: two in
(1, 2, 2) of 10H and the other two in (15, 2, 2) of 126H . We
assume that all of these four Higgs doublets develop non-
zero VEV at the electroweak scale, and only one linear com-
bination of the doublets is light (doublet-doublet Higgs mass
splitting) [13–22]. The light Higgs doublet is identified with
the SM Higgs doublet, and the other linear combinations are
heavy with masses of order MI .1 Following the U (1)ψ SSB,
theU (1)ψ gauge boson (Z ′) acquires its mass which is given
by

mZ ′ � g
√

16〈�A〉2 + 64〈�B〉2 + 4〈126H 〉2 + 16〈45H 〉2

= 10gMI , (2.3)

where g is the U (1)ψ gauge coupling, 〈�A,B〉 = 〈126H 〉 =
〈45H 〉 = MI , and we neglect the contributions from the
electroweak scale VEVs.

1 The electroweak scale VEV for the (15, 2, 2) can be realized
by an induced VEV mechanism from a mixed scalar coupling
126 126 126 10H [35–38].
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Let us consider fermion masses in our model. The Yukawa
couplings for the SM fermions are given by

L ⊃ 16SM
(
Y1010H + Y126126H

)
16SM , (2.4)

where the generation index has been suppressed. This is the
so-called minimal SO(10) model to generate realistic SM
fermion mass matrices. Fitting of the fermion masses and fla-
vor mixings is beyond the scope of the present work. We refer
to Refs. [13–22] for a detailed analysis of realistic fermion
mass matrices. In Eq. (2.4), the U (1)ψ gauge symmetry for-
bids Yukawa interaction of the form, 16SM10∗

H16SM , which
is generally allowed in non-SUSY SO(10) models. The
Yukawa couplings of new fermions are given by

L =
∑
i

1

2
Y (i)
A �A10(i)

E 10(i)
E +

∑
i 
= j

1

2
Y (i j)

45 45H10(i)
E 10( j)

E

+
∑
i

1

2
Y (i)
B �B1(i)

E 1(i)
E +

∑
i, j

YH
(i j)1(i)

E 10( j)
E 10H ,

(2.5)

where Y (i j)
45 is anti-symmetric. The mass spectrum of the new

fermions will be discussed in Sect. 5.

3 Inflation scenario in SO(10) × U(1)ψ

As discussed in Sect. 1, a low-scale inflationary scenario
with Hin f < MI is necessary to dilute the monopoles gener-
ated through the PS SSB at intermediate scale (MI ). In this
section, we implement the IPI scenario in Refs. [49,50] to
SO(10) ×U (1)ψ model and identify the parameter space to
realize Hinf < MI . TheU (1)ψ gauge symmetry is crucial for
a successful IPI scenario, where the SO(10) singlet Higgs
field �A is identified with the inflaton.

3.1 Inflection-point inflation

For the reader’s convenience, this sub-section is devoted to
outline the general setup of the IPI scenario. See Refs. [49,50]
for more details. The IPI is a low-scale inflation scenario
driven by a single scalar field, in which the inflation potential
exhibits an approximate inflection-point at a scale M . Con-
sider the Taylor series of the inflaton potential V (φ) around
φ = M up to the cubic term:

V (φ) � V0 + V1(φ − M) + V2

2
(φ − M)2

+ V3

6
(φ − M)3, (3.1)

where V0 = V (M), and Vn ≡ dnV/dφn |φ=M . It will soon
be clear that higher order terms in the expansion can be
neglected.

Using the potential of Eq. (3.1), the inflationary slow-roll
parameters at the scale M are expressed as

ε � M2
P

2

(
V1

V0

)2

, η � M2
P

(
V2

V0

)
, ζ 2 = M4

P
V1V3

V 2
0

,

(3.2)

where MP = mP/
√

8π = 2.43 × 1018 GeV is the reduced
Planck mass. The inflationary predictions for the spectral-
index (ns), the tensor-to-scalar ratio (r ), and the running of
the spectral index (α) are expressed in terms of the slow-roll
parameters as

ns = 1 − 6ε + 2η, r = 16ε, α = 16εη − 24ε2 − 2ζ 2.

(3.3)

The amplitude of the scalar perturbation (�2
R) is given by

�2
R = 1

24π2

V0

M4
Pε

. (3.4)

Using the central values, �2
R = 2.195 × 10−9 and ns =

0.9649, from the Planck 2018 results [56], we can express
V1 and V2 as

V1

M3 � 1.96 × 103
(

M

MP

)3 (
V0

M4

)3/2

,

V2

M2 � −1.76 × 10−2
(

M

MP

)2 (
V0

M4

)
, (3.5)

where we have used ε(M) � |η(M)| in the IPI scenario [49,
50] in deriving the second equation. For the inflaton potential
in Eq. (3.1) to realize an inflection-point at φ = M , we
require both V1/M3 � 0 and V2/M2 � 0.

Slow-roll inflation takes place as the inflaton field slowly
rolls down the inflaton potential from φ = M to φ = φE <

M , where φE is the inflaton value at the end of inflation which
is determined by ε(φE ) = 1. As derived in Refs. [49,50], the
number of e-folding during inflation is approximately given
by

N � π
V0

M2
P

√
2V1V3

. (3.6)

To solve the horizon problem, we may set N = 50 − 60.
Using Eqs. (3.5) and (3.6), we express V3 as

V3

M
� 6.99 × 10−7

(
60

N

)2 (
M

MP

) (
V0

M4

)1/2

. (3.7)

With the above expressions for V1,2,3 in terms of V0 and M ,
we find the IPI predictions for r and α as follows:

r = 3.08 × 107

(
V0

M4
P

)
,

α � −2ζ 2 = −2.74 × 10−3
(

60

N

)2

. (3.8)
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In the IPI scenario, the prediction for α is uniquely deter-
mined if N is specified. For N = 60, this prediction is con-
sistent with α = −0.0045 ± 0.0067 from the Planck 2018
results [56]. Precision measurement of α in future experi-
ments can reduce the error to ±0.002 [57], so that the IPI
prediction can be tested in the foreseeable future.

3.2 Inflection-point inflation in SO(10) ×U (1)ψ

Let us now implement the IPI scenario in the SO(10) ×
U (1)ψ model by identifying the SO(10) singlet Higgs field
�A with the inflaton. Assuming �A is very weakly coupled
to the other Higgs fields, we consider the tree-level infla-
ton/Higgs potential given by

Vtree = λ

(
�

†
A�A − MI

2

)2

� 1

4
λϕ4, (3.9)

where ϕ = √
2�[�A] is the real component of �A, and we

identify it with the inflaton. To obtain the final expression for
the inflaton potential, we have used ϕ � MI during inflation.

Taking quantum corrections into account, we consider
a renormalization group (RG) improved effective potential
given by

V (ϕ) = 1

4
λ(ϕ) ϕ4. (3.10)

Here, λ(ϕ) is the solution to the following RG equations:

ϕ
dg

dϕ
= 1

16π2

(
1448

3

)
g3,

ϕ
dY (i)

A

dϕ
= 1

16π2

⎛
⎝24g2Y (i)

A +Y (i)
A

⎛
⎝−48g2+

∑
j

Y ( j)
A

2

⎞
⎠

⎞
⎠ ,

ϕ
dλ

dϕ
= βλ, (3.11)

whereYAs are the 10-plet fermion Yukawa couplings, and the
beta-function of the inflaton quartic coupling (βλ) is given
by

βλ = 1

16π2

(
5λ2 + 2λ

(
−48g2 + Y (i)

A

2 +
∑
i

Y (i)
A

2
)

+6144g4 − 4
∑
i

Y (i)
A

4
)

. (3.12)

For simplicity, we have neglected the contribution of Y (i j)
45 to

βλ by assuming sufficiently small Y (i j)
45 .

The constants V1,2,3 in Eq. (3.1) can be expressed in terms
of λ and βλ as follows:

V1

M3 = 1

4
(4λ + βλ)

∣∣∣∣
ϕ=M

,

V2

M2 = 1

4
(12λ + 7βλ + Mβ ′

λ)

∣∣∣∣
ϕ=M

,

V3

M
= 1

4
(24λ + 26βλ + 10Mβ ′

λ + M2β ′′
λ)

∣∣∣∣
ϕ=M

, (3.13)

where the prime denotes d/dϕ. In order for the effective
inflation potential to exhibit an approximate inflection-point
at M , we require V1/M3 � 0 and V2/M2 � 0, so that

βλ(M) � −4λ(M),

Mβ ′
λ(M) � −12λ(M) − 7βλ(M) � 16λ(M). (3.14)

For g(M),Y (i)
A (M), λ(M) � 1, we can approximate2

M2β ′′
λ(M) � −Mβ ′

λ(M), where we have neglected contri-

butions from higher order terms, namely O(g8), O((Y (i)
A )8)

and O(λ4). Together with the relations in Eq. (3.14), it sim-
plifies the last equation in Eq. (3.13) to V3/M � 16 λ(M).
Using Eq. (3.7) and V0 � (1/4)λ(M)M4, we arrive at

λ(M) � 4.8 × 10−16
(

M

MP

)2 (
60

N

)4

. (3.15)

For the rest of the analysis, we set N = 60. With the inflaton
quartic coupling determined by M , we express the tensor-to-
scalar ratio (r ) and the Hubble parameter during the inflation
(Hin f ) as

r � 3.7 × 10−9
(

M

MP

)6

,

Hin f �
√

V0

3MP
2 � 1.5 × 1010 GeV

(
M

MP

)3

. (3.16)

Note that Hin f � 1010 GeV for M � MP . In Refs. [49,
50], an upper-bound M � 5.7MP has been obtained from
theoretical consistency. In the following sections, we will
find MI = 1011−1012 GeV in our model. Therefore, the
monopole problem is solved by taking M � MP . For M �
MP , the prediction of the tensor-to-scalar ratio r < 3.7 ×
10−9 is much smaller than the current upper bound of r �
0.065 from the Planck 2018 observation [56].

The conditions in Eq. (3.14) to realize the (approximate)
inflection-point at M allows us to derive a relation between
the gauge and Yukawa couplings. For simplicity, we assume
Y (1,2)
A � Y (3)

A ≡ Y . Since the gauge and Yukawa couplings

are independent of λ, we also assume g,Y (3)
A � λ. In this

case, the first condition in Eq. (3.14) with the very small λ in
Eq. (3.15) leads to βλ(M) � 0 such that

Y (M) � 6.3 g(M). (3.17)

2 This approximation is derived by explicitly calculating β ′
λ and β ′′

λ

with Eqs. (3.11) and (3.11) and neglecting the terms of order O(g8),
O((Y (i)

A )8) and O(λ4).
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Fig. 1 The left panel shows the RG running of inflaton quartic cou-
pling as a function of ϕ/M . We have fixed M = MP , so that g(M) =
1.6 × 10−3, Y (M) � 1.0 × 10−2, and λ(M) � 4.8 × 10−16. Dashed

horizontal line corresponds to λ = 0. The right panel shows the RG
improved effective inflaton potential with an (approximate) inflection-
point at ϕ � M

Employing this relation and explicitly evaluating the second
condition in Eq. (3.14) using the RG equations in Eq. (3.11),
we find a relation, λ(M) � 26 g(M)6. Thus, we can express
the U (1)ψ gauge coupling as

g(M) � 1.6 × 10−3
(

M

MP

)1/3

. (3.18)

Thus, all couplings at the scale M , namely g(M), Y (M) and
λ(M) are determined in terms of M/MP .

Next we evaluate the low-energy values of g(ϕ), Y (ϕ) and
λ(ϕ)by solving the RG equations. Because of g(M),Y (M) �
1, it is easy to find the approximate solutions to their RG
equations:

g(ϕ) � g(M) + βg(M) ln
[ ϕ

M

]
,

Y (ϕ) � Y (M) + βY (M) ln
[ ϕ

M

]
, (3.19)

where βg(M) and βY (M) are the beta-functions of g and Y
evaluated at M , respectively. Since λ(M) is extremely small,
βλ is mainly controlled by the gauge and the Yukawa cou-
plings,

βλ(ϕ) � 1

16π2

(
6144 g(ϕ)4 − 4 Y (ϕ)4

)

� 1

16π2 × 16λ(M) ln
[ ϕ

M

]
, (3.20)

where we have used βλ(M) = 0 and Eq. (3.19). Hence, we
find the approximate solution,

λ(ϕ) � 3.8 × 10−15
(

M

MP

)2 (
ln

[ ϕ

M

])2
. (3.21)

At the U (1)ψ symmetry breaking scale ϕ = MI , we obtain
the mass spectrum:

mZ ′ � 10g(MI )MI � 2.3 × 10−2 × MI

(
M

MP

)1/3

,

mϕ = √
2λ(MI )MI � 8.7 × 10−8

×MI

∣∣∣∣ln
[
M

MI

]∣∣∣∣
(
MI

MP

)
,

m(3)
10 � 1

2
Y (MI )MI � 1

3
mZ ′ . (3.22)

In the following analysis, we fix M = MP for simplicity, so
that the mass spectrum is uniquely determined by MI .

In Fig. 1, we plot the running quartic coupling (left) and
the RG improved effective inflaton potential (right). Here,
λ(M) � 4.8 × 10−16, g(M) � 1.6 × 10−3, and Y (M) �
1.0 × 10−2 with our choice of M = MP . In the left panel,
the running quartic coupling shows a minimum at ϕ � M . In
the right panel, we can see that the inflaton potential exhibits
an (approximate) inflection-point at ϕ � M (marked as the
vertical dashed-dotted line).

3.3 Reheating temperature and thermal leptogenesis

To connect our inflation scenario with the Standard Big Bang
cosmology, we consider reheating after inflation. After the
end of inflation, the inflaton rolls down to the potential min-
imum and then oscillates around the minimum. As the age
of the universe reaches the lifetime of the inflaton, the latter
decays to the SM particles and the total inflaton energy is
transmitted to SM particles as radiation. Assuming that the
decay products are instantly thermalized, we estimate the
reheat temperature (TR) by

TR �
(

90

π2g∗

)1/4 √
�MP , (3.23)

where � is the decay width of the inflaton and g∗ is the total
number of degrees of freedom of the thermal plasma. We
may express the decay width of inflaton as

� � 1.4 GeV × √
g∗

(
TR[GeV]

1010

)2

. (3.24)

For a coupling between the inflaton and the SM particles,
we consider the following gauge invariant coupling in the
scalar potential:

V ⊃ ��A102
H ⊃ �ϕHuHd ⊃ � sin 2β

2
ϕH†H, (3.25)

123



Eur. Phys. J. C (2019) 79 :1036 Page 7 of 15 1036

where � > 0 is a free mass parameter, and 10H ⊃
(1, 2, 2) = Hu (1, 2,+1/2) ⊕Hd (1, 2∗,−1/2). The SM
Higgs doublet (H) is realized as a linear combination of Hu

and Hd , and H is embedded in Hu,d as Hu ⊃ H sin β and
Hd ⊃ H† cos β, where tan β = vu/vd is a ratio of Hu and
Hd VEVs. The decay width of the inflaton into a pair of SM
Higgs doublets is given by

�(ϕ → H†H) � �2 sin2 2β

4π mϕ

, (3.26)

where we have neglected the Higgs doublet mass. For M =
MP and MI = 1.3 × 1011 GeV, we obtain mϕ = 1.9 × 105

GeV from Eq. (3.22), and thus the reheating temperature,

TR � 1010 GeV

(
�[GeV]

4.2 × 105

)
, (3.27)

with g∗ = 100 and β = π/3. Although the inflaton can
also decay into a pair of SM Higgs doublets also through the
quartic coupling λmix�

†
A�A10†

H10H , we have assumed this
small. Another possibility for the inflaton decay is through
the Yukawa coupling in Eq. (2.5) if a 10-plet fermion is light
enough. Since the inflaton mass is much smaller than MI ,
the Yukawa coupling Y (i)

A is very small whenever a 10-plet
fermion is lighter than the inflaton. Thus, we neglect the par-
tial decay width of the inflaton for this process.

In our scenario, the Majorana RHN masses are gener-
ated by the PS SSB at the intermediate scale. This scale is
a natural scale for the seesaw mechanism to generate light
neutrino masses as well as thermal leptogenesis. As pointed
out in Refs. [51–53], there is a lower bound on the lightest
RHN mass � 109 GeV for a successful thermal leptogen-
esis scenario. If the lightest RHN mass to be 109 GeV, we
may adjust � = 4.2 × 105 GeV in Eq. (3.27) so that 109 <

TR[GeV] � 1010 < MI for successful thermal leptogenesis
and also avoid a restoration of the PS symmetric vacuum.

4 Gauge coupling unification and proton decay

As discussed before, the SO(10) breaking to the SM pro-
ceeds in two-steps. In the bottom-up picture, the SM gauge
groups are first unified into the PS gauge group SU (4)c ×
SU (2)L ×SU (2)R at the intermediate scale MI , and then the
PS gauge group is unified into the SO(10) group at MGUT . In
this section, we examine the RG evolutions of the gauge cou-
plings and determine the mass spectrum of the new particles
in order to realize the successful gauge coupling unification.
We also consider a lower bound on MGUT from the current
experimental lower bound on the proton lifetime.

We consider the contribution of new particles to the RG
running of the gauge couplings. For the Higgs sector, the
fields listed in Table 2 contribute to the RG evolutions of
the gauge couplings above the PS SSB scale, while only the
SM Higgs doublet contributes to the RG equations of the

SM gauge couplings below the PS SSB scale. The new 10E

fermion decomposition under the PS gauge group is given
by Eq. (2.1). Under the SM gauge group,

10(i)
E = D(i) (1, 2,+1/2) ⊕ D̄(i) (1, 2̄,−1/2)

⊕ T (i) (3, 1,+1/3) ⊕ T̄ (i) (3̄, 1,−1/3), (4.1)

where D(i) and D̄(i) (T and T̄ (i)) are the SM SU (2)L dou-
blets (SU (3)c triplets). In the previous section, we have fixed
the 10(3)

E fermion mass (m(3)
10 ) in Eq. (3.22) by the IPI analy-

sis. For the other two 10-plet fermions, we consider a mass
splitting between the doublets and triplets (the origin of the
mass splitting will be discussed in the next section). It will
turn out that this mass splitting is crucial to keep the unifica-
tion scale MGUT < MP .

Let us now examine the RG evolution of the gauge cou-
plings by solving their RG equations at the 1-loop level. For
energy scale μ below the PS SSB scale (μ < MI ), the run-
ning SM gauge couplings obey the following RG equations:

μ
dα1

dμ
= 1

2π
α2

1

⎛
⎝41

10
+

∑
j=1,2

2

5
θ(μ − m( j)

D )

+
∑
j=1,2

4

15
θ(μ − m( j)

T ) + 2

3
θ(μ − m(3)

10 )

⎞
⎠ ,

μ
dα2

dμ
= 1

2π
α2

2

⎛
⎝−19

6
+

∑
j=1,2

2

3
θ(μ − m( j)

D )

+2

3
θ(μ − m(3)

10 )

⎞
⎠ ,

μ
dα3

dμ
= 1

2π
α2

3

⎛
⎝−7 +

∑
j=1,2

2

3
θ(μ − m( j)

T )

+2

3
θ(μ − m(3)

10 )

⎞
⎠ . (4.2)

Here, α2,3 = g2
2,3/4π with g2,3 being the SU (3)c and

SU (2)L gauge couplings, respectively, α1 = g2
1/4π with

g1 = √
5/3 gY and gY the U (1)Y gauge coupling, θ is a

Heaviside function, m(3)
10 � 7.7 × 10−3MI is fixed from

Eq. (3.22) with M = MP , and m( j)
D (m( j)

T ) are the dou-
blet (triplet) component masses of the two 10-plet fermions.
In the following analysis, we fix m(1)

D = m(2)
D ≡ mD and

m(1)
T = m(2)

T ≡ mT (mD,T < MI ), for simplicity. In solv-
ing the RG equations, we employ the SM gauge couplings at
μ = mt = 172.44 GeV [58]:

g1(mt ) = √
5/3 × 0.35830, g2(mt ) = 0.64779,

g3(mt ) = 1.1666. (4.3)

In our analysis, mD,T and MI are free parameters.
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Fig. 2 For mD = 2 TeV and mT = 5 × 104 TeV (solid lines) and
mT = 2 × 106 TeV (dashed lines), the three solid and dashed lines
from top to bottom correspond to α1,2,3 for μ < MI and αR,L ,4 for
MI < μ < MGUT . For mT = 5 × 104 (2 × 106) TeV, we find MI �
1.4 × 1012 (2.4 × 1011) GeV and MGUT � 4.6 × 1015 (3.4 × 1016)

GeV

For MI < μ < MGUT , our theory is based on the PS
gauge group. The relationship between the SM and the PS
gauge couplings at μ = MI are given by the tree-level match-
ing conditions:

α2(MI ) = αL(MI ), α3(MI ) = α4(MI ),

α−1
1 (MI ) = 3

5
α−1
R (MI ) + 2

5
α−1

4 (MI ), (4.4)

where α4,L ,R represent the gauge couplings of the gauge
groups, SU (4)c, SU (2)L , and SU (2)R , respectively. With the
initial values of the PS gauge couplings fixed by the matching
conditions, we solve the following RG equations of the PS
gauge couplings for MI < μ < MGUT :

μ
dα4

dμ
= 1

2π
α2

4 (+1) ,

μ
dαL

dμ
= 1

2π
α2
L (4) ,

μ
dαR

dμ
= 1

2π
α2
R

(
32

3

)
. (4.5)

Here, the beta-functions include the contribution from all SM
fermions, 10(i)

E (i = 1, 2, 3) fermions, the Higgs fields listed
in Table 2, and the PS gauge bosons.

The analytic solutions for the above RG equations at scale
μ are obtained as functions of three free parameters,mD ,mT ,
and MI . Next, we require gauge coupling unification at μ =
MGUT : αL(MGUT ) = αR(MGUT ) = α4(MGUT ) ≡ αGUT .
With four free parameters, mD , mT , MI and MGUT , we can
always find a solution to satisfy the gauge coupling unifica-
tion condition. Once we fix the values of mD and mT , the
mass scales MI and MGUT are determined from the unifi-
cation condition. In Fig. 2, we plot the RG running of the
gauge couplings for a fixed value of mD = 2 TeV and two
different values of mT = 5 × 104 TeV (solid lines) and
mT = 2×106 TeV (dashed lines). The three solid lines from

top to bottom correspond to α1,2,3 for μ < MI and αR,L ,4

for MI < μ < MGUT . For mT = 5 × 104 (2 × 106)

TeV, we find MI � 1.4 × 1012 (2.4 × 1011) GeV and
MGUT � 4.6 × 1015 (3.4 × 1016) GeV. The plot shows
that as we increase the triplet fermion mass mT , αGUT and
MGUT values decrease while the MI value increases.

Since quarks and leptons are unified into a representation
of the unified gauge group and baryon number is broken,
proton decay is a typical prediction of GUTs. In our model,
the main proton decay process, p → π0e+, is mediated
by the SO(10) GUT gauge bosons and the colored Higgs
bosons in 10H . For the GUT gauge boson mediated process,
the proton lifetime is estimated in terms of the unified gauge
coupling αGUT , the gauge coupling unification scale MGUT

and the proton mass mp = 0.983 GeV as [59]

τp � 1

α2
GUT

M4
GUT

m5
p

. (4.6)

For the colored Higgs mediated process, we estimate the
proton lifetime as [59]

τp � 1

Y 2
u Y

2
d

m4
HC

m5
p

, (4.7)

where Yu,d � 10−5 are the up and down quark Yukawa cou-
plings, and mHC is a colored Higgs boson mass. Employing
the lower bound on the proton lifetime for the process p →
π0e+ by the Super-Kamionkande (Super-K) experiment,
τSK > 1.6 × 1034 years [60], we find MGUT /

√
αGUT >

2.5 × 1016 GeV and mHC > 4.5 × 1011 GeV for the
GUT gauge boson and the colored Higgs mediated processes,
respectively. The proton decay bound constrains the param-
eter region for mD and mT . We have taken mHC = MGUT

for the analysis in this section. However, our result for the
gauge coupling unification remains almost the same even for
4.5 × 1011 GeV< mHC < MGUT , since the colored Higgs
contribution to the beta-functions is not large.

In Fig. 3, we show our results for the gauge coupling uni-
fication for various values of mD and mT . The top panels
depict MI (left panel) and 1/αGUT (right panel) as a func-
tion of mT for three fixed values of mD = 1 TeV, 2 TeV,
and 5 TeV from top to bottom. Gauge coupling unification is
realized along the solid lines. In the bottom panel, we show
MGUT as a function of mT for mD = 1 TeV, 2 TeV, and 5
TeV from bottom to top, respectively. The gray shaded region
is excluded by the Super-K result. Note that the Super-K con-
straint leads to an upper bound on the triplet fermion mass,
mT < 2×106 TeV, 8×105 TeV and 4×105 TeV, respectively,
for mD = 5 TeV, 2 TeV, and 1 TeV. The search reach of the
proton lifetime by the future Hyper-Kamiokande (Hyper-K)
experiment, τHK � 10 × τSK [61], is depicted as the dashed
line.
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Fig. 3 Top-left and top-right
panels show MI and 1/αGUT as
a function of mT , respectively,
for mD = 1 TeV, 2 TeV, and 5
TeV (solid lines from top to
bottom). The bottom panel
shows MGUT as a function of
mT for mD = 1 TeV, 2 TeV, and
5 TeV (solid lines from top to
bottom). The gray shaded region
is excluded by the lower bound
on proton lifetime from the
Super-K result. The search reach
of proton lifetime by the future
Hyper-K experiment,
τHK � 10 × τSK [61], is
depicted as the dashed line
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We conclude this section with a comment on the result
for the degenerate mass spectrum, m(i)

D = m(i)
T (i = 1, 2). In

this case, we find MI � 1.7 × 109 GeV and MGUT � 1.4 ×
1019 GeV. This result is independent of the degenerate mass
spectrum, since the 10-plet fermions contribute to the gauge
coupling beta-functions as complete SO(10) multiplets. As
shown in Figs. 2 and 3 , the mass splitting lowers the gauge
coupling unification scale starting from the Planck scale.

5 Dark matter in SO(10) × U(1)ψ

Because of the residualZ2 symmetry after the SSB, the light-
est mass eigenstate from a linear combination of the SO(10)

singlet fermions and the 10-plet fermions is stable and is a
suitable DM candidate if it is electrically and color neutral.
In this section we consider the DM physics in our model.
In the SM gauge group decomposition, the DM candidate
is a linear combination of SM singlet and the SU (2)L dou-
blet fermions, the so-called “singlet-doublet DM” (SD-DM)
scenario [62–66]. In the following, we identify the allowed
parameter region to reproduce the observed DM relic density
while satisfying the constraint from the direct DM detection
experiments.

5.1 Doublet-triplet fermion mass splitting and triplet
fermions lifetime

Before the DM physics analysis in the next subsection, we
consider the color triplet fermions included in the 10-plets.
Although they are unstable, their lifetime can be very long

since they decay through the colored Higgs boson and the
GUT gauge boson which are very heavy. If the colored par-
ticles decay after Big Bang Nucleosynthesis (BBN) with the
age of the universe around 1 second, the energetic decay prod-
ucts could destroy light nuclei which have been successfully
synthesized during BBN. We can simply avoid this problem
if the lifetime of the colored fermion is shorter than 1 second.
In this subsection, we discuss how to realize this situation.

In Sect. 4, we have investigated gauge coupling unifica-
tion by introducing the mass splitting between the doublet
and the triplet components in 10-plet fermions (10(1,2)

E ). We
have found that this mass splitting results in gauge coupling
unification below the Planck scale, MGUT < MP . This mass
splitting is also important to shorten the color triplet fermions
lifetime. We can generate the mass splitting by employ-
ing the Dimopolouos–Wilczek mechanism [67,68]. Consider
Yukawa interaction for 10(1,2)

E fermions with the 45H in
Eq. (2.5). Following Refs. [67,68], we set the VEV for 45H in
the B− L direction: 〈45H 〉 = MI ×diag(1, 1, 1, 0, 0)× iσ2

[67,68]. Thus, the mass terms for the doublets and the triplet
components of the 10-plets are expressed as

Lmass ⊃ (
D̄(1) D̄(2)

)
(
m(1)

10 0

0 m(2)
10

) (
D(1)

D(2)

)

+ (
T̄ (1) T̄ (2)

)
(
m(1)

10 m45

m45 m(2)
10

)(
T (1)

T (2)

)
, (5.1)

where m(1,2)
10 = Y (1,2)

A MI and m45 = Y (12)
45 MI . As in the

previous section, we set m(1)
10 = m(2)

10 ≡ mD , and the mass

eigenvalues of the triplet fermions are m(1,2)
T = |mD ±m45|.
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Setting m45 = mT � mD , we obtain almost degenerate
triplet fermions masses, m(1,2)

T � mT � mD . This is the
setup in the previous section.

Let us now estimate the lifetime of the color triplet
fermions. A triplet fermion decays into a doublet fermion
in 10-plet and the SM quark and lepton through an off-shell
GUT gauge boson (6, 2, 2) ⊃ 45 in the PS gauge group
decomposition. The partial lifetime of this process is calcu-
lated to be

τT � 192π3 M
4
GUT

m5
T

. (5.2)

From Fig. 3, the proton lifetime constraint yields an upper
bound on the triplet fermion mass for fixed mD values.
Eq. (5.2) implies that the minimum lifetime of the triplets
is determined by the upper bound on mT . We find mD � 2
TeV to satisfy the BBN constraint, τT < 1 s for a correspond-
ing maximum value ofmT . A triplet fermion also decays into
a SO(10) singlet fermion, top quark and tau lepton through
an off-shell colored Higgs boson. The partial lifetime of this
process is calculated to be

τT � 192π3

Y 2
t YH

2

m4
HC

m5
T

� 1 s

(
mHC [GeV]
3.0 × 1014

)4 (
5.0 × 104

mT [TeV]
)5 (

55

m0[GeV]
)2

,

(5.3)

where Yt � 1 is the SM top Yukawa coupling, and we
express YH in terms of a new parameter m0 defined as

YH =
(√

2m0/vh

)
. This new parameter plays an impor-

tant role in the DM physics analysis in the next sub-section
as well as in the analysis in Sect. 6. For our benchmark val-
ues used in the following sections, mT = 5.0 × 104 GeV
and m0 = 55 GeV, the BBN constraint of τT < 1 s to an
upper bound on the colored Higgs boson mass. Combining
with the lower bound on the colored Higgs boson mass from
the proton lifetime constraint, we find

4.5 × 1011 < mHC [GeV] < 3.0 × 1014. (5.4)

As we have mentioned in the previous section, our results for
the gauge coupling unification remain almost the same even
for mHC values in this range.

5.2 Singet-doublet fermion dark matter

In our model, the DM candidate is a linear combination of
the SU (2)L doublets in the 10-plet and the singlet fermions.
The doublet and singlet fermions individually acquire their
masses from the VEVs of �A and �B as

L ⊃
∑
i

(
m(i)

D D(i) D̄(i) + m(i)
S 1(i)

E 1(i)
E

)
, (5.5)

where

m(i)
D = Y (i)

A 〈�A〉 = 1√
2
Y (i)
A MI ,

m(i)
S = Y (i)

B 〈�B〉 = 1√
2
Y (i)
B MI . (5.6)

In Sect. 4, we have set m(1)
D = m(2)

D = mD = O(1) TeV. In
addition, the Yukawa interactions involving 10H in Eq. (2.5)
generate the mixing masses between the doublets and the
singlets after electroweak symmetry breaking:

L ⊃
∑
i, j

YH
(i j)1(i)

E 10( j)
E 10H

⊃ YH
(i j)

(
1(i)
E D( j)Hd + 1(i)

E D̄( j)Hu

)

⊃ YH
(i j)(cos β 1(i)

E D( j)H† + sin β 1(i)
E D̄( j)H). (5.7)

For simplicity, we choose only YH
(1,1) ≡ YH to be sizable

and real, and only consider the first generation for our DM
physics discussion. Thus, the relevant Lagrangian is given
by

L ⊃ mDDD̄ + mSSS + YH

(
cos βDH†S

+ sin β D̄H S
) + h.c, (5.8)

where we have introduced a new notation, D(1) ≡ D and
1(1)
E ≡ S. Substituting H = 1/

√
2(0, h + vh)

T (h is the
SM Higgs boson and vh = 246 GeV is the Higgs VEV), we
obtain the mass matrix for the electrically neutral fermions:

L ⊃ 1

2

(
D0 D̄0 S

)
⎛
⎝

0 mD m0 sin β

mD 0 m0 cos β

m0 sin β m0 cos β mS

⎞
⎠

⎛
⎝
D0

D̄0

S

⎞
⎠ ,

(5.9)

where m0 ≡ YHvh/
√

2. This symmetric mass matrix
can be diagonalized by a single orthogonal matrix U for
the mass eigenstates ψ1,2,3 with masses m1,2,3 defined as
(ψ1, ψ2, ψ3)

T = U−1(D, D̄, S)T . The lightest mass eigen-
state is identified with the DM particle.

To simplify the DM analysis, we consider two extreme
cases: (i) mS � mD , where the DM is mostly the dou-
blet component (a linear combination of ψ1 and ψ2). (ii)
mS � mD , where the DM is mostly the singlet component
(ψ3). The first case is similar to the Higgsino-like neutralino
DM scenario in the Minimal Supersymmetric SM. This case
has been well studied in the literature (see, for example, [69]),
where the correct DM relic density is reproduced with the DM
mass of around 1 TeV. In the following, we will focus on case
(ii). FormS,m0 � mD in this case, the mass eigenvalues can
be approximated as
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m1,2 � mD, m3 � mS − m0

(
m0

mD

)
sin 2β, (5.10)

From Eq. (5.8), we extract the interactions involving the DM
particle (ψ3),

L ⊃ 1

2

(
ψ1 ψ2 ψ3

)
UT

⎛
⎜⎝

0 0 m0 sin β
vh

h

0 0 m0 cos β
vh

h
m0 sin β

vh
h m0 cos β

vh
h 0

⎞
⎟⎠

U

⎛
⎝

ψ1

ψ2

ψ3

⎞
⎠ , (5.11)

⊃ 1

2
y33hψ3ψ3 + 1

2
y31hψ3ψ1 + 1

2
y32hψ3ψ2,

where the couplings y31, y32, and y33 are determined by the
elements of the mixing matrix U , m0 and β.

The thermal relic density of the DM particle is evaluated
by solving the Boltzmann equation,

dY

dx
= −〈σv〉

x2

s(m3)

H(m3)

(
Y 2 − Y 2

EQ

)
, (5.12)

where x = m3/T , H(m3) is the Hubble parameter and the
yield (Y = n/s) is given by the ratio of the DM number
density (n) and the entropy density (s), and YEQ is the yield
of the DM particle in thermal equilibrium:

s(m3) = 2π2

45
g�m

3
3, H(m3) =

√
π2

90
g�

m2
3

MP
,

YEQ(x) = gDM

2π2

x2m3
3

s(m3)
K2(x), (5.13)

with K2 being the Bessel function of the second kind. In
Eq. (5.12), 〈σv〉 is the thermal average of the total pair anni-
hilation cross section of the DM particles times their relative
velocity:

〈σv〉 = g2
DM

64π4

(m3

x

) 1

n2
EQ

∫ ∞

4m2
3

ds 2(s − 4m2
3)

×σ(s)
√
sK1

(
x
√
s

m3

)
, (5.14)

where gDM = 2 denotes the degrees of freedom of the Majo-
rana fermion DM particle, nEQ = s(m3)YEQ/x3 is the equi-
librium number density of the DM particle, K1 is the modified
Bessel function of the first kind, and σ(s) is the total anni-
hilation cross section of the DM particle. The DM particle
density at the present time is evaluated from

�DMh2 = m3s0Y (x → ∞)

ρc/h2 , (5.15)

where ρc/h2 = 1.05×10−5 GeV/cm3 is the critical density,
and s0 = 2890 cm−3 is the entropy density of the present
Universe.

In order to evaluate σ(s), we consider two processes for
the pair annihilation of the DM particles: the t/u-channel
processes mediated by the ψ1,2 or charged fermions in D
and D, and the s-channel process mediated by the SM Higgs
boson. For the t/u-channel processes with mD � m3, we
consider the effective Lagrangian after integrating out ψ1,2,

Le f f = 1

2

(
y2

31

mD

)
hhψ3ψ3 + 1

2

(
y2

32

mD

)
hhψ3ψ3. (5.16)

For example, the cross section for ψ1 mediated processes is
estimated as

σ0 �
(

1

64π

) (
y2

31

mD

)2

� y4
31

(
1TeV

mD

)2

pb. (5.17)

Here, we have assumed m3 > mh . Since the DM is mostly
the singlet component, its coupling with the SM Higgs boson
is suppressed, y4

31 � 1. Therefore, the cross section for this
process is much smaller than a typical cross section of 1 pb
for a thermal DM. We can apply the same discussion for ψ2

and charged fermion mediated process, and conclude that the
cross sections for all the t/u-channel processes are too small
to reproduce the observed DM relic density.

Let us next consider the s-channel process mediated by
the SM Higgs boson. Although the DM coupling with the
SM Higgs is suppressed, the s-channel cross section can be
enhanced if the DM mass is close to the Higgs boson reso-
nance point, m3 � mh/2. For m3 � mD , this will turn out
to be the only possibility for reproducing the observed DM
relic density. The s-channel cross section is given by

σ(s) = y2
33

64

(
3

(
mb

vh

)2

+ 3

(
mc

vh

)2

+3

(
mτ

vh

)2
) √

s(s − 4m2
3)(

s − m2
h

)2 + m2
h�

2
h

. (5.18)

For the final states, we have considered a pair of bottom (b)
quarks, charm (c) quarks, and tau (τ ) leptons with masses
mb = 2.82 GeV, mc = 685 MeV, and mτ = 1.75 GeV [70],
respectively. �h = �SM

h + �DM
h is the total decay width of

the SM Higgs boson, where �SM
h = 4.07 MeV [71] is the

SM Higgs boson decay width in the SM and

�DM
h = θ (mh − 2m3)

y2
33

16π
mh

(
1 − 4m2

3

m2
h

)3/2

(5.19)

is the partial decay width of the SM Higgs boson decay into a
pair of DM particles. The annihilation cross section is deter-
mined by only two free parameters,m3 and y33. After numer-
ically solving the Boltzmann equation with the s-channel
cross section, we find the relation between m3 and y33 to
reproduce the observed DM relic density of �DMh2 = 0.120
[72].
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Fig. 4 Left panel: y33 as a function ofm3 (solid curve) along which the
observed DM density is reproduced. The gray shaded region is excluded
by the XENON1T results and the horizontal dashed line marks the
search reach of the future LUX-ZEPLIN experiment. Right panel: mD

as a function of m3 for different choices of m0[GeV] = 55, 45 and 35
(solid curves from top to bottom) and fixed β = π/3, corresponding to
the solid curve in the left panel. The gray shaded region is excluded by
the null LHC search results for a heavy charged lepton

5.3 Direct detection bound on dark matter

Various experiments to directly search for the DM parti-
cles are in operation. The most severe constraint on the so-
called spin-independent (SI) cross section of the DM particle
scattering off nuclei is given by the XENON1T direct DM
detection experiment [73]. We use this result to constrain the
parameter space for m3 and y33. The SI elastic cross section
for the DM scattering off a nucleon is given by

σSI � 1

π

(
y33

vh

)2
(

μeff

m2
h

)2

f 2
N , (5.20)

where μeff = mNm3/(mN +m3) is the effective mass of the
DM-nucleon system with a nucleon mass mN = 0.939 GeV
[74]. The nuclear matrix element of a nucleon fN is given by

fN =
⎛
⎝ ∑

q=u,d,s

fTq + 2

9
fTG

⎞
⎠mN , (5.21)

where fTq values are determined by lattice QCD analysis:
fTu + fTd � 0.056 [75] for up (u) and down (d) quarks and∣∣ fTs

∣∣ ≤ 0.08 [75] for strange (s) quark, and fTG is determined
using trace anomaly condition,

∑
q=u,d,s fTq + fTG = 1

[76–80]. Using a conservative value for fTs = 0, we obtain
f 2
N � 0.0706m2

N and the SI cross section is given by

σSI � 4.47 × 10−7pb × y2
33, (5.22)

where we have used m3 � mN .
In the left panel of Fig. 4, we plot y33 as a function of

m3 (solid black curve) along which the observed DM relic
density, �DMh2 = 0.120, is reproduced. For m3 � mh/2,
XENON1T constraint, σSI ≤ 1.0 × 10−10 pb [73], leads
to an upper bound on y33 ≤ 1.50 × 10−2 from Eq. (5.22).
The gray shaded region is excluded by the XENON1T, and
the allowed region for the DM mass lies in the range of
57.10 � m3[GeV] � 61.23. The next generation LUX-

ZEPLIN (LZ) experiment will improve the cross section
bound significantly, σSI ≤ 2.8×10−12 pb [81], which corre-
sponds to y33 ≤ 2.51 × 10−3. This search reach is depicted
as the horizontal dashed line. We can see that the current
allowed region will be fully covered by the LZ experiment.

Both m3 and y33 are determined in terms of the model
parameters β, m0, mS , and mD . As shown in the left panel
of Fig. 4, y33 is determined as a function of m3 in order to
reproduce the observed DM relic density. Hence,mD is deter-
mined as a function of m0, β, and m3. In the right panel of
Fig. 4, we plotmD as a function ofm3 for different choices of
m0[GeV] = 55, 45 and 35 (solid curves from top to bottom)
and fixed β = π/3. The allowed range of the DM mass of
57.10 � m3[GeV] � 61.23 is indicated by the two vertical
dotted lines, which bound the allowed mass range of mD for
different m0 values. The gray shaded region is excluded by a
lower mass bound of mD < 690 GeV from the CMS search
result for a heavy charged lepton at the LHC [82].

6 Stability of the SM Higgs potential

Because of the large top Yukawa coupling, the SM Higgs
quartic coupling turns negative around μ � 1010 GeV [58].
This implies that the electroweak vacuum of the SM is unsta-
ble, which is, in principle, known as the Higgs potential insta-
bility problem. It may not be a serious problem for the SM
because the electroweak vacuum is meta-stable with lifetime
much longer than the age of the universe. However, in the
GUT scenario, the SM Higgs is embedded inside a GUT
Higgs multiplet and the negative quartic coupling of the SM
Higgs may imply that some of the GUT Higgs multiplets
have negative quartic couplings which can make the GUT
vacuum unstable. To avoid this problem, we impose the con-
dition that the SM Higgs quartic coupling remains positive
up to the PS SSB scale.
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Let us evaluate the RG evolution of the SM Higgs quar-
tic coupling (λH ), to which the new 10-plets fermions also
contribute, in addition to the SM particles. As discussed in
Sect. 4, the 10-plets modify the RG running of the SM gauge
couplings, which in turn modifies the RG running of λH . In
addition, the doublets in the 10-plet fermions contribute to
the beta-function of λH through their Yukawa couplings with
the SM Higgs doublets in Eq. (5.8). The RG equation of λH

is expressed as

μ
dλH

dμ
= 1

16π2

(
βSM+θ(μ − mD)

(
4λHYH

2 − 4YH
4
))

,

(6.1)

where YH =
(√

2m0/vh

)
, and βSM denotes the beta func-

tion of the SM. The contribution of the doublet fermions [the
second term in the right-hand side of Eq. (6.1)] is analogous
to the top quark contribution, βSM ⊃ 12y2

t λH −12y4
t , where

yt is the top-quark coupling. The presence of such a coupling
is effectively equivalent to the SM with a larger yt . Hence, the
Yukawa coupling may make the situation worse and desta-
bilize the Higgs potential at an energy scale even lower than
μ � 1010 GeV. However, the presence of 10-plet fermions
also modify the running of the SM gauge couplings which
generates a positive contribution to βSM . See, for example,
Refs. [83–86], where the authors have shown that the Higgs
potential stability problem can be solved in the presence of
TeV scale new fermions. We now show that the instability
problem can also be solved in our model in the presence of
the 10-plet fermions.

The RG running of λH is determined by three parameters:
mD , mT and m0. In the following analysis, we approximate
YH to be a constant. For fixed values of mD , mT and m0,
we numerically solve the RG equations. In Fig. 5, we show
the RG running of λH for mD = 2 TeV, mT = 5 × 104

TeV, and m0[GeV] = 35, 55, and 60 (solid lines from top
to bottom). The horizontal dotted line represents λH = 0.
From the gauge coupling unification analysis in Sect. 4, we
have found MI � 2 × 1011 GeV for mD = 2 TeV and
mT = 5×104 TeV. In order to keep λH (μ) > 0 for μ < MI ,
we have found an upper bound on m0 � 55 GeV. We have
checked that the running of YH can be ignored to a good
approximation for m0 � 55 GeV or, equivalently, YH �
0.32.

7 Conclusion

Finally a few remarks about gravity waves are in order here.
Although gravitational wave production from phase transi-
tions is a very interesting possibility to consider, it is beyond
the scope of the current work. Another potential source in our

8.0 8.5 9.0 9.5 10.0 10.5 11.0

0.000

0.005

0.010

0.015
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0.030

Log GeV

H

Fig. 5 RG running of λH for μ < MI � 2 × 1011 GeV, for mD =
2 TeV and mT = 5 × 104 TeV. The solid lines from top to bottom
correspond to m0[GeV] = 35, 55, and 60, respectively. The dotted line
depicts λH = 0

model for gravity waves are topologically stable oscillating
strings that may survive inflation. This would entail an addi-
tional intermediate scale between the SU (4)c × SU (2)L ×
SU (2)R breaking and the SM such that the monopoles from
SU (4)c × SU (2)L × SU (2)R breaking are inflated away but
not the lighter cosmic strings. This, for instance, would be
the case if SU (4)c × SU (2)L × SU (2)R breaks to the SM
via SU (3)c × SU (2)L × SU (2)R × U (1)B−L . We plan to
explore these and related topics pertaining to gravity waves
in a future article.

We have proposed a simple non-supersymmetric GUT
model based on the gauge group SO(10) × U (1)ψ . The
model includes three generations of fermions in 16 (+1), 10
(−2) and 1 (+4) representations. In addition to the 16-plets
that contains the SM fermions plus RHNs, the 10-plet and
singlet fermions are introduced. In the presence of the new
fermions, the model is free from all the gauge and mixed
gauge-gravitational anomalies. With the new fermions and
a suitable set of Higgs fields, gauge coupling unification is
achieved in two-step breaking of SO(10) to the SM. Namely,
the SM gauge couplings are partially unified in the PS group
at the intermediate scale of MI = 1012−1011 GeV with
the PS group subsequently unified into SO(10) group at
MGUT = 5 × 1015−1016 GeV. Since the Majorana masses
for the RHNs are generated through the PS symmetry break-
ing, successful gauge coupling unification leads to the natural
scale for the seesaw mechanism. We have found a correlation
between MGUT and MI , namely MI is increases as MGUT

is decreases. Hence, the proton lifetime is predicted to be
shorter for a higher MI value, which can be tested by the
Hyper-Kamiokande experiment in the future.

The new 10-plet and singlet fermions have Yukawa cou-
plings with two SO(10)-singlet U (1)ψ Higgs fields and the
fermion masses are generated once the U (1)ψ symmetry is
broken by the U (1)ψ Higgs fields VEVs. The U (1)ψ Higgs
filed �A which has the Yukawa coupling with the 10-plet
fermions is identified with the inflaton. We have shown that
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through its gauge and Yukawa interactions, the effective infla-
ton potential exhibits an approximate inflection-point and
successful inflection-point inflation is realized. The Hubble
parameter during the inflation is found to be much smaller
than the PS symmetry breaking scale, Hin f < MI , so that
the cosmologically unwanted monopoles generated by the
breaking of the GUT and the PS symmetries are diluted away.
This is the first SO(10) model we are aware of in which rel-
atively light intermediate mass (∼ 1010−1012 GeV) primor-
dial monopoles can be adequately suppressed. In previous
works, the monopoles had to be significantly heavier (∼ 1014

GeV or so) for inflation to adequately suppress their number
density. With a suitable choice of the model parameters, the
reheating temperature after inflation can be high enough for
a successful thermal leptogenesis while low enough not to
restore the PS gauge symmetry.

With the Higgs field contents of our model, a Z2 symme-
try remains unbroken after the GUT symmetry breaking, and
the lightest Majorana mass eigenstate from linear combina-
tions of the 10-plets and singlet fermions is stable and thus a
viable DM candidate of our model. We focus on the case that
the DM particle is mostly composed of the SO(10) singlet
fermion and it communicates with the SM particles through
the Higgs-portal interactions. For this Higgs-portal fermion
DM scenario, we have identified the model parameter region
to reproduce the observed DM relic density while satisfying
the current constraint from the direct DM detection experi-
ments. The present allowed region will be fully covered by
the future direct detection experiments such as LZ experi-
ment. Finally, we have shown that in the presence of the new
fermions, the SM Higgs potential is stabilized up to MI .
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