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Abstract Weak and strong deflection gravitational lensing
by a renormalization group improved Schwarzschild black
hole is investigated and its observables are found. By tak-
ing the supermassive black holes Sgr A* and M87* respec-
tively in the Galactic Center and at the center of M87 as
lenses, we estimate these observables and analyse possibil-
ity of detecting this quantum improvement. It is not feasible
to distinguish such a black hole by most observables in the
near future except for the apparent size of the shadow. We
also note that directly using measured shadow of M87* to
constrain this quantum effect requires great care.

1 Introduction

Black holes have been found to be very common in the Uni-
verse by direct detections of their gravitational waves [1–6]
and by directly imaging the shadow of M87*, the supermas-
sive black hole in the center of galaxy M87 [7–12]. Einstein’s
general relativity (GR) passes strong-field gravitational tests
imposed by these observations. Even though GR succeeds
in the vicinities of black holes, it fails in the center of a
black hole, meeting the singularity. It is widely believed that
such a singularity can only be erased by a quantum theory
of gravity because there has exceedingly high energy density
and curvature [13]. In order to fulfill this purpose before a
self-consistent and well-accepted quantum theory of grav-
ity emerges, one might change the singularity into a regular
core [14–17], make use of the quantum pressure to stop col-
lapse of matter and to cause a bounce [18–21], and remove
event horizons by creating a quasi-black hole [22–27] (see
Ref. [28] for a review). Therefore, a black hole might be an
intrinsically quantum object so that quantum gravitational
effects might somehow manifest themselves near the event
horizons [29–32] because of quantum fluctuations [33,34], a
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fuzzball [35,36] and an exotic compact object [37,38], which
may solve the information loss paradox.

We focus on a renormalization group improved
Schwarzschild black hole [39]. Its key idea is to “renor-
malization group improve” the Schwarzschild spacetime by
using the running Newton constant, borrowed from a stan-
dard scheme in the particle physics. A benefit from this is
the removal of the classical singularity at the center of a
Schwarzschild black hole and replacement of it with a de
Sitter core by the quantum effects. Its characteristics of black
hole physics, such as number of horizons, critical mass, regu-
larity and thermodynamics [39], as well as its quantum gravi-
tational effects on accretion [40] have been studied, whereas
its gravitational lensing signatures are still missing in the
literature.

A large amount of insights about black holes can be pro-
vided by gravitational lensing [41]. With bending angle much
smaller than 1, weak deflection lensing has already been a
workhorse in astronomy [42–45] and gravitational physics
[46–51]. With a key ingredient that a photon might be able
to go around a black hole by at least one loop, strong deflec-
tion lensing can form an escape cone of light [52] (now
popularly called “shadow”) and relativistic images [53] (see
Refs. [54,55] for reviews). The Event Horizon Telescope
(EHT) has directly imaged the shadow of M87* and mea-
sured its diameter as 42 microarcsecond (μas) [7–12]. It is
also directly imaging the shadow of Sgr A*, the supermassive
black hole in the Galactic Center, and its results may be com-
ing soon. Relativistic images might potentially be observable
in the future and be helpful to understand nature of black
holes [56–60] and distinguish different kinds of them [61–
65].

Gravitational lensing by quantum-corrected black holes
has been studied. Weak deflection lensing by a quantum per-
turbed lukewarm black hole with a cosmological constant
was investigated [66]. A lukewarm black hole belongs to
a particular class of Reissner–Nordström–de Sitter solution
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with its electrical charge equal to its mass [67], whereas the
renormalization group improved Schwarzschild black hole is
neutral. It might be very unlikely to find an electric charged
black hole in the real universe since any charge would be neu-
tralized by surrounding plasma. Strong deflection lensing by
a non-commutative Schwarzschild black hole was examined
[68]. Its spacetime depends on the lower incomplete Gamma
function and its non-commutativity is controlled by a new
fundamental natural length scale which should be less than
10−18 m because this quantum correction is not visible at
presently accessible energies [69]. These are its two different
properties from the quantum corrected black hole discussed
in this work. The weak and strong deflection lensing has
also been used to probe regular black holes, such as Bardeen
[70–72], Hayward [73], modified Hayward [74], Lee-Wick
[75] and non-minimal Einstein–Yang–Mills black holes [76].
All of these regular black holes have de-Sitter cores, while
they have different exterior spacetime due to various physical
origins. The renormalization group improved Schwarzschild
black hole has its own quantum correction on the exterior
spacetime, which is different from those of all aforemen-
tioned regular black holes (see below for details) and would
generate different gravitational lensing signatures.

Motivated by these considerations, we will investigate the
weak and strong deflection gravitational lensing by the renor-
malization group improved Schwarzschild black hole in the
present work. In order to fully understand its lensing signa-
tures, it is necessary to combine these two complementary
kinds of lensing, providing a whole picture [77–82].

In Sect. 2, the spacetime of the renormalization group
improved Schwarzschild black hole is briefly recalled and
a generic description for the gravitational lensing is given.
The weak and strong deflection lensing by such a quantum
improved black hole is respectively studied in Sects. 3 and
4. By taking Sgr A* and M87* as lenses, we estimate their
observables and assess possibility of detecting them. We con-
clude and discuss our results in Sect. 5.

2 Metric and gravitational lensing

2.1 Metric

The spacetime of the renormalization group improved
Schwarzschild black hole with mass m• is [39]

ds2 = −A(r)dt2 + B(r)dr2 + C(r)(dθ2 + sin2 θdϕ2), (1)

where the coefficients A(r), B(r) and C(r) are

A(r) = [B(r)]−1

= 1 − 2Gm•
c2r

(
1 + ω̃Gh̄

c3r2 + γ
ω̃G2h̄m•
c5r3

)−1

(2)

and

C(r) = r2. (3)

Here, γ and ω̃ are dimensionless parameters respectively
from an identification of cutoff of the distance scale and from
the nonperturbative renormalization group theory. When the
renormalization group improvement vanishes, both of them
become zeros. While γ might be fixed as 9/2, it can be treated
as a positive free parameter [39]. Although ω̃ might also
be determined by comparing the semi-classical Newtonian
potential (A − 1)/2 with a quantum corrected Newtonian
potential, its value in the literature is not unique, such as
ω̃ = 118/(15π) [83] or ω̃ = 167/(30π) [84] (see Table
1 in [85] for a summary but with a different notation), so
that it is likewise treated as a positive free parameter. Such
a black hole (1) is regular with a de Sitter core as r →
0. Recently, shadow casted by an improved Schwarzschild
spacetime inspired by asymptotically safe quantum gravity
was studied [86] whereas its quantum correction is in the
form of [1 +O(r−3)]−1 without the O(r−2) term in Eq. (2).

For convenience, convention of G = c = h̄ = 1 will be
adopted in the following parts of this work and it is defined
that

Ω = ω̃

m2•
(4)

which leads to

A(r) = [B(r)]−1 = 1 − 2m•
r

(
1 + Ω

m2•
r2 + γ Ω

m3•
r3

)−1

.

(5)

It was found [39] that the renormalization group improved
Schwarzschild black hole might have none, one or two event
horizon(s). The existence of the event horizon(s) that A(r) =
0 gives a cubic equation of r as

r3 − 2m•r2 + Ωm2•r + γΩm3• = 0 (6)

and its discriminant is

Δ3 = −m6•Ω(Ω − Ω+)(Ω − Ω−) (7)

where

Ω± = −27

8
γ 2 − 9

2
γ + 1

2
± 1

8

√
(γ + 2)(9γ + 2)3. (8)

Descartes’ rule of signs tells that such a cubic equation has
either two positive roots or none because of γ > 0 and Ω >

0. In order to ensure Δ3 ≥ 0, we must have Ω ≤ Ω+ given
Ω− < 0 so that we define a dimensionless parameter λ as
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λ = Ω

Ω+
∈ (0, 1]. (9)

It means that any Ω can be uniquely determined by λ and
γ because Ω+ is a function of γ [see Eq. (8)], i.e., Ω =
λΩ+(γ ). Summarily, when 0 < λ < 1, two event horizons
exist; when λ = 1, they merger into one; when λ > 1,
there is no event horizon. The (outer) event horizon decreases
to its smallest value rH,min = m• at λ = 1 and γ = 0.
Finally, the parameter space of the renormalization improved
Schwarzschild black hole is set as D = {(γ, λ)|0 < γ ≤
10, 0 < λ ≤ 1} in which an upper-bound on γ is chosen and
Ω+(γ ) > 0 for γ ∈ D.

2.2 Gravitational lensing

It is necessary to understand observational signatures of the
renormalization group improved Schwarzschild black hole
before searching and distinguishing them. Since ground-
based infrared interferometry has been routinely monitor-
ing Sgr A* and stars near it [87–89] and ground-based
radio interferometry has successfully image the shadow of
M87* [7–12], we aim at studying gravitational lensing by
the supermassive black holes with this renormalization group
improvement.

The exact bending angle in the gravitational lensing by an
asymptotically flat and spherically symmetric black hole is
well known as [56,90]

α̂(r0) = 2
∫ ∞

r0

√
B(r)

√
C(r)

√
C(r)
C(r0)

A(r0)
A(r) − 1

dr − π, (10)

where r0 is the closet approach distance of the light ray to the
black hole. In the weak deflection lensing, r0 is much bigger
than m•, resulting α̂ � 1. In the strong deflection lensing,
r0 is approaching to ∼ m•, making α̂ 
 1.

Finding observables of gravitational lensing needs the lens
equation. It is adopted that [56,57]

tanB = tan ϑ − DLS

DOS
[tan ϑ + tan(α̂ − ϑ)], (11)

whereB is the angular position of the source, ϑ is the angular
position of the image, and DLS and DOS are the projected
angular diameter distances on the optical axis respectively
from the lens to the source and from the observer to the
source. The signed magnification μ of a lensed image is [91]

μ(ϑ) =
[

sinB(ϑ)

sin ϑ

dB(ϑ)

dϑ

]−1

. (12)

If a source’s luminosity evolves, it would be able to mea-
sure time delay between its lensed images. The time delay

is directly relevant to the flight time taken by a photon from
the source to the observer [90,92,93]

T = T (Rsrc) + T (Robs), (13)

with

T (R) =
∫ R

r0

∣∣∣∣ dt

dr

∣∣∣∣ dr (14)

and

dt

dr
=

√
B(r)C(r)A(r0)

A(r)
√
C(r0)

√
C(r)
C(r0)

A(r0)
A(r) − 1

, (15)

where Robs is the distance from the lens to the observer, i.e.
Robs = DOL, and Rsrc is the radial coordinate of the source
with respect to the lens, i.e. Rsrc = (D2

OS tan2 B + D2
LS)1/2.

In each scenario of weak and strong deflection lensing,
we will investigate its bending angle, lens equation, mag-
nification, time delay and their observables for Sgr A* and
M87*.

3 Weak deflection lensing

3.1 Bending angle

In the spacetime (1), the distance of closet approach r0 for the
light ray relates with its impact parameter u via the relation
as [90]

C(r0) = u2A(r0). (16)

Since both r0 and u are much larger than m• in the weak
deflection lensing, we can expand the solution to (16) in terms
of q ≡ m•u−1 as

r0

u
= 1 +

6∑
n=1

un q
n + O(q7) (17)

where

u1 = −1, (18)

u2 = −3

2
, (19)

u3 = Ω − 4, (20)

u4 = (γ + 5)Ω − 105

8
, (21)

u5 = −Ω2 + 6(γ + 4)Ω − 48, (22)

u6 = −1

2
(4γ + 21)Ω2 + 21

2
(3γ + 11)Ω − 3003

16
. (23)
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The bending angle in the weak deflection lensing can be
found in the form of a series according to h ≡ m•r−1

0 as

α̂(h) =
6∑

n=1

anh
n + O(h7) (24)

with

a1 = 4, (25)

a2 = 15

4
π − 4,

a3 = −16

3
Ω − 15

2
π + 122

3
, (26)

a4 = −
(

15

8
γπ + 105

8
π − 20

)
Ω + 3465

64
π − 130, (27)

a5 = 32

5
Ω2 +

[(
15

2
π − 236

5

)
γ + 60π − 260

]
Ω

−3465

16
π + 7783

10
, (28)

a6 =
(

35

8
γπ + 945

32
π − 52

)
Ω2

+
[(

260 − 3465

32
π

)
γ − 16695

32
π + 4234

3

]
Ω

+310695

256
π − 21397

6
. (29)

Its dependence of the coordinate r0 makes the expression
gauge-dependent. Replacing r0 with the impact parameter u
by using Eq. (17), we are able to obtain its gauge-invariant
form as

α̂(u) =
6∑

n=1

ûnq
n + O(q7), (30)

in which

û1 = 4, (31)

û2 = 15

4
π, (32)

û3 = −16

3
(Ω − 8), (33)

û4 = −15

8
π

[
(γ + 7)Ω − 231

8

]
, (34)

û5 = 32

5
Ω2 − 256

5
(γ + 5)Ω + 3584

5
, (35)

û6 = 35

256
π

[
8(4γ + 27)Ω2 − 264(3γ + 13)Ω + 7293

]
.

(36)

When Ω = γ = 0, the bending angle in the either gauge-
dependent or gauge-invariant form returns to its accordingly
value for the Schwarzschild black hole in GR. It is obvious

that the renormalization group improvement begins to affect
the bending angle at the third-order approximation.

3.2 Lens equation

For later convenience, some scaled variables are defined as
[46–48]

β = B
ϑE

, θ = ϑ

ϑE
, τ̂ = τ

τE
, ε = ϑ•

ϑE
, (37)

where ϑ• = arctan(m•/DOL) is the angular gravitational
radius at distance DOL, ϑ = arcsin(u/DOL), τ is the time
delay between images, the angular Einstein ring radius is

ϑE =
√

4m•DLS

DOLDOS
(38)

and the time scale is

τE = 4m•. (39)

In the weak deflection gravitational lensing, ε can be consid-
ered as a small parameter as long as both the observer and the
source are far enough from the lens, and will be employed
to find out higher-order observables for the renormalization
group improved Schwarzschild black hole which might be
the only signals influenced by the quantum correction.

With the help of ε, it is reasonable to expand the solution
to the lens Eq. (11) into a series as

θ = θ0 + εθ1 + ε2θ2 + O(ε3), (40)

where θ0, θ1 and θ2 are its zeroth-, first- and second-order
approximation terms. Therefore, the bending angle (30)
might have the form as

α̂ = 4
ε

θ0
+ ε2

θ2
0

(
15

4
π − 4θ1

)
+ ε3

θ3
0

{
32

3
D2θ4

0

−4θ0θ2 + 4θ2
1 − 15

2
πθ1 − 16

3
Ω + 128

3

}

+O(ε4), (41)

and the lens Eq. (11) might be transformed into

0 = 4D
ε

θ0
(βθ0 − θ2

0 + 1) + ε2

θ2
0

D

[
15

4
π − 4θ1(θ

2
0 + 1)

]

+ ε3

θ3
0

D

[
− 64

3
D2θ6

0 + 224

3
D2θ4

0 +
(

64

3
D2β3

−4θ2

)
θ3

0 − 64Dθ2
0 − 4θ0θ2 + 4θ2

1 − 15

2
πθ1

−16

3
Ω + 64

]
+ O(ε4), (42)
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where D = DLS/DOS. This lens equation gives positions of
the lensed images by orders of ε.

3.3 Image positions

θn (n = 0, 1, 2) can be calculated by letting the coefficients
of ε, ε2 and ε3 in (42) equal to 0. For the zeroth-order image
position, it leads to

β = θ0 − 1

θ0
, (43)

resulting

θ0 = 1

2
(β + η), (44)

where

η =
√

β2 + 4. (45)

Similarly, we can find the first- and second-order corrections
to the image position as

θ1 = 15

16

π

θ2
0 + 1

, (46)

θ2 = 1

θ0(θ
2
0 + 1)3

[
8

3
D2θ8

0 + D

(
64

3
D − 16

)
θ6

0

+
(

88

3
D2 − 32D − 4

3
Ω + 16

)
θ4

0

+
(

16

3
D2 − 16D − 8

3
Ω + 32 − 225

128
π2

)
θ2

0

−16

3
D2 − 4

3
Ω − 225

256
π2 + 16. (47)

The zeroth- and first-order approximation terms are as the
same as those of the Schwarzschild black hole in GR [46,47]
free of the quantum correction, while the second-order term
is affected by renormalization group improvement if Ω �= 0.

3.4 Magnifications

The magnification μ of a lensed image can also be expanded
in terms of ε as a series

μ = μ0 + εμ1 + ε2μ2 + O(ε3), (48)

where the zeroth-, first- and second-order terms are

μ0 = θ4
0

θ4
0 − 1

, (49)

μ1 = −15

16
π

θ3
0

(θ2
0 + 1)3

, (50)

μ2 = θ2
0

(θ2
0 + 1)5(θ2

0 − 1)

[
8

3
D2θ8

0

+
(

48D2 − 32D + 8

3
Ω − 32

)
θ6

0

+
(

272

3
D2 − 64D + 16

3
Ω + 675

128
π2 − 64

)
θ4

0

+
(

48D2 − 32D + 8

3
Ω − 32

)
θ2

0 + 8

3
D2

]
. (51)

Like the situation of the images, the zeroth- and first-order
term are immune to the quantum correction, whereas the
second-order one is not. When Ω = 0, the magnification μ

reduces to the one of the Schwarzschild black hole [46,47].

3.5 Time delay

The flight time function T (R) can be expanded in terms of
h as

T (R) = T0 + r0

3∑
n=1

Tnh
n + O(h4), (52)

where its zeroth-, first-, second- and third-order approxima-
tion terms are

T0 =
√
R2 − r2

0 , (53)

T1 =
√

1 − ξ2

1 + ξ
+ 2 ln

(
1 + √

1 − ξ2

ξ

)
(54)

T2 = 15

4
π − 15

2
arctan

(
ξ√

1 − ξ2

)

−
√

1 − ξ2

(1 + ξ)2

(
5

2
ξ + 2

)
(55)

T3 = −15

4
π + 15

2
arctan

(
ξ√

1 − ξ2

)

+
√

1 − ξ2

2(1 + ξ)3 (35ξ3 + 133ξ2 + 157ξ + 60)

−
√

1 − ξ2

1 + ξ
(3ξ + 4)Ω (56)

with

ξ = r0

R
. (57)

It is at the third-order term of T (R) that the renormalization
group improvement begins to manifest. When Ω vanishes,
T (R) returns to the one of the Schwarzschild black hole [46,
47].

The difference between the flight time of the light with
and without gravitational influence of the lens is defined as
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the differential time delay which is mathematically expressed
as

cτ = T (Rsrc) + T (Robs) − DOS

cosB . (58)

Making use of the relation between r0 and u and expressions
for Rsrc and Robs, we can find the scaled time delay in the
form of a series of ε as

τ̂ = τ̂0 + ετ̂1 + ε2τ̂2 + O(ε3), (59)

where

τ̂0 = 1

2

[
1 + β2 − θ2

0 − ln

(
DOLθ2

0 ϑ2
E

4DLS

)]
, (60)

τ̂1 = 15π

16θ0
, (61)

τ̂2 = 1

2θ2
0

{
− 4

3
θ6

0 (5D2 − 9D + 3) − 8θ4
0 β2(D − 1)

+4

3
θ2

0 [(5D2 − 3D − 3)β4+6β2−6−24D2 + 24D]

−225

256

π2

θ2
0 + 1

+ 32

3
D2 − 4

3
Ω

}
. (62)

When Ω = 0, the scaled time delay is the same as the one
of the Schwarzschild black hole [46,47]. The quantum cor-
rection only affect its second-order approximation term.

3.6 Relations

Hereafter, following Refs. [46–48], the convention that the
angle of an image’s position is always positive is adopted. If
the image is on the same side of the lens as the source, the
position of the source B is positive; otherwise, B < 0.

3.6.1 Position relations

After picking β > 0 and β < 0, the positive- and negative-
parity images at the leading order [see Eq. (44)] can be found
as

θ±
0 = 1

2
(η ± |β|) (63)

which result in

θ+
0 − θ−

0 = |β|, (64)

θ+
0 θ−

0 = 1. (65)

With θ±
0 , the first-order corrections to the image positions

can be obtained as

θ±
1 = 15

8

π

η(η ± |β|) , (66)

which can be combined as

θ+
1 + θ−

1 = 15

16
π, (67)

θ+
1 − θ−

1 = −15

16
π

|β|
η

. (68)

Furthermore, the second-order corrections to the image posi-
tions can be found as

θ±
2 = P±(P ± P′η|β|), (69)

where the factors P± and the coefficients of P and P′ are

P± = 1

η3(η ± |β|)4 , (70)

P = 64

3
D2β8 + D

(
1024

3
D − 128

)
β6

+
(

5056

3
D2 − 1024D + 128

)
β4

+
(

8576

3
D2 − 2304D + 768 − 225

16
π2

)
β2

+2560

3
D2 − 1024D + 1024 − 675

16
π2

−32

3
(β2 + 2)η2Ω, (71)

P′ = 64

3
D2β6 + D

(
896

3
D − 128

)
β4

+
(

3392

3
D2 − 768D + 128

)
β2

+3328

3
D2 − 1024D + 512 − 225

16
π2

−32

3
η2Ω. (72)

They have a simple relation that

θ+
2 − θ−

2 = |β|
(

8D2 + 225

256
π2 − 16 + 4

3
Ω

)
. (73)

As expected based on the previous results of the images’
positions, the renormalization group improvement has only
influence on the second-order corrections to the positive- and
negative-parity of images and their relations. When Ω = 0,
they all go back to those of the Schwarzschild black hole
[46,47].

3.6.2 Magnification relations

Using μn (n = 0, 1, 2) for the magnifications and θ±
0 for the

images’ positions, we can work out

μ±
0 = 1

2|β|η
[
|β|η ± (β2 + 2)

]
, (74)

μ+
1 = μ−

1 = −15

16

π

η3 , (75)
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μ±
2 = ± M

|β|η5
, (76)

where the factor M is

M = 8

3
D2β4 +

(
176

3
D2 − 32D − 32

)
β2

−128D + 192D2 + 675

128
π2 − 128 + 8

3
η2Ω. (77)

They hold three simple combinations of the magnifications
that

μ+
0 + μ−

0 = 1, (78)

μ+
1 − μ−

1 = 0, (79)

μ+
2 + μ−

2 = 0, (80)

and a more complicated but straightforward one

μ+
0 θ+

1 + μ−
0 θ−

1 + μ+
1 θ+

0 + μ−
1 θ−

0 = 0. (81)

3.6.3 Total magnification and centroid

If the two images in the weak deflection lensing could not be
resolved, the total magnification and centroid position would
be the observables. The total magnification is

μtot = |μ+| + |μ−|
= (2μ+

0 − 1) + 2ε2μ+
2 + O(ε3). (82)

Because of μ+
1 = μ−

1 , any term at the first-order approxima-
tion O(ε) never appears in μtot.

The centroid position is defined as a magnification-
weighted summation of the positive- and negative-parity
images [46]

Θcent = θ+|μ+| − θ−|μ−|
|μ+| + |μ−| = θ+μ+ + θ−μ−

μ+ − μ− , (83)

and it can be expanded in terms of ε into a series as

Θcent = Θ0 + εΘ1 + ε2Θ2 + O(ε3), (84)

where

Θ0 = |β|β
2 + 3

β2 + 2
, (85)

Θ1 = 0, (86)

Θ2 = |β|
η2(β2 + 2)2 S, (87)

and

S = 8

3
D2β6 +

(
104

3
D − 16

)
Dβ4 +

(
272

3
D2

− 64D + 32

)
β2 − 64

3
D2 − 675

128
π2 + 128

−8

3
η2Ω. (88)

It can be verified that μtot and Θcent reduce to their cor-
responding values for the Schwarzschild black hole when
Ω = 0 [46,47]; only their second-order approximation terms
are affected by the renormalization group improvement.

3.6.4 Differential time delay

The differential time delay between the positive- and negative-
parity images is

Δτ̂ = τ̂− − τ̂+, (89)

which can also be expanded into a series of ε as

Δτ̂ = Δτ̂0 + εΔτ̂1 + ε2Δτ̂2 + O(ε3), (90)

with

Δτ̂0 = 1

2
η|β| + ln

(
η + |β|
η − |β|

)
, (91)

Δτ̂1 = 15

16
π |β|,

Δτ̂2 = |β|η
[
−225

512
π2 β2 + 3

η2 +
(

10

3
D2 − 2D − 2

)
β2

+12D2 − 12D + 4 − 2

3
Ω

]
. (92)

It can likewise be found that the quantum correction only
appears in its second-order approximation term and when it
vanishes, i.e. Ω = 0, the differential time delay will have
the same value as the one of the Schwarzschild black hole
[46,47].

3.7 Practical observables

In practice, observables of the weak deflection lensing are
the positions, fluxes and time delays of the lensed images
and/or their combinations [47]. Therefore, it is necessary
to transform the scaled variables (β, θ, μ, τ̂ ) into practical
observables (B, ϑ, F, τ ), in which the observed flux F is the
magnified the one of the source Fsrc via F = |μ|Fsrc.

These practical observables and their combinations are

Ptot ≡ ϑ+ + ϑ−

= E + 15

16
επϑE

+ ε2

E3

[
−

(
8

3
D2 + 225

256
π2 − 16 + 4

3
Ω

)
B4

+
(

16D2 − 32D − 675

128
π2 + 96 − 8Ω

)
B2ϑ2

E

+
(

320

3
D2 − 128D−675

128
π2+128 − 32

3
Ω

)
ϑ4

E

]
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+O(ε3), (93)

ΔP ≡ ϑ+ − ϑ− = |B|
[

1 − 15

16
επ

ϑE

E
+ε2

(
8D2 + 225

256
π2 − 16 + 4

3
Ω

)
+ O(ε3)

]
,

(94)

Ftot ≡ F+ + F−

= Fsrc

|B|E
{
B2 + 2ϑ2

E + ε2

E4

[
16

3
D2B4ϑ2

E

+
(

352

3
D2 − 64D − 64 + 16

3
Ω

)
B2ϑ4

E

+
(

384D2 − 256D + 675

64
π2 − 256 + 64

3
Ω

)
ϑ6

E

]

+O(ε3)

}
, (95)

ΔF ≡ F+ − F−

= Fsrc − Fsrc
15

8
επ

ϑ3
E

E3 + O(ε3), (96)

Scent ≡ ϑ+F− − ϑ−F−

Ftot

= |B|B
2 + 3ϑ2

E

B2 + 2ϑ2
E

+ |B|
E2(B2 + 2ϑ2

E)2
ε2

[
8

3
D2B6

+
(

104

3
D − 16

)
DB4ϑ2

E

+
(

272

3
D2 − 64D + 32

)
B2ϑ4

E

+
(

− 64

3
D2 − 675

128
π2 + 128 − 8

3
η2Ω

)
ϑ6

E

]

+O(ε3), (97)

Δτ = DOLDOS

cDLS

{
1

2
|B|E + ϑ2

E ln

(E + |B|
E − |B|

)

+ε
15

16
πϑE|B| + ε2|B|E

[
− 225

512
π2 B2 + 3ϑ2

E

E2

+
(

10

3
D2−2D−2

)B2

ϑ2
E

+ 12D(D − 1)+4 − 2

3
Ω

]

+O(ε3)

}
, (98)

where

E =
√
B2 + 4ϑ2

E. (99)

In order to directly show the contributions of the renor-
malization group improvement in the weak deflection lens-
ing, the deviations of the practical observables from those of
the Schwarzschild black hole are defined as

δPtot ≡ Ptot − Ptot(Ω = 0)

= −4(β2 + 2)

3η
ϑEε2Ω + O(ε3), (100)

δΔP ≡ ΔP − ΔP(Ω = 0) = 4

3
ε2BΩ + O(ε3), (101)

δrtot ≡ 2.5 log10

[
Ftot

Ftot(Ω = 0)

]

= 40

(3 ln 10)η2(β2 + 2)
ε2Ω + O(ε3), (102)

δΔr ≡ 2.5 log10

[
ΔF

ΔF(Ω = 0)

]
= O(ε3), (103)

δScent ≡ Scent − Scent(Ω = 0)

= − 8|B|
3(β2 + 2)2 ε2Ω + O(ε3), (104)

δΔτ ≡ Δτ − Δτ(Ω = 0)

= −2

3
ε2 DOLDOS

cDLS
|B|EΩ + O(ε3), (105)

where the fluxes are changed into the magnitudes of bright-
ness and Ω can be further expressed as Ω = λΩ+(γ ). It
is clear that the differential flux of the two lensed images is
not suitable for detecting such a quantum correction because
of δΔr = O(ε3). While the existence of the renormaliza-
tion group improvement would make ΔP and Ftot larger
than their values of the Schwarzschild black hole (Ω = 0 or
λ = 0), it would cause Ptot, Scent and Δτ to be smaller.

3.8 Example of Sgr A*

Stars orbiting the supermassive black hole Sgr A* have been
directly observing and monitoring. We take Sgr A* as the lens
with M = 4.28 × 106 M� and DOL = 8.32 kpc [94] and
assume a source having a distance DLS = 10−3 pc from it.
The Einstein radius of the source θE is 710 microarcsecond
(μas) and the small parameter is ε = 7.2 × 10−3. Such
an assumption about the source is based on the observed
fact that the periastron distance of the star S175 around Sgr
A* is about 2 × 10−4 pc [94], five times smaller than the
assumed DLS. We note that, for the Schwarzschild black hole
in GR, when β = 0.5 in our assumed case, the practical
observables for the weak deflection lensing are Ptot = 1.48
milliarcsecond (mas), ΔP = 0.35 mas, Ftot/Fsrc = 2.18,
ΔF/Fsrc = 0.9952, Scent = 0.51 mas and Δτ = 86.1 s.

Figure 1 shows color-indexed δPtot, δΔP , δrtot, δScent

and δΔτ which are the deviations of the practical observ-
ables from those of the Schwarzschild black hole. It is found
that the absolute values of the deviations δPtot and δΔP
range from a few nanoarcsecond (nas) to several tens of nas
and |δScent| is less than 10 nas, all of which are far beyond
the current capability of measurement. After the two lensed
images might be able to resolve given their angular separation
Ptot ≈ 1.48 mas, the deviations of the total flux Δrtot and the
differential time delay δΔτ are respectively no more than
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Fig. 1 Color-indexed deviations of practical observables given by the
renormalization group improved Schwarzschild black hole from those
of the Schwarzschild one in the weak deflection lensing for Sgr A*.
From top to bottom, they are δPtot , δΔP , Δrtot , δScent and δΔτ when
β = 0.5

31 micro-mag (μmag) and -3 millisecond (ms), neither of
which are close to the ability of the present technology since
there are no enough photometric and temporal resolutions in
the astronomical observations for stars orbiting Sgr A* [88].
Therefore, it is not feasible to test and distinguish the renor-
malization group improved Schwarzschild black hole by the
weak deflection gravitational lensing in the near future.

4 Strong deflection lensing

In the strong deflection gravitational lensing, the closet
approach distance of the light ray r0 is very close to the
gravitational radius of the lens, making the bending angle
grow and eventually diverge. Thus, a photon can go around
the lens for at least one loop if its bending angle is more than
2π and then reach the observer, which can never appear in
the weak deflection lensing.

4.1 Strong deflection limit and observables

The method of strong deflection limit [58] is an analytic
scheme to handle the divergence of the bending angle. Its
fundamental idea is to expand the bending angle according
to the small difference between the impact parameter of the
light ray u and its value at the photon sphere. The photon
sphere can be defined as the innermost circular orbit for a
photon in this work and its radius rm is the biggest root of
the equation [57,95]

C ′(r)
C(r)

= A′(r)
A(r)

, (106)

where ′ means derivative with respect to r once. The top
panel of Fig. 2 shows dimensionless xm which is rescaled
by rm = xmm•. The renormalization group improvement
makes the radius of the photon sphere shrink compared to
its value xm = 3 for the Schwarzschild black hole. It is
similar with the Hayward and non-minimal Einstein–Yang–
Mills black holes [73,76], while the modified Hayward and
Lee-Wick black holes might have bigger or smaller photon
spheres depending on their model parameters [74,75]. After
such an expansion, the bending angle in the strong deflection
limit can be found as [58]

α̂(ϑ) = −ā log

(
ϑDOL

um
− 1

)
+b̄+O[(u−um) log(u−um)],

(107)

where the impact parameter u satisfies C(r0) = u2A(r0).
Hereafter, the subscriptm denotes that a quantity is evaluated
at the radius of the photon sphere r = rm , such as the impact
parameter at the photon sphere um holding the relation of
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the Schwarzschild black hole, their values are xm = 3, ā = 1 and
b̄ = −0.4002

C(rm) = u2
m A(rm). The coefficients of the bending angle in

the strong deflection limit can be found as [58]

ā = Rm

2
√

Γm
, (108)

b̄ = −π + bR + ā ln

(
2Γm

Am

)
, (109)

where

Γm = Cm(1 − Am)2
(
AmC ′′

m − Cm A′′
m

)
2A2

mC
′2
m

, (110)

Rm = 2(1 − Am)
√
AmBm

A′
m
√
Cm

, (111)

bR =
∫ 1

0

⎡
⎣ 2(1 − Am)

√
A(z)B(z)

A′(z)C(z)
√

Am
Cm

− A(z)
C(z)

− Rm

z
√

Γm

⎤
⎦ dz, (112)

and z is a variable defined as

z = A(r) − Am

1 − Am
. (113)

Here, ′′ means taking derivative against r twice. The middle
and bottom panels of Fig. 2 show ā and b̄ which have values
ā = 1 and b̄ = −0.4002 for the Schwarzschild black hole.
Both of them are more sensitively dependent on γ , while the
increment of the quantum correction γ for a given λ makes
ā bigger but cause b̄ to be smaller. These trends of ā and b̄
with respect to the quantum correction are similar with those
for the Bardeen and Hayward black holes [70,73].

We consider a nearly collinear configuration of the source,
the lens and the observer in which the source and the observer
are sufficiently far from the lens. Such a configuration allows
the lens Eq. (11) to be reduced as [96]

B = ϑ − DLS

DOS
[α̂(ϑ) − 2nπ ], n ∈ Z

+ (114)

in which the smallness of B, ϑ and α̂(ϑ) − 2nπ are ensured
by the nearly collinear alignment. The integer n gives the
number of loops of the photon moving around the lens, which
forms the relativistic images [53].

For a source with changing brightness, the differential
time delay between its two relativistic images can be obtained
by the total time span in the following form [92]

T = T̃ (r0) −
∫ ∞

DOL

∣∣∣∣ dt

dr

∣∣∣∣ dr −
∫ ∞

DLS

∣∣∣∣ dt

dr

∣∣∣∣ dr. (115)

Since the source and the observer are far from the lens, the
second and third terms in the above equation can be eas-
ily worked out by means of the approximation for the weak
deflection lensing. The first term originates from the strong
deflection lensing, depending on the closet approach r0 that

T̃ (r0) =
∫ ∞

r0

2

∣∣∣∣ dt

dr

∣∣∣∣ dr. (116)

The method of the strong deflection limit can also be
employed to expand such an integral as [92]

T̃ (u) = −ã ln

(
u

um
− 1

)
+ b̃ + O[(u − um) log(u − um)],

(117)

where ã and b̃ are its coefficients of the strong deflection
limit for the time span and ã = ā um for the renormalization
group improved Schwarzschild black hole.

With the bending angle in the strong deflection limit and
the lens equation reduced from the nearly collinear align-
ment, we are able to find out observables of the strong deflec-
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tion lensing, including the apparent radius of the photon
sphere θ∞, the angular separation between the first relativis-
tic image and other packed images s and their brightness
difference Δm, which are [58]

θ∞ = um
DOL

, (118)

s = θ∞ exp

(
b̄

ā
− 2π

ā

)
, (119)

Δm = 2.5 log10

[
exp

(
2π

ā

)]
, (120)

as well as the differential delay between the first and second
relativistic images ΔT2,1 and the ratio of its correction η2,1,
which are [92]

ΔT2,1 = ΔT 0
2,1 + ΔT 1

2,1, (121)

η2,1 = ΔT 1
2,1

ΔT2,1
, (122)

with

ΔT 0
2,1 = 2πum, (123)

ΔT 1
2,1 = 2

√
Bm

Am

√
um
cm

exp

(
b̄

ā

)

×
[

exp

(
−π

ā

)
− exp

(
−2π

ā

)]
(124)

and

cm = Γm

√
Am

C3
m

C ′
m

2

2(1 − Am)2 . (125)

Because ΔT 0
2,1 is proportional to um , it can not tell new

insight and extra information would be given by ΔT 1
2,1.

For the observables of the strong deflection lensing by the
renormalization group improved Schwarzschild black hole,
their deviations from those of the Schwarzschild black hole
in GR can be demonstrated as

δθ∞ = θ∞ − θ∞(λ = γ = 0), (126)

δs = s − s(λ = γ = 0), (127)

δΔm = Δm − Δm(λ = γ = 0), (128)

δΔT2,1 = ΔT2,1 − ΔT2,1(λ = γ = 0), (129)

δη2,1 = η2,1 − η2,1(λ = γ = 0). (130)

4.2 Example for Sgr A*

Taking Sgr A* as the lens with M = 4.28 × 106 M� and
DOL = 8.32 kpc [94] for the strong deflection lensing, we can
estimate its observables. In the case that Sgr A* is assumed to
be a Schwarzschild black hole in GR, these observables are
θ∞ = 26.4 μas, s = 33.0 nas, Δm = 6.8 mag, ΔT2,1 = 11.6
min and η2,1 = 1.5%.

Figure 3 shows color-indexed deviations of the observ-
ables given by the renormalization group improved
Schwarzschild black hole from those of the Schwarzschild
black hole in GR, i.e., δθ∞, δs, δΔm, δΔT2,1 and δη2,1.
The existence of the renormalization group improvement can
shrink the apparent radius of the photon sphere by nearly 3.9
μas in the most significant situation, which is within the abil-
ity of EHT [7]. For the relativistic images, such a quantum
correction would enlarge their separation s and ratio of time
delay components η2,1; meanwhile, it would reduce their
brightness difference Δm and differential time delay ΔT2,1.
However, the angular resolution demanded to separate the
relativistic images is far beyond the present technology, mak-
ing it impossible to detect these observables, not to mention
their deviations from those of the Schwarzschild black hole.
Therefore, it is theoretically possible to distinguish the renor-
malization group improved Schwarzschild black hole from
the Schwarzschild black hole only by measuring the apparent
size of the photon sphere (shadow) of Sgr A*, whereas any
solid conclusion of detection has to consider effects on the
shadow caused by the spin of Sgr A* and the highly compli-
cated general relativistic magnetohydrodynamics (GRMHD)
of plasma around Sgr A*, which are beyond the scope of this
work.

4.3 Example for M87*

Following the same approach, we can find the observables
in the strong deflection lensing for M87* with mass m• =
6.5×109 M� and distance DOL = 16.9 Mpc [12]. Based on
Eqs. (118)–(122), we find the observables for M87* can be
obtained by the following scaling relations:

θ∞,M87∗ = m•,M87∗
m•,SgrA∗

DOL,SgrA∗
DOL,M87∗

θ∞,SgrA∗

= 0.7484 θ∞,SgrA∗, (131)

sM87∗ = 0.7484 sSgrA∗, (132)

ΔmM87∗ = ΔmSgrA∗, (133)

ΔT2,1,M87∗ = m•,M87∗
m•,SgrA∗

ΔT2,1,SgrA∗

= 1.519 × 103ΔT2,1,SgrA∗, (134)

η2,1,M87∗ = η2,1,SgrA∗. (135)

They will not change the patterns in Fig. 3 but the ranges
of these deviations. As a reference, if assumed to be a
Schwarzschild black hole, the observables for M87* in the
strong deflection lensing are θ∞ = 19.7 μas, s = 24.7 nas,
Δm = 6.8 mag, ΔT2,1 = 294 hr and η2,1 = 1.5% in which
the values of Δm and η2,1 remain unchanged with respect to
those for Sgr A*.

We find that, among the deviations due to the renormal-
ization group improvement for M87*, δθ∞, δs and δΔT2,1
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Fig. 3 Color-indexed deviations of observables in the strong deflec-
tion lensing for the renormalization group improvement Schwarzschild
black hole from those of the Schwarzschild one for Sgr A*. From top
to bottom, they are δθ∞, δs, δΔm, δΔT2,1 and δη2,1

can respectively reach −2.9 μas, 105 nas and −34 h, while
δΔm and δη2,1 are unchanged. It is possible to detect such a
quantum correction by measuring the deviation of the shadow
δθ∞ whereas other deviations associated with the relativis-
tic images are impractical due to shortage of enough angular
resolution. We have to emphasize again that it must be very
careful when the measurement by EHT [7] is straightfor-
wardly used to constrain the renormalization group improved
Schwarzschild black hole discussed here, because the mod-
els for estimating properties of M87*’s shadow [12] have
two indispensable ingredients: the rotation of a black hole
and GRMHD of plasma around it, neither of which are con-
sidered in this work. Nevertheless, based on the measured
diameter of 42 ± 3 μas of M87*’s shadow [7], we can esti-
mate rough and tentative bounds on λ and γ as 0.2 ≤ λ ≤ 10
and 0.02 ≤ γ ≤ 0.22 in the domain D by making use of re-
scaled Fig. 3 according to M87*, which, however, are simply
hints for this quantum effect and not genuine constraints on
it.

5 Conclusions and discussion

The weak and strong deflection gravitational lensing by the
renormalization group improved Schwarzschild black hole
are studied. The bending angle in the weak deflection lens-
ing is much less than 1, while the angle in the strong deflec-
tion lensing is much larger than 1. Its observables of the
weak deflection lensing, such as the positions, magnifications
and differential time delay of lensed images, are obtained;
the resulting practical observables and their deviations from
those of the Schwarzschild black hole are also constructed
and analysed. For a source orbiting Sgr A*, it is possible
to measure the total angular separation of its lensed images,
whereas none of the deviations of the observables are within
the reach of the current technology, making such a black hole
indistinguishable from the Schwarzschild one by the weak
deflection lensing. Its observables of the strong deflection
lensing, including the apparent radius of the photon sphere
(shadow) together with the angular separation, the brightness
difference and differential time delay between the relativis-
tic images, are obtained; their deviations from those of the
Schwarzschild black hole are also worked out. Taking Sgr
A* and M87* as the lenses, We find that the current tech-
nology can only measure the apparent sizes of the shadows
of these two supermassive black holes and their deviations
from those of Schwarzschild one. Based on the measured
diameter for M87*’s shadow [7], rough and tentative bounds
on the renormalization group improvement parameters are
estimated as 0.2 ≤ λ ≤ 10 and 0.02 ≤ γ ≤ 0.22.

The renormalization group improved Schwarzschild black
hole is an irrotational one that is disfavored by EHT for M87*
[7]. General relativistic magnetohydrodynamics of plasma
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around the black hole is not included in our study, though it
is important to explain the observed asymmetric ring around
M87* [11]. These two key ingredients harm direct usage
of M87*’s shadow to constrain the renormalization group
improved Schwarzschild black hole in a self-consistent way.
Therefore, we only provide some hints of its gravitational
lensing signals. More sophisticated investigations with inclu-
sion of its spin in the weak [97–113] and strong [114–118]
deflection lensing as well as general relativistic magnetohy-
drodynamics of plasma are indeed needed.
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19. M. Ambrus, P. Hájíček, Phys. Rev. D 72(6), 064025 (2005).
https://doi.org/10.1103/PhysRevD.72.064025

20. C. Rovelli, F. Vidotto, Int. J. Mod. Phys. D 23(12), 1442026
(2014). https://doi.org/10.1142/S0218271814420267

21. C. Barceló, R. Carballo-Rubio, L.J. Garay, G. Jannes, Class.
Quantum Gravity 32(3), 035012 (2015). https://doi.org/10.1088/
0264-9381/32/3/035012

22. P.O. Mazur, E. Mottola, Proc. Natl. Acad. Sci. USA 101, 9545
(2004). https://doi.org/10.1073/pnas.0402717101

23. M. Visser, D.L. Wiltshire, Class. Quantum Gravity 21, 1135
(2004). https://doi.org/10.1088/0264-9381/21/4/027

24. C. Barceló, S. Liberati, S. Sonego, M. Visser, Phys. Rev. D 77(4),
044032 (2008). https://doi.org/10.1103/PhysRevD.77.044032

25. S.D. Mathur, Class. Quantum Gravity 26(22), 224001 (2009).
https://doi.org/10.1088/0264-9381/26/22/224001

26. S.D. Mathur, D. Turton, J. High Energy Phys. 01, 34 (2014).
https://doi.org/10.1007/JHEP01(2014)034

27. B. Guo, S. Hampton, S.D. Mathur, J. High Energy Phys. 07, 162
(2018). https://doi.org/10.1007/JHEP07(2018)162

28. R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser, Phys. Rev.
D 98(12), 124009 (2018). https://doi.org/10.1103/PhysRevD.98.
124009

29. V. Cardoso, E. Franzin, P. Pani, Phys. Rev. Lett. 116(17), 171101
(2016). https://doi.org/10.1103/PhysRevLett.116.171101

30. V. Cardoso, E. Franzin, P. Pani, Phys. Rev. Lett. 117(8), 089902
(2016). https://doi.org/10.1103/PhysRevLett.117.089902

31. V. Cardoso, P. Pani, Nat. Astron. 1, 586 (2017). https://doi.org/
10.1038/s41550-017-0225-y

32. S.M. Du, Y. Chen, Phys. Rev. Lett. 121(5), 051105 (2018). https://
doi.org/10.1103/PhysRevLett.121.051105

33. S.B. Giddings, Phys. Rev. D 90(12), 124033 (2014). https://doi.
org/10.1103/PhysRevD.90.124033

34. S.B. Giddings, Class. Quantum Gravity 33(23), 235010 (2016).
https://doi.org/10.1088/0264-9381/33/23/235010

35. S.D. Mathur, Fortschritte der Physik 53, 793 (2005). https://doi.
org/10.1002/prop.200410203

36. A. Almheiri, D. Marolf, J. Polchinski, J. Sully, J. High Energy
Phys. 2, 62 (2013). https://doi.org/10.1007/JHEP02(2013)062

37. S.L. Liebling, C. Palenzuela, Living Rev. Relat. 20, 5 (2017).
https://doi.org/10.1007/s41114-017-0007-y

38. V. Cardoso, P. Pani, Living Rev. Relat. 22(1), 4 (2019). https://
doi.org/10.1007/s41114-019-0020-4

39. A. Bonanno, M. Reuter, Phys. Rev. D 62(4), 043008 (2000).
https://doi.org/10.1103/PhysRevD.62.043008

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.3847/2041-8213/ab0ec7
https://doi.org/10.3847/2041-8213/ab0c96
https://doi.org/10.3847/2041-8213/ab0c57
https://doi.org/10.3847/2041-8213/ab0e85
https://doi.org/10.3847/2041-8213/ab0f43
https://doi.org/10.3847/2041-8213/ab1141
https://doi.org/10.1007/lrr-2005-11
https://doi.org/10.1007/lrr-2005-11
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevLett.96.031103
https://doi.org/10.1103/PhysRevD.95.064043
https://doi.org/10.1103/PhysRevD.96.104028
https://doi.org/10.1103/PhysRevD.96.104028
https://doi.org/10.1016/0370-2693(81)90542-6
https://doi.org/10.1103/PhysRevD.72.064025
https://doi.org/10.1142/S0218271814420267
https://doi.org/10.1088/0264-9381/32/3/035012
https://doi.org/10.1088/0264-9381/32/3/035012
https://doi.org/10.1073/pnas.0402717101
https://doi.org/10.1088/0264-9381/21/4/027
https://doi.org/10.1103/PhysRevD.77.044032
https://doi.org/10.1088/0264-9381/26/22/224001
https://doi.org/10.1007/JHEP01(2014)034
https://doi.org/10.1007/JHEP07(2018)162
https://doi.org/10.1103/PhysRevD.98.124009
https://doi.org/10.1103/PhysRevD.98.124009
https://doi.org/10.1103/PhysRevLett.116.171101
https://doi.org/10.1103/PhysRevLett.117.089902
https://doi.org/10.1038/s41550-017-0225-y
https://doi.org/10.1038/s41550-017-0225-y
https://doi.org/10.1103/PhysRevLett.121.051105
https://doi.org/10.1103/PhysRevLett.121.051105
https://doi.org/10.1103/PhysRevD.90.124033
https://doi.org/10.1103/PhysRevD.90.124033
https://doi.org/10.1088/0264-9381/33/23/235010
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1002/prop.200410203
https://doi.org/10.1007/JHEP02(2013)062
https://doi.org/10.1007/s41114-017-0007-y
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1103/PhysRevD.62.043008


1016 Page 14 of 15 Eur. Phys. J. C (2019) 79 :1016

40. R. Yang, Phys. Rev. D 92(8), 084011 (2015). https://doi.org/10.
1103/PhysRevD.92.084011

41. V. Perlick, Living Rev. Relat. 7, 9 (2004). https://doi.org/10.
12942/lrr-2004-9

42. P. Schneider, J. Ehlers, E.E. Falco, Gravitational Lenses
(Springer-Verlag, Berlin, 1992). https://doi.org/10.1007/
978-3-662-03758-4

43. A.O. Petters, H. Levine, J. Wambsganss, Singularity Theory and
Gravitational Lensing (Birkhäuser, Basel, 2001). https://doi.org/
10.1007/978-1-4612-0145-8

44. P. Schneider, C. Kochanek, J. Wambsganss, inGravitational Lens-
ing: Strong,Weak andMicro, ed. by G. Meylan, P. Jetzer, P. North.
Saas-Fee Advanced Courses, vol 33 (Springer, Berlin, Heidelberg,
2006). https://doi.org/10.1007/978-3-540-30310-7

45. K.C. Sahu, J. Anderson, S. Casertano, H.E. Bond, P. Bergeron,
E.P. Nelan, L. Pueyo, T.M. Brown, A. Bellini, Z.G. Levay, J.
Sokol, aff1, M. Dominik, A. Calamida, N. Kains, M. Livio, Sci-
ence 356, 1046 (2017). https://doi.org/10.1126/science.aal2879

46. C.R. Keeton, A.O. Petters, Phys. Rev. D 72(10), 104006 (2005).
https://doi.org/10.1103/PhysRevD.72.104006

47. C.R. Keeton, A.O. Petters, Phys. Rev. D 73(4), 044024 (2006).
https://doi.org/10.1103/PhysRevD.73.044024

48. C.R. Keeton, A.O. Petters, Phys. Rev. D 73(10), 104032 (2006).
https://doi.org/10.1103/PhysRevD.73.104032

49. T.E. Collett, L.J. Oldham, R.J. Smith, M.W. Auger, K.B. West-
fall, D. Bacon, R.C. Nichol, K.L. Masters, K. Koyama, R. van
den Bosch, Science 360, 1342 (2018). https://doi.org/10.1126/
science.aao2469

50. G. Li, X.M. Deng, Ann. Phys. 382, 136 (2017). https://doi.org/
10.1016/j.aop.2017.05.001

51. W.G. Cao, Y. Xie, Eur. Phys. J. C 78, 191 (2018). https://doi.org/
10.1140/epjc/s10052-018-5684-5

52. J.L. Synge, Mon. Not. R. Astron. Soc. 131, 463 (1966). https://
doi.org/10.1093/mnras/131.3.463

53. C. Darwin, Proc. R. Soc. Lond. Ser. A 249, 180 (1959). https://
doi.org/10.1098/rspa.1959.0015

54. V. Bozza, Gener. Relat. Gravit. 42, 2269 (2010). https://doi.org/
10.1007/s10714-010-0988-2

55. P.V.P. Cunha, C.A.R. Herdeiro, Gener. Relat. Gravit. 50, 42
(2018). https://doi.org/10.1007/s10714-018-2361-9

56. K.S. Virbhadra, D. Narasimha, S.M. Chitre, Astron. Astrophys.
337, 1 (1998)

57. K.S. Virbhadra, G.F.R. Ellis, Phys. Rev. D 62(8), 084003 (2000)
58. V. Bozza, Phys. Rev. D 66(10), 103001 (2002). https://doi.org/

10.1103/PhysRevD.66.103001
59. V. Bozza, Phys. Rev. D 67(10), 103006 (2003). https://doi.org/

10.1103/PhysRevD.67.103006
60. S.E. Vázquez, E.P. Esteban, Nuovo Cimento B Ser. 119, 489

(2004). https://doi.org/10.1393/ncb/i2004-10121-y
61. A.Y. Bin-Nun, Phys. Rev. D 81(12), 123011 (2010). https://doi.

org/10.1103/PhysRevD.81.123011
62. G.N. Gyulchev, I.Z. Stefanov, Phys. Rev. D 87(6), 063005 (2013).

https://doi.org/10.1103/PhysRevD.87.063005
63. S.S. Zhao, Y. Xie, J. Cosmol. Astropart. Phys. 07, 007 (2016).

https://doi.org/10.1088/1475-7516/2016/07/007
64. X. Lu, F.W. Yang, Y. Xie, Eur. Phys. J. C 76, 357 (2016). https://

doi.org/10.1140/epjc/s10052-016-4218-2
65. S. Chakraborty, S. SenGupta, J. Cosmol. Astropart. Phys. 7, 045

(2017). https://doi.org/10.1088/1475-7516/2017/07/045
66. H. Ghaffarnejad, M.A. Mojahedi, Res. Astron. Astrophys. 17, 052

(2017). https://doi.org/10.1088/1674-4527/17/6/52
67. H. Ghaffarnejad, H. Neyad, M.A. Mojahedi, Astrophys.

Space Sci. 346, 497 (2013). https://doi.org/10.1007/
s10509-013-1462-x

68. C. Ding, C. Liu, Y. Xiao, L. Jiang, R.G. Cai, Phys. Rev. D 88(10),
104007 (2013). https://doi.org/10.1103/PhysRevD.88.104007

69. P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 632(4), 547
(2006). https://doi.org/10.1016/j.physletb.2005.11.004

70. E.F. Eiroa, C.M. Sendra, Class. Quantum Gravity 28(8), 085008
(2011). https://doi.org/10.1088/0264-9381/28/8/085008

71. J. Schee, Z. Stuchlík, J. Cosmol. Astropart. Phys. 6, 048 (2015).
https://doi.org/10.1088/1475-7516/2015/06/048

72. H. Ghaffarnejad, H. niad, Int. J. Theor. Phys. 55(3), 1492 (2016).
https://doi.org/10.1007/s10773-015-2787-8

73. S.W. Wei, Y.X. Liu, C.E. Fu, Adv. High Energy Phys. 2015,
454217 (2015). https://doi.org/10.1155/2015/454217

74. S.S. Zhao, Y. Xie, Eur. Phys. J. C 77, 272 (2017). https://doi.org/
10.1140/epjc/s10052-017-4850-5

75. S.S. Zhao, Y. Xie, Phys. Lett. B 774, 357 (2017). https://doi.org/
10.1016/j.physletb.2017.09.090

76. F.Y. Liu, Y.F. Mai, W.Y. Wu, Y. Xie, Phys. Lett. B 795, 475 (2019).
https://doi.org/10.1016/j.physletb.2019.06.052

77. Z. Horváth, L.Á. Gergely, Z. Keresztes, T. Harko, F.S.N. Lobo,
Phys. Rev. D 84(8), 083006 (2011). https://doi.org/10.1103/
PhysRevD.84.083006

78. E.F. Eiroa, C.M. Sendra, Phys. Rev. D 86(8), 083009 (2012).
https://doi.org/10.1103/PhysRevD.86.083009

79. R.N. Izmailov, R.K. Karimov, E.R. Zhdanov, K.K. Nand i, Mon.
Not. R. Astron. Soc. 483(3), 3754 (2019). https://doi.org/10.1093/
mnras/sty3350

80. X. Lu, Y. Xie, Mod. Phys. Lett. A 34(20), 1950152 (2019). https://
doi.org/10.1142/S0217732319501529

81. X. Pang, J. Jia, Class. Quantum Gravity 36(6), 065012 (2019).
https://doi.org/10.1088/1361-6382/ab0512

82. C.Y. Wang, Y.F. Shen, Y. Xie, J. Cosmol. Astropart. Phys. 04, 022
(2019). https://doi.org/10.1088/1475-7516/2019/04/022

83. H.W. Hamber, S. Liu, Phys. Lett. B 357(1–2), 51 (1995). https://
doi.org/10.1016/0370-2693(95)00790-R

84. N.E. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, Phys. Rev.
D 67(8), 084033 (2003). https://doi.org/10.1103/PhysRevD.67.
084033

85. P. Bargueño, S. Bravo Medina, M. Nowakowski, D. Batic,
Europhys. Lett. 117(6), 60006 (2017). https://doi.org/10.1209/
0295-5075/117/60006

86. A. Held, R. Gold, A. Eichhorn, J. Cosmol. Astropart. Phys.
2019(6), 029 (2019). https://doi.org/10.1088/1475-7516/2019/
06/029

87. GRAVITY Collaboration, Astron. Astrophys. 602, A94 (2017).
https://doi.org/10.1051/0004-6361/201730838

88. GRAVITY Collaboration, Astron. Astrophys. 615, L15 (2018).
https://doi.org/10.1051/0004-6361/201833718

89. GRAVITY Collaboration, Astron. Astrophys. 618, L10 (2018).
https://doi.org/10.1051/0004-6361/201834294

90. S. Weinberg, Gravitation and Cosmology: principles and Appli-
cations of the General Theory of Relativity (Wiley, New York,
1972)

91. S. Refsdal, Mon. Not. R. Astron. Soc. 128, 295 (1964). https://
doi.org/10.1093/mnras/128.4.295

92. V. Bozza, L. Mancini, Gener. Relat. Gravit. 36, 435 (2004). https://
doi.org/10.1023/B:GERG.0000010486.58026.4f

93. K.S. Virbhadra, C.R. Keeton, Phys. Rev. D77(12), 124014 (2008).
https://doi.org/10.1103/PhysRevD.77.124014

94. S. Gillessen, P.M. Plewa, F. Eisenhauer, R. Sari et al., Astrophys.
J. 837, 30 (2017). https://doi.org/10.3847/1538-4357/aa5c41

95. C.M. Claudel, K.S. Virbhadra, G.F.R. Ellis, J. Math. Phys. 42, 818
(2001). https://doi.org/10.1063/1.1308507

96. V. Bozza, S. Capozziello, G. Iovane, G. Scarpetta, Gener.
Relat. Gravit. 33, 1535 (2001). https://doi.org/10.1023/A:
1012292927358

97. J. Ibanez, Astron. Astrophys. 124, 175 (1983)
98. I. Bray, Phys. Rev. D 34, 367 (1986). https://doi.org/10.1103/

PhysRevD.34.367

123

https://doi.org/10.1103/PhysRevD.92.084011
https://doi.org/10.1103/PhysRevD.92.084011
https://doi.org/10.12942/lrr-2004-9
https://doi.org/10.12942/lrr-2004-9
https://doi.org/10.1007/978-3-662-03758-4
https://doi.org/10.1007/978-3-662-03758-4
https://doi.org/10.1007/978-1-4612-0145-8
https://doi.org/10.1007/978-1-4612-0145-8
https://doi.org/10.1007/978-3-540-30310-7
https://doi.org/10.1126/science.aal2879
https://doi.org/10.1103/PhysRevD.72.104006
https://doi.org/10.1103/PhysRevD.73.044024
https://doi.org/10.1103/PhysRevD.73.104032
https://doi.org/10.1126/science.aao2469
https://doi.org/10.1126/science.aao2469
https://doi.org/10.1016/j.aop.2017.05.001
https://doi.org/10.1016/j.aop.2017.05.001
https://doi.org/10.1140/epjc/s10052-018-5684-5
https://doi.org/10.1140/epjc/s10052-018-5684-5
https://doi.org/10.1093/mnras/131.3.463
https://doi.org/10.1093/mnras/131.3.463
https://doi.org/10.1098/rspa.1959.0015
https://doi.org/10.1098/rspa.1959.0015
https://doi.org/10.1007/s10714-010-0988-2
https://doi.org/10.1007/s10714-010-0988-2
https://doi.org/10.1007/s10714-018-2361-9
https://doi.org/10.1103/PhysRevD.66.103001
https://doi.org/10.1103/PhysRevD.66.103001
https://doi.org/10.1103/PhysRevD.67.103006
https://doi.org/10.1103/PhysRevD.67.103006
https://doi.org/10.1393/ncb/i2004-10121-y
https://doi.org/10.1103/PhysRevD.81.123011
https://doi.org/10.1103/PhysRevD.81.123011
https://doi.org/10.1103/PhysRevD.87.063005
https://doi.org/10.1088/1475-7516/2016/07/007
https://doi.org/10.1140/epjc/s10052-016-4218-2
https://doi.org/10.1140/epjc/s10052-016-4218-2
https://doi.org/10.1088/1475-7516/2017/07/045
https://doi.org/10.1088/1674-4527/17/6/52
https://doi.org/10.1007/s10509-013-1462-x
https://doi.org/10.1007/s10509-013-1462-x
https://doi.org/10.1103/PhysRevD.88.104007
https://doi.org/10.1016/j.physletb.2005.11.004
https://doi.org/10.1088/0264-9381/28/8/085008
https://doi.org/10.1088/1475-7516/2015/06/048
https://doi.org/10.1007/s10773-015-2787-8
https://doi.org/10.1155/2015/454217
https://doi.org/10.1140/epjc/s10052-017-4850-5
https://doi.org/10.1140/epjc/s10052-017-4850-5
https://doi.org/10.1016/j.physletb.2017.09.090
https://doi.org/10.1016/j.physletb.2017.09.090
https://doi.org/10.1016/j.physletb.2019.06.052
https://doi.org/10.1103/PhysRevD.84.083006
https://doi.org/10.1103/PhysRevD.84.083006
https://doi.org/10.1103/PhysRevD.86.083009
https://doi.org/10.1093/mnras/sty3350
https://doi.org/10.1093/mnras/sty3350
https://doi.org/10.1142/S0217732319501529
https://doi.org/10.1142/S0217732319501529
https://doi.org/10.1088/1361-6382/ab0512
https://doi.org/10.1088/1475-7516/2019/04/022
https://doi.org/10.1016/0370-2693(95)00790-R
https://doi.org/10.1016/0370-2693(95)00790-R
https://doi.org/10.1103/PhysRevD.67.084033
https://doi.org/10.1103/PhysRevD.67.084033
https://doi.org/10.1209/0295-5075/117/60006
https://doi.org/10.1209/0295-5075/117/60006
https://doi.org/10.1088/1475-7516/2019/06/029
https://doi.org/10.1088/1475-7516/2019/06/029
https://doi.org/10.1051/0004-6361/201730838
https://doi.org/10.1051/0004-6361/201833718
https://doi.org/10.1051/0004-6361/201834294
https://doi.org/10.1093/mnras/128.4.295
https://doi.org/10.1093/mnras/128.4.295
https://doi.org/10.1023/B:GERG.0000010486.58026.4f
https://doi.org/10.1023/B:GERG.0000010486.58026.4f
https://doi.org/10.1103/PhysRevD.77.124014
https://doi.org/10.3847/1538-4357/aa5c41
https://doi.org/10.1063/1.1308507
https://doi.org/10.1023/A:1012292927358
https://doi.org/10.1023/A:1012292927358
https://doi.org/10.1103/PhysRevD.34.367
https://doi.org/10.1103/PhysRevD.34.367


Eur. Phys. J. C (2019) 79 :1016 Page 15 of 15 1016

99. S.A. Klioner, Sov. Astron. 35, 523 (1991)
100. J.F. Glicenstein, Astron. Astrophys. 343, 1025 (1999)
101. M. Sereno, F. de Luca, Phys. Rev. D 74(12), 123009 (2006).

https://doi.org/10.1103/PhysRevD.74.123009
102. M.C. Werner, A.O. Petters, Phys. Rev. D 76(6), 064024 (2007).

https://doi.org/10.1103/PhysRevD.76.064024
103. M. Sereno, F. de Luca, Phys. Rev. D 78(2), 023008 (2008). https://

doi.org/10.1103/PhysRevD.78.023008
104. A.B. Aazami, C.R. Keeton, A.O. Petters, J. Math. Phys. 52(9),

092502 (2011). https://doi.org/10.1063/1.3642614
105. A.B. Aazami, C.R. Keeton, A.O. Petters, J. Math. Phys. 52(10),

102501 (2011). https://doi.org/10.1063/1.3642616
106. G. He, W. Lin, Int. J. Mod. Phys. D 23, 1450031 (2014). https://

doi.org/10.1142/S021827181450031X
107. G. He, C. Jiang, W. Lin, Int. J. Mod. Phys. D 23, 1450079 (2014).

https://doi.org/10.1142/S0218271814500795
108. X.M. Deng, Int. J. Mod. Phys. D 24, 1550056 (2015). https://doi.

org/10.1142/S021827181550056X
109. G.S. He, W.B. Lin, Res. Astron. Astrophys.15, 646 (2015). https://

doi.org/10.1088/1674-4527/15/5/003

110. X.M. Deng, Int. J. Mod. Phys. D 25, 1650082 (2016). https://doi.
org/10.1142/S0218271816500826

111. G. He, W. Lin, Phys. Rev. D 93(2), 023005 (2016). https://doi.
org/10.1103/PhysRevD.93.023005

112. G. He, W. Lin, Phys. Rev. D 94(6), 063011 (2016). https://doi.
org/10.1103/PhysRevD.94.063011

113. G. He, W. Lin, Class. Quantum Gravity 34(10), 105006 (2017).
https://doi.org/10.1088/1361-6382/aa691d

114. J.M. Bardeen, in Black Holes (Les Astres Occlus), ed. by
C. Dewitt, B.S. Dewitt (Gordon and Breach, 1973), pp. 215–239

115. V. Bozza, F. de Luca, G. Scarpetta, M. Sereno, Phys. Rev. D 72(8),
083003 (2005). https://doi.org/10.1103/PhysRevD.72.083003

116. V. Bozza, F. de Luca, G. Scarpetta, Phys. Rev. D 74(6), 063001
(2006). https://doi.org/10.1103/PhysRevD.74.063001

117. V. Bozza, Phys. Rev. D 78(6), 063014 (2008). https://doi.org/10.
1103/PhysRevD.78.063014

118. S.V. Iyer, E.C. Hansen, Phys. Rev. D 80(12), 124023 (2009).
https://doi.org/10.1103/PhysRevD.80.124023

123

https://doi.org/10.1103/PhysRevD.74.123009
https://doi.org/10.1103/PhysRevD.76.064024
https://doi.org/10.1103/PhysRevD.78.023008
https://doi.org/10.1103/PhysRevD.78.023008
https://doi.org/10.1063/1.3642614
https://doi.org/10.1063/1.3642616
https://doi.org/10.1142/S021827181450031X
https://doi.org/10.1142/S021827181450031X
https://doi.org/10.1142/S0218271814500795
https://doi.org/10.1142/S021827181550056X
https://doi.org/10.1142/S021827181550056X
https://doi.org/10.1088/1674-4527/15/5/003
https://doi.org/10.1088/1674-4527/15/5/003
https://doi.org/10.1142/S0218271816500826
https://doi.org/10.1142/S0218271816500826
https://doi.org/10.1103/PhysRevD.93.023005
https://doi.org/10.1103/PhysRevD.93.023005
https://doi.org/10.1103/PhysRevD.94.063011
https://doi.org/10.1103/PhysRevD.94.063011
https://doi.org/10.1088/1361-6382/aa691d
https://doi.org/10.1103/PhysRevD.72.083003
https://doi.org/10.1103/PhysRevD.74.063001
https://doi.org/10.1103/PhysRevD.78.063014
https://doi.org/10.1103/PhysRevD.78.063014
https://doi.org/10.1103/PhysRevD.80.124023

	Weak and strong deflection gravitational lensing by a renormalization group improved Schwarzschild black hole
	Abstract 
	1 Introduction
	2 Metric and gravitational lensing
	2.1 Metric
	2.2 Gravitational lensing

	3 Weak deflection lensing
	3.1 Bending angle
	3.2 Lens equation
	3.3 Image positions
	3.4 Magnifications
	3.5 Time delay
	3.6 Relations
	3.6.1 Position relations
	3.6.2 Magnification relations
	3.6.3 Total magnification and centroid
	3.6.4 Differential time delay

	3.7 Practical observables
	3.8 Example of Sgr A*

	4 Strong deflection lensing
	4.1 Strong deflection limit and observables
	4.2 Example for Sgr A*
	4.3 Example for M87*

	5 Conclusions and discussion
	Acknowledgements
	References




