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Abstract We calculate the quasinormal modes of static
spherically symmetric dilatonic Reissner–Nordström black
holes for general values of the electric charge and of the dila-
ton coupling constant. The spectrum of quasinormal modes
is composed of five families of modes: polar and axial
gravitational-led modes, polar and axial electromagnetic-
led modes, and polar scalar-led modes. We make a quan-
titative analysis of the spectrum, revealing its dependence
on the electric charge and on the dilaton coupling con-
stant. For large electric charge and large dilaton coupling,
strong deviations from the Reissner–Nordström modes arise.
In particular, isospectrality is strongly broken, both for the
electromagnetic-led and the gravitational-led modes, for
large values of the charge.

1 Introduction

In recent years the LIGO-VIRGO collaboration has reported
the direct detection of gravitational waves from merging
black holes [1–5], and neutron stars [6]. These detections
have also been studied in the electromagnetic spectrum [7–
10], representing new examples of multi-messenger astron-
omy [11]. Moreover, the current O3 run of the LIGO-VIRGO
collaboration is already reporting a large amount of new
events [12].

Gravitational waves following the merging of black holes
possess a ringdown phase characterized by a spectrum of
frequencies and damping times. This spectrum can be studied
using quasinormal modes (QNMs) (see e.g. [13–16]). Based
on the next generations of gravitational wave detectors, it will
become possible to directly test the regime of strong gravity
by comparing the theoretically predicted ringdown spectrum
of black holes with direct measurements (see e.g. [17–19]).
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One interesting aspect here is to test for the existence
of scalar hair on black holes [20]. In General Relativity
(GR) coupled to Maxwell electrodynamics, i.e., in Einstein–
Maxwell (EM) theory, black holes possess no hair. They
are uniquely described by their global charges, mass M and
angular momentum J , and electric Q and magnetic charge P
(as discussed in detail, e.g. in [21]). However, there are vari-
ous mechanisms that allow to circumvent the no-hair theorem
[22,23], leading to scalar hair on black holes. These typically
involve non-trivial couplings of a scalar field to an invariant.

From a string theory perspective, the scalar field would
correspond to a dilaton, with an exponential coupling to
the invariant. Choosing the invariant to be the Lagrangian
of the electromagnetic field one obtains the static dilatonic
charged black holes of Gibbons and Maeda [24,25] and their
rotating generalizations [26–28]. Choosing for the invariant
a curvature invariant, as for instance, the Gauß–Bonnet term,
Einstein–Gauß–Bonnet–dilaton (EGBd) black holes emerge
[29–33]. In both cases the black holes carry non-trivial scalar
hair, and the Reissner–Nordström (RN) and Kerr black holes,
respectively, are no longer solutions of the field equations.
We note that in both cases recently, much interest has focused
on more general coupling functions (see e.g. [34–39]), since
these allow for spontaneously scalarized black holes, when
the leading term of the coupling function is quadratic in the
scalar field.

Here we will focus on static spherically symmetric
charged black holes with dilatonic coupling function to
the Lagrangian of the electromagnetic field. The resulting
Einstein–Maxwell–dilaton (EMD) theory then features a
dilaton coupling constant γ in the coupling function, which
we treat as a free parameter, following Gibbons and Maeda
[24,25,40]. We note that for γ = 0, the dilaton decou-
ples and the RN black holes are recovered. Interesting non-
trivial special cases represent γ = 1, leading to the static
charged string theory black holes studied also by Garfinkle–
Horowitz–Strominger (GHS) [25], and γ = √

3, yielding the
Kaluza–Klein (KK) black holes [24,40].

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7535-4&domain=pdf
http://orcid.org/0000-0002-8156-8372
mailto:jose.blazquez.salcedo@uni-oldenburg.de
mailto:sarah.kahlen1@uni-oldenburg.de
mailto:jutta.kunz@uni-oldenburg.de


1021 Page 2 of 15 Eur. Phys. J. C (2019) 79 :1021

The presence of the dilaton has profound consequences
for the properties of the black holes. Not only do they carry
scalar hair, but their domain of existence undergoes a fun-
damental change with respect to the EM case. The extremal
RN solutions possess a maximal charge with Q/M = 1 and
a finite horizon area. However, when the static electrically
charged EMD black holes approach extremality, their maxi-
mal possible charge exceeds the RN value the more the larger
the coupling constant, while the horizon area of the limiting
solution tends to zero [24].

Like the RN black holes, the dilatonic black holes emerge
from the Schwarzschild black holes when the electric charge
is increased from zero. The RN black holes are (mode)-stable
under linear perturbations, as evaluation of their QNMs has
shown [41–48]. QNMs of the dilatonic GHS (γ = 1) black
holes have been studied in [49], while axial QNMs of dila-
tonic black holes were investigated for general values of
the dilaton coupling γ in [50]. Recently, the analysis was
extended to polar QNMs as well, but restricting to small
values of the charge of the EMD black holes [51]. Similarly,
QNMs of EGBd black holes have received much interest [52–
56], and likewise QNMs of spontaneously scalarized black
holes [57–61].

The linear perturbations can be split into axial and polar
perturbations, according to their transformation under the
reflection of the angular coordinates. As shown in [49] for
a dilatonic black hole the excitation of axial modes leads to
the simultaneous emission of gravitational and electromag-
netic waves, whereas the excitation of polar modes includes
in addition the emission of scalar radiation. Whereas for
Schwarzschild and RN black holes axial and polar gravi-
tational waves are emitted with the same frequencies, since
the corresponding potentials of the wave equation are related,
leading to the same reflection and transmission coefficients,
this isospectrality is broken for the dilatonic black holes.

Our objective here is to investigate the spectrum of QNMs
of charged dilatonic black holes for general coupling con-
stant γ , allowing for any value of the electric charge up to
the (respective) maximal charge. In Sect. 2 we define the
theory, introduce the ansatz for static spherically symmetric
black holes, and recall some of their properties. Subsequently
in Sect. 3, linear perturbations are introduced and discussed
for three different cases: purely spherical, axial and polar
perturbations. Since in the general case of charged dilatonic
black holes gravitational, electromagnetic and scalar per-
turbations become coupled, the QNMs are further catego-
rized into gravitational-led, electromagnetic-led and scalar-
led perturbations.

We present our numerical results in Sect. 4 for 0 ≤ l ≤ 2
and several values of the dilaton coupling constant γ . We
compare related spectra of these three categories as well as
polar and axial perturbations. Our results confirm that the
isospectrality of the electro-vac black holes is broken in the

presence of a dilaton. In the limit of vanishing charge the
Schwarzschild QNMs are recovered. Likewise, for dilaton
coupling γ = 0 and γ = 1, the RN and GHS QNMs are
regained.

2 Black holes in Einstein–Maxwell–dilaton theory

2.1 Theory and ansatz

We consider the EMD action

I = 1

2κ

∫
M

d4x
√−g

[
R − eγφFμνF

μν − 1

2
∂μφ ∂μφ − V (φ)

]

(1)

where κ is the gravitational constant, R is the Ricci scalar,
Fμν = ∂μAν −∂ν Aμ is the Maxwell field and φ is the dilaton
field. The dilaton field is coupled to the electromagnetic field
via an exponential coupling eγφ , where γ is the dilaton cou-
pling constant. The scalar field may be supplemented with a
potential V (φ).

The resulting field equations are

Rμν − 1

2
gμνR = T φ

μν + T EM
μν , (2)

∇μ(
√−geγφFμν) = 0 , (3)

1√−g
∂μ(

√−ggμν∂νφ) = dV (φ)

dφ
+ γ eγφFμνF

μν , (4)

where we have introduced the dilaton stress energy momen-
tum T φ

μν and the electromagnetic stress-energy-momentum
T EM

μν

T φ
μν ≡ 1

2
∂μφ∂νφ − 1

2
gμν

(
1

2
(∂φ)2 + V (φ)

)
, (5)

T EM
μν ≡ 2eγφ

(
FμαF

α
ν − 1

4
gμνF

2
)

. (6)

Here we will focus on the case of vanishing dilaton potential

V (φ) = 0. (7)

The static spherically symmetric EMD black hole solu-
tions can be obtained with the line element

ds2 = − f (r)dt2 + dr2

1 − 2m(r)/r
+ r2(dθ2 + sin2 θdϕ2) ,

(8)

with the metric functions f and m. The matter fields for the
static spherically symmetric solutions are parametrized by

A = a0(r)dt ,

φ = φ0(r) , (9)
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where a0 and φ0 are the electric and the dilaton function,
respectively. With this ansatz for the metric and matter fields,
one obtains the following set of ordinary differential equa-
tions for f,m, a0 and φ0 from the field equations (2), (3) and
(4):

∂rδ = −r

4
(∂rφ0)

2 ,

∂rm = 1

2
eγφ0+2δr2 (∂r a0)

2 + r

8
(r − 2m) (∂rφ0)

2 ,

∂2
r φ0 = eγ φ0+2δr

r − 2m
(r(∂rφ0) − 2γ ) (∂r a0)

2

+2
m − r

(r − 2m) r
(∂rφ0) ,

∂2
r a0 =

(
1

4
(∂rφ0)

2 r − γ (∂rφ0) − 2

r

)
(∂r a0) , (10)

where we have defined f = (
1 − 2m

r

)
e−2δ .

The first integral of the electromagnetic field yields

∂r a0 = Q

eγφ0+δr2 , (11)

where Q is the electric charge of the configuration. This equa-
tion can be used to simplify the previous system of equations.

2.2 Properties of dilatonic Reissner–Nordström black holes

The static spherically symmetric electrically charged EMD
black hole solutions have been obtained in closed form for
arbitrary dilaton coupling constant γ by Gibbons and Maeda
[24]. In the limit γ = 0, the dilaton field becomes trivial and
the RN black hole is recovered:

f = 1 − 2M

r
+ Q2

r2 , m = M − Q2

2r
,

a0 = −Q

r
, φ0 = 0. (12)

In the case of coupling constant γ = 1, the stringy GHS
black holes are recovered [25], which can be uplifted to
N = 4 supergravity. When γ = √

3, charged four dimen-
sional Kaluza–Klein black holes arise from the compactifi-
cation of five dimensional vacuum black holes [40]. When
besides electric charge Q, also magnetic charge P is present,
dyonic black holes result [24,25,40,62]. However, here we
will focus on purely electric black holes (P = 0).

Studying perturbatively the asymptotic behavior of the
black hole solutions for r → ∞, we find that asymptotically
flat configurations satisfy

f = 1 − 2M

r
+ O(r−2) ,

m = M −
(
Q2 + Q2

S/4
) 1

2r
+ O(r−2) ,

φ0 = QS

r
+

(
MQS − γ Q2

) 1

r2 + O(r−3) ,

a0 = −Q

r
+ γ QQS

2r2 + O(r−3) , (13)

where M is the total mass of the black hole, Q is the electric
charge and QS the scalar (dilaton) charge. Although asymp-
totically, there are three parameters, one of them is not a
free parameter [63]. For instance, since there is no conserva-
tion law for the dilaton field [22], the existence of a horizon
imposes a non-trivial relation QS = QS(M, Q), meaning
that the dilatonic black hole has secondary scalar hair.

In Fig. 1(left), we show the relation between QS/M and
Q/M for several values of the dilaton coupling constant γ .
In black (solid) we show the pure EM case, with the RN
black holes (QS = 0) existing from Q = 0 (Schwarzschild)
to Q = M (extremal). In various colors (line styles) we
show dilatonic black holes. All of them also emerge from the
Schwarzschild solution (Q = QS = 0). But when Q �= 0,
the scalar field becomes non-trivial and the black holes are
scalarized. For each γ the solutions stop existing at some
limiting value of the ratio Q/M , which is always larger than
one (overcharged solutions) and increases with increasing
γ . At their respective limiting value the solutions become
singular: these purely electric black holes do not have a reg-
ular extremal limit in EMD theory. Only when allowing for
a non-trivial magnetic charge this limit is smooth [24,25].

Regarding the behavior close to the horizon, the expansion
reads

f = f1 (r − rH ) + O((r − rH )2) ,

m = rH
2

+ Q2e−γφH

2r2
H

(r − rH ) + O((r − rH )2) ,

φ0 = φH − 2γ Q2e−γφH

rH (r2
H−Q2e−γφH )

(r−rH ) + O((r − rH )2),

a0 = −�H + Qe−γφH

√
f1

rH (r2
H − Q2e−γφH )

(r − rH )

+O((r − rH )2) , (14)

where the black hole horizon is located at r = rH . Here the
dilaton field takes the value φ0(rH ) = φH , and the electro-
static potential is a0(∞) − a0(rH ) = �H . It is useful to

define also e2δH = r2
H−e−γφH Q2

f1r3
H

. In a global solution, these

near-horizon parameters depend in a non-trivial way on the
global charges M and Q. These parameters are also related
to physically relevant horizon properties, as, for instance, the
temperature TH and the area AH of the horizon

TH = 1

4π

√
f1
r3
H

(r2
H − Q2e−γφH ) ,

AH = 4πr2
H . (15)

The black hole thermodynamics of static charged EMD black
holes was investigated in detail by Gibbons and Maeda [24],
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Fig. 1 Static spherically symmetric black hole solutions: (left) Dila-
ton charge Qs versus the electric charge Q, both scaled by the mass M ,
for several values of the coupling constant γ ; in black for RN; in red,

blue, purple and orange for γ = 0.5, 1, 1.5 and 2, respectively. (right)
A similar figure for the scaled horizon area AH

who realized that the string theory value γ = 1 plays a spe-
cial role. For γ < 1, the temperature goes to zero as the
maximal charge is approached, analogous to the RN case.
For γ > 1, the temperature diverges in this limit. How-
ever, for γ = 1, the black holes satisfy TH = 8πM , i.e.,
they approach a finite value in this limit. In Fig. 1(right), we
show the horizon area AH versus the electric charge (both
scaled to the mass), for several values of the coupling con-
stant γ . In the RN case (black), the maximum area is reached
in the Schwarzschild case, and the minimum at extremality.
In the scalarized case (colored), the branches of solutions end
at configurations with vanishing area. An analysis of these
solutions reveals that the limit is singular, where curvature
invariants like the Kretschmann scalar diverge.

3 Linear perturbations

In this section we present the linear perturbations of the pre-
vious static spherically symmetric black holes. Because of
this symmetry of the background, it is convenient to study
the perturbations in three different cases: perturbations that
are purely spherical, axial (odd-parity (−1)l+1) and polar
(even-parity (−1)l ).

3.1 Spherical perturbations

Spherical perturbations enter the metric, the electromagnetic
field and the scalar field. The ansatz for the metric can be
written as

ds2 = − f (r)(1 + εe−iωt Ft (r))dt
2

+1 + εe−iωt Fr (r)

1 − 2m(r)/r
dr2 + r2(dθ2 + sin2 θdϕ2),

(16)

where ε is the control parameter for the linear expansion. Ft
and Fr are radial perturbation functions, and ω = ωR + iωI

is the complex eigenvalue that parametrizes the oscillation
frequency in its real part, and the inverse of the damping
time in its imaginary part. Spherical perturbations for the
matter can be written as

A = a0(r)(1 + εe−iωt Fa0(r))dt ,

φ = φ0(r) + εe−iωtφ1(r) , (17)

where Fa0 and φ1 are the radial perturbation functions for the
electric field and the dilaton, respectively.

Using this ansatz in the field equations (2), (3) and (4), and
making use of the equations for the background (10), it is pos-
sible to show that the spherical perturbations are described
by a single Schrödinger-like ordinary differential equation
for Z = rφ1 (Master equation):

d2Z

dR2 = (U0(r) − ω2)Z , (18)

where U0 is the spherical potential

U0(r) = r − 2m

2r5eγφ0+2δ

[(
Q2 − r2eγφ0

)
(r∂rφ0)

2

−4γ Q2r∂rφ0 + 2Q2(2γ 2 − 1) + 4rmeγφ0
]

,

(19)

and R the tortoise coordinate, for which

∂r R = 1√
f (1 − 2m/r)

. (20)

It can actually be seen that U0(r) > 0 for all the black hole
solutions we have analyzed, which immediately implies that
all these solutions have mode stability under spherical per-
turbations.

123



Eur. Phys. J. C (2019) 79 :1021 Page 5 of 15 1021

In order to obtain the QNMs of the spherical perturba-
tions, we have to impose the outgoing wave behavior as the
perturbation reaches infinity. This means that when r → ∞,
we have

Z = A+
φ e

iωR
(

1 + iM

2ω

1

r2 + O(r−3)

)
. (21)

On the other hand, the perturbation has to be ingoing at the
horizon. This means that when r → rH , we have

Z = A−
φ e

−iωR

(
1 + 2rH e

γφH
(iγ 2 + eδH ωrH )Q2 − eγφH+δH ωr3

H(
eγφH r2

H − Q2
) (−i Q2 + eγφH r2

H (i + 2rH eδH ω)
)

(r − rH ) + O((r − rH )2)

)
. (22)

In the previous expansion, A±
φ is an arbitrary amplitude for

the scalar perturbation. The other terms in the expansion are
fixed by the background solution.

3.2 Axial perturbations

The second type of perturbations we will study are axial,
meaning that they transform with odd-parity under reflec-
tion of the angular coordinates. Because of the background
symmetry, these perturbations enter the metric only in the
following form:

ds2 = − f (r)dt2 + 1

1 − 2m(r)/r
dr2

+r2(dθ2 + sin2 θdϕ2)

+2εh0(r)e
−iωt ∂ϕYlm(θ, ϕ)

sin θ
dtdθ

+2εh0(r)e
−iωt sin θ∂θYlm(θ, ϕ)dtdϕ

+2εh1(r)e
−iωt ∂ϕYlm(θ, ϕ)

sin θ
drdθ

+2εh1(r)e
−iωt sin θ∂θYlm(θ, ϕ)drdϕ , (23)

where now h0 and h1 are the radial perturbation functions,
and Ylm are the standard spherical harmonics. The axial per-
turbations also enter the electromagnetic field

A = a0(r)dt − εW2(r)e
−iωt ∂ϕYlm(θ, ϕ)

sin θ
dθ

+εW2(r)e
−iωt sin θ∂θYlm(θ, ϕ)dϕ , (24)

where the perturbation function W2 is introduced.
Using this ansatz in the field equations (2), (3) and (4), a

set of coupled differential equations is obtained, exhibited in
the Appendix. It consists of two first order equations for h0

and h1, and a second order equation for W2. We can write
this system in the form

∂r�A = MA�A , (25)

where

�A =

⎡
⎢⎢⎣

h0

h1

W2

∂rW2

⎤
⎥⎥⎦ , (26)

and MA is a complicated 4 × 4 matrix that depends on the
background metric functions and fields, the l number, and
the complex eigenvalue of the mode ω.

Space-time perturbations are parametrized by {h0, h1},
while electromagnetic perturbations are parametrized by
{W2, ∂rW2}. Apart from the background functions, the only
explicit coupling between the space-time perturbations and
the electromagnetic perturbations appears in Eq. (A.1) in the
first term, which is essentially proportional to Q.

In the Schwarzschild case, the system decouples into two
sets (composed of two first order differential equations). One
set is equivalent to the Regge-Wheeler equation for axial
space-time perturbations, while the other is equivalent to the
perturbation equation for purely axial electromagnetic per-
turbations. In general, when the black hole is charged, the
system is fully coupled.

In order to obtain the QNMs of the axial perturbations, we
again need to impose the outgoing wave behavior at infinity
and ingoing wave behavior close to the horizon, as specified
in the Appendix.

3.3 Polar perturbations

The third type of perturbations we will study are polar pertur-
bations, meaning they transform evenly under reflection of
the angular coordinates. These perturbations enter the met-
ric, the electromagnetic field and the scalar field. (Note that
the spherical perturbations we have described already would
correspond to the following l = 0 case, but with a slightly dif-
ferent gauge, hence it is convenient to differentiate between
them.)

The ansatz for the perturbations of the metric can be writ-
ten as

ds2 = − f (r)(1 + εe−iωt N (r)Ylm(θ, ϕ))dt2

−2εe−iωt H1(r)Ylm(θ, ϕ)dtdr

+1 − εe−iωt L(r)Ylm(θ, ϕ)

1 − 2m(r)/r
dr2

+(r2 − 2εe−iωt T (r)Ylm(θ, ϕ))(dθ2

+ sin2 θdϕ2) , (27)

where we have introduced the perturbation functions N , H1,
L and T . For the electromagnetic field we have

A = (a0(r) + εe−iωt a1(r)Ylm(θ, ϕ))dt

+εW1(r)e
−iωt Ylm(θ, ϕ)dr

+εV1(r)e
−iωt∂θYlm(θ, ϕ)dθ
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+εV1(r)e
−iωt∂ϕYlm(θ, ϕ)dϕ , (28)

with the perturbation functions a1, W1 and V1. Finally, for
the scalar field we have

φ = φ0(r) + εe−iωtφ1(r)Ylm(θ, ϕ) , (29)

with the scalar perturbation function φ1.
As before, we can insert this ansatz into the field equa-

tions (2), (3) and (4), resulting in a set of coupled differential
equations, presented in the Appendix. By introducing sev-
eral field re-definitions F0, F1 and F2 in terms of the above
perturbation functions W1, V1 and a1, see Appendix (A.5),
the system of equations can be simplified. It is then possible
to show that the minimal set of differential equations (Master
equations) can be written in vectorial form as

∂r�P = MP�P , (30)

with the vector

�P =

⎡
⎢⎢⎢⎢⎢⎢⎣

H1

T
F0

F1

φ1

∂rφ1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (31)

and MP being a complicated 6×6 matrix, whose components
depend on the background metric functions and fields, the l
number and the mode ω.

Space-time perturbations are parameterized by {H1, T },
while electromagnetic perturbations by {F0, F1}, and scalar
perturbations by {φ1, ∂rφ1}. In the Schwarzschild case, the
system decouples into three sets of equations (composed of
two coupled first order equations each). One set is equiva-
lent to the Zerilli equation for polar space-time perturbations,
while the other two are equivalent to the perturbation equa-
tion for purely polar electromagnetic perturbations and the
perturbation equation for a minimally coupled scalar field in
the Schwarzschild background, respectively.

When the black hole is charged (RN), the equations for
the space-time perturbations couple with the equations for
the electromagnetic perturbations, but the equations for the
scalar perturbations are decoupled. In the general case we are
considering here, where the black hole is electrically charged
and also carries a nontrivial scalar field, all equations are
coupled to each other.

Again, in order to obtain the QNMs, we need to impose the
outgoing wave behavior at infinity and ingoing wave behavior
close to the horizon, as explicitly shown in the Appendix.

4 Numerical results

4.1 Overview of the method and results

In order to obtain the QNMs for dilatonic RN black holes
for general dilaton coupling constant γ and any associated
allowed values of the mass M and electric charge Q, we
implement the method described in the following.

First, we generate numerically the background solutions
with high precision. For this, we solve numerically the
Eq. (10), imposing the boundary conditions resulting from
expansions (13) and (14), employing the ordinary differential
equation solver COLSYS [64].

For the calculation of the QNMs, we follow a procedure
similar to the one previously used in other cases [53,54].
The space-time is divided in two regions: region I, from r =
rH+εH to r = rJ , and region II from r = rJ to r = r∞ > rJ .
In region I, we parametrize the ingoing wave behavior (for
the radial perturbations given by expression (22), for axial
by (A.3) and for polar by (A.10)). Similarly, in region II,
we parametrize the outgoing wave behavior (which now for
the radial perturbations is given by expression (21), for axial
by (A.2) and for polar by (A.8)). We generate numerically
sets of linearly independent solutions and match them at rJ .
QNMs with eigenvalue ω are found when the matching of
the functions and their derivatives is continuous.

In practice, our numerical implementation allows us to
connect the dilatonic solutions with the pure RN black hole
solutions continuously (for example, by generating fami-
lies of charged solutions by slowly increasing the coupling
constant from γ = 0 to any arbitrary value of γ ). This is
convenient because we can continuously track the QNMs,
and connect them to all the known spectra (i.e., those of
Schwarzschild, RN and GHS black holes). This allows us to
cross-check all numerical calculations of the QNMs.

Our results for the QNMs of the RN black holes reproduce
the results in [46,48]. For the GHS black hole (γ = 1), our
results reproduce the QNMs calculated in [49]. All these
modes are stable.

In the following, we will comment on our results for the
QNM spectrum of the dilatonic RN black holes with arbitrary
coupling γ . In particular, the modes can be categorized into
three different families:

(i) We call modes that can be connected with purely grav-
itational perturbations of the Schwarzschild solution
gravitational-led (grav-led) modes. Typically, these
perturbations are led by space-time oscillations with
the dominant amplitude A±

g .
(ii) We call modes that can be connected with purely elec-

tromagnetic perturbations of the Schwarzschild solu-
tion electromagnetic-led (EM-led) modes. In this case,
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Fig. 2 Scalar-led modes for radial l = 0 perturbations

the perturbations are led by oscillations of the electro-
magnetic field with the dominant amplitude A±

F .
(iii) We call modes that can be connected with purely scalar

perturbations of the Schwarzschild solution scalar-led
modes, corresponding to a minimally coupled scalar
field in this background. Here the perturbations are led
by oscillations of the scalar field with the dominant
amplitude A±

φ .

Of course, in the general case, where the background is
electrically charged and has dilatonic hair, all the perturba-
tions are coupled with each other. The stronger the coupling,
i.e. the larger Q and QS , the stronger is the coupling of the
perturbations. Nonetheless, grav-led modes only appear for
l ≥ 2, since they correspond to tensor perturbations of the
metric. EM-led modes appear for l ≥ 1, since they corre-
spond to vector perturbations. Scalar-led modes appear for
l ≥ 0, since obviously, they correspond to scalar perturba-
tions.

On top of this distinction referring to the physical origin
of each mode, we have the two decoupled channels of pertur-
bations with (in principle) their own modes: axial and polar.
However, it is well-known that in EM theory, both spectra
coincide, which is called isospectrality of the QNMs of the
RN black holes. As demonstrated in the following for gen-
eral dilaton coupling γ and general electric charge Q (below
the respective maximal value), in the presence of a non-trivial
dilaton, isospectrality is broken (as shown in [49] for the case
γ = 1 and for general γ but small values of the charge in
[51]). In particular, we will now discuss our results for every
l number separately, devoting a subsection to l = 0, 1 and 2
each, and selecting for the dilaton coupling constant always
the values γ = 0, 0.5, 1, 1.5.

4.2 Spectrum of l = 0 perturbations

The l = 0 perturbations possess a single family of scalar-led
modes. In Fig. 2(left), we show the real part of the frequency
ωR (scaled by the mass) as a function of the electric charge Q
(also scaled to the mass). Figure 2(right) shows the imaginary
part ωI (scaled by the mass) of the modes. In black we show
the RN modes, and in colors several values of the dilaton
coupling constant γ : in red for γ = 0.5, in blue for the GHS
solution with γ = 1, in purple for γ = 1.5 and in orange for
γ = 2.

In the RN case, the real and imaginary parts of the modes
do not deviate much from the Schwarzschild mode when
the charge Q/M is increased, even up to the extremal limit
Q = M . The modes of dilatonic black holes deviate much
more from the Schwarzschild modes. This is to be expected,
since these black holes have a non-trivial spherically symmet-
ric dilaton background field. The higher the coupling constant
γ , the larger is typically the deviation from the GR spectrum,
in particular close to the respective critical solution with max-
imal Q/M .

The figure shows that the real part ωR increases monoton-
ically with increasing Q/M and increasing γ . The imaginary
part ωI , however, is not monotonic. As Q/M increases, at
first ωI increases as well, reaches a maximum, then decreases
to a minimum, which for the larger values of γ has roughly a
value of ωI 
 0.05, from where it rises steeply as the maxi-
mal Q/M is approached. Thus, for large scalarization of the
black holes, the configurations can possess radial modes with
damping times twice as large as in GR, but also much shorter
damping times.
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Fig. 7 Grav-led modes for l = 2 perturbations: axial (upper) and polar (lower) modes

4.3 Spectrum of l = 1 perturbations

Next we discuss the l = 1 modes. These perturbations pos-
sess three families of modes: one with scalar-led modes, one
with axial EM-led modes, and one with polar EM-led modes.
In Fig. 3, we show the l = 1 scalar-led modes, which appear
when solving the polar perturbation equations. In Fig. 3(left),
we see that the qualitative behavior of the real part ωR is very
similar to the l = 0 scalar-led mode: the frequency grows
when Q/M and γ increase, and tends to deviate strongly
from the Schwarzschild value close to the critical solutions.
The imaginary part ωI , shown in Fig. 3(right), behaves some-
what differently from the case of the l = 0 scalar-led modes,
since now the steep rise in the vicinity of the maximal Q/M
is absent. Consequently, the overall deviation from the GR
values is not so large when compared with the previous case.

In Fig. 4, we show the l = 1 EM-led modes for the axial
(upper row) polar (lower row) perturbations. The spectrum
of RN EM-led modes coincides for both axial and polar per-
turbations. But as seen in the figures, when the coupling γ is
finite, the axial and polar modes no longer coincide. Compar-
ison of the real part ωR (Fig. 4(upper left) and Fig. 4(lower

left)) reveals that for fixed values of Q/M and γ , the polar
modes are somewhat lower than the axial modes. This is
also seen for the imaginary part ωI (Fig. 4(upper right) and
Fig. 4(lower right)). Nonetheless, the qualitative behavior of
both axial and polar modes is rather similar.

4.4 Spectrum of l = 2 perturbations

Last we consider the l = 2 modes. These perturbations pos-
sess five families of modes: one of scalar-led modes, two of
EM-led modes (axial and polar) and another two of grav-led
modes (axial and polar). In Fig. 5, we show the l = 2 scalar-
led modes. Again, they possess properties which are similar
to the other scalar-led modes with lower l.

In Fig. 6, we show the EM-led modes for axial (upper
row) and polar (lower row) perturbations. Here the situation
is qualitatively similar to l = 1: while the RN modes possess
isospectrality, this is broken when a non-trivial dilaton field
is present.

In Fig. 7, we show the l = 2 grav-led modes for axial
(upper row) and polar (lower row) perturbations. As for the
EM-led modes, both channels are degenerate for the RN
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Fig. 8 Illustration of broken isospectrality in the presence of a dilaton for l = 2 modes

modes, but isospectrality is broken for the charged black
holes when γ �= 0. Qualitatively both modes show a sim-
ilar dependence on Q/M and γ , with large deviations from
GR arising close to the critical solution.

5 Conclusions

We have studied the QNMs of static spherically symmetric
dilatonic electrically charged black holes, considering the
dilaton coupling constant γ as a free parameter, and vary-
ing the charge within the allowed intervals, starting from the
Schwarzschild solution all the way to the maximally charged
black holes for a given γ , extending previous work consid-
erably [49–51] (see also [65] for dynamical evolution). This
allows us to conclude that these EMD black hole solutions
are (mode-)stable under linear perturbations, since the imag-
inary part ωI of the modes never changes sign. All the modes
are damped modes.

In the presence of a non-trival dilaton background field, the
perturbation equations also imply the presence of scalar radi-
ation in a ringdown. The analysis of the perturbation equa-
tions shows that in the polar case, all the types of perturba-
tions, scalar, vector and gravitational, are coupled, whereas
in the axial case, no scalar perturbations are present. Thus
for l = 2, there arise five distinct modes: the grav-led (polar
and axial), the EM-led (polar and axial) and the scalar-led
(polar) modes. For l = 1, there are no grav-led modes, and
for l = 0, there are only scalar-led modes.

Clearly, the presence of the scalar perturbations in the
system of polar equations and its absence in the system of
axial equations makes these two systems distinctly different
[49]. Therefore the breaking of the isospectrality of the RN
and Schwarzschild modes should not come as a surprise when
a scalar background field is present. Thus the simplicity of
the spectrum of RN and Schwarzschild modes is lost, and a
much richer spectrum appears.

This isospectrality breaking was already noted by Fer-
rari et al. [49], and investigated further by Pacilio and Brito
[51], who, however, considered only small values of the elec-
tric charge. In their study they concluded that isospectrality
breaking is not so pronounced in the grav-led modes, but
more prominent in the EM-led modes. Moreover, for small
charge, the grav-led modes do not exhibit much dependence
on the dilaton coupling constant, while the dependence of
the EM-led modes on γ is stronger [51].

By allowing for large values of the charge, we have shown
that the situation changes. We find large deviations from the
Schwarzschild and RN modes, that are typically the larger the
larger the charge and the coupling constant. The real parts ωR

of the modes always increase monotonically, rising steeply
for large charge and γ . The imaginary parts ωI , however,
typically change non-monotonically, but exhibit also steep
rises or steep fall-offs in the vicinity of the respective maxi-
mal charge. Since these strong changes can be very different
for the axial and the polar modes, isospectrality becomes
strongly broken, both for the EM-led and grav-led modes, as
illustrated in Fig. 8.

The next step would be to investigate the QNMs of rotating
EMD black holes [26–28]. The QNMs of the Kerr-Newman
black holes have been studied before [66–69]. Pacilio and
Brito [51] have presented a first study of the QNMs of slowly
rotating EMD black holes for small values of the charge. The
challenge will be to extend these results to large values of the
charge, and, in particular, to fast rotation.
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Appendix: Perturbation equations

Here we present a detailed discussion of the perturbation
equations for the axial and polar case.

1. Axial case

Inserting the ansatz (23) and (24) into the field equations
(2), (3) and (4), we obtain the following set of differential
equations:

∂r h0 = −iωh1

−4eγφ0 (∂r a0)W2 + 2

r
h0

− i

2ω r3 f
h1

[
− (∂rφ0)

2 f 2r2(r − 2m)

−2r f 2l(l + 1) + 2r f (∂r f ) (r∂rm + m − r)

−2r2 f
(
∂2
r f

)
(r − 2m)

+4r2eγ φ0 f (∂r a0)
2 (r − 2m)

+ (∂r f )
2 r2(r − 2m)

+4 (∂rm) r f 2 + 4 f 2(r − m)
]

,

∂r h1 = −iωrh0

f (r − 2m)

+h1
2 f (∂rm) r − r (∂r f ) (r − 2m) − 2 f m

2r f (r − 2m)
,

∂2
r W2 =

(
4

f
eγφ0 (∂r a0)

2 − ω2r

f (r − 2m)
+ l(l + 1)

r(r − 2m)

)
W2

−
[

∂r f

2 f
− ∂rm

r − 2m
+ γ ∂rφ0 + m

r(r − 2m)

]
∂rW2

+ i(∂r a0)h2

2ωr3 f 2

[
4 f 2(r − m) + 4r f 2∂rm

−r2 f 2(r − 2m)(∂rφ0)
2 − 2r f 2l(l + 1)

+4 f r2eγφ0 (r − 2m)(∂r a0)
2

−2 f r2(r − 2m)(∂2
r f ) + r2(r − 2m)(∂r f )

2

+(2r2 f ∂rm + 2r f (m − r))∂r f
]

+h0

[( ∂r f

2 f 2 + ∂rm

m(r − 2m)
− γ ∂rφ0

f
+ 3m − 2r

f r(r − 2m)

)
∂r a0

− ∂2
r a0

f

]
. (A.1)

This is a system of coupled differential equations: two first
order differential equations for h0 and h1 are coupled with a
second order differential equation for W2.

In order to obtain the QNMs of the axial perturbations,
we need to impose proper boundary conditions. Imposing
the outgoing wave behavior, this implies that at infinity, the
perturbation functions behave like

h0 = reiωR
[
A+
g

(
−ω + O(r−1)

)
+ A+

F

(
Q

r2 + O(r−3)

)]
,

h1 = rωeiωR
[
A+
g

(
1 + O(r−1)

)
+ A+

F

(−Q

ωr2 + O(r−3)

)]
,

W2 = eiωR
[
A+
g

(
Q(l − 1)(l + 2)

4ωr2 + O(r−3)

)

+A+
F

(
1 + O(r−1)

) ]
. (A.2)

Close to the horizon, the perturbations have to be ingoing,
implying that

h0 = e−iωR
[
A−
g (1 + O(r − rH )) + A−

F (O(r − rH ))
]

,

h1 = ω

r − rH
e−iωR

⎡
⎣A−

g

⎛
⎝ r3/2

H eγφH /2

ω

√
f1

(
r2
He

γφH − Q2
) + O(r − rH )

⎞
⎠

+A−
F (O(r − rH ))

⎤
⎦ ,

W2 = e−iωR
[
A−
g (O(r − rH )) + A−

F (1 + O(r − rH ))
]
. (A.3)

Note that the expansion is now characterized by two ampli-
tudes, the space-time perturbation amplitude A±

g and the

electromagnetic perturbation amplitude A±
F .

2. Polar case

Analog to the axial case, we can plug the ansatz for the polar
perturbations (27), (28) and (29) into the field equations (2),
(3) and (4). This results in the following set of equations:

L + N = 0 ,

∂r H1 = 4eγφ0 (∂r a0) (W1 − ∂r V1)

+ (∂r δ) r(r − 2m) + 2 (∂rm) r − 2m

r (r − 2m)
H1

− 2iωr2

r (r − 2m)
(T + L) ,

∂r (N + T ) = r3 (∂rφ0)
2 (r − 2m) − 4Q2e−γφ0

8 (r − 2m) r2 (L − N )

+ r − 3m

r(r − 2m)
N

+ r − m

r(r − 2m)
L

− 2e2δ

r(r − 2m)

(
Q(iωV1 + a1) − i

4
ωr2H1

)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2019) 79 :1021 Page 13 of 15 1021

+1
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2∂rφ0∂r δ − 2∂2

r φ0 − 4rγ eγφ0+2δ(∂r a0)
2

r − 2m

+4(∂rφ0)(m − r + r∂rm)

r(r − 2m)

]
L

+
[ l(l + 1)

r(r − 2m)
− r2ω2e2δ

(r − 2m)2

−2rγ 2eγφ0+2δ(∂r a0)
2

r − 2m

]
φ1 . (A.4)

This system of equations can be simplified. With the redef-
initions

F0(r) = −iωW1(r) − dW1(r)

dr
, (A.5)
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F1(r) = −iωV1(r) − a1(r) , (A.6)

F2(r) = −W1(r) + dV1(r)

dr
, (A.7)

the minimal set of differential equations (Master equations)
can again be written in vectorial form, but now in terms of a
complicated 6 × 6 matrix.

The QNMs of the polar perturbations are again obtained
imposing the outgoing wave behavior at infinity. The pertur-
bation functions behave like

H1 = reiωR
[
A+
g

(
−2 + O(r−1)

)
+ A+

F

(
2i Q

ωr2 + O(r−3)

)

+A+
φ

( −i

4ω2r4 (ωγ Q2 − i QS) + O(r−5)

)]
,

T = eiωR
[
A+
g

(
1 + O(r−1)

)
+ A+

F

(−i Q

ωr2 + O(r−3)

)

+A+
φ

(
i QS

4ωr3 + O(r−4)

)]
,

F0 = 1

r2 e
iωR

[
A+
g

(
−2Q + O(r−1)

)

+A+
F

(−il(l + 1)

ω
+ O(r−1)

)

+A+
φ

(
γ Q

r
+ O(r−2)

)]
,

F1 = eiωR
[
A+
g

(
Q

r
+ O(r−2)

)

+A+
F

(
1 + O(r−1)

)
+ A+

φ

(−γ Q

4r2 + O(r−3)

)]
,

φ1 = 1

r
eiωR

[
A+
g

(
2QSM − 2γ Q2

r
+ O(r−1)

)

+A+
F

(
Q(γ l(l + 1) − iωQS)

ω2r2 + O(r−3)

)

+A+
φ

(
1 + O(r−1)

)]
. (A.8)

Close to the horizon, the perturbation has to travel as an
ingoing wave, meaning

H1 = 1

r − rH
e−iωR

[
A−
g

(
2ir2

H (2ieγφH+δH ωr3
H + eγφH r2

H − Q2)

(2rH eδH ω + il(l + 1))(eγφH r2
H − Q2)

+ O(r − rH )

)

+A−
F

(
4eδH+γφH Qr3

H

(r2
He

γφH − Q2)l(l + 1)
(r − rH ) + O((r − rH )2)

)

+A−
φ

(
−4γ rH Q2r3

H

(r2
He

γφH − Q2)l(l + 1)
(r − rH ) + O((r − rH )2)

)]
,

(A.9)

T = e−iωR
[
A−
g (1 + O(r − rH ))

+A−
F

(
−2eδH+γφH QrH (2rH eδH ω + il(l + 1))

(2r3
He

γφH+δH ω + ieγφH r2
H − i Q2)l(l + 1)

(r − rH )

+O((r − rH )2)
)

+A−
φ

(−γ Q2(2rH eδH ω + il(l + 1))

(
2r3

He
γφH+δH ω + ieγφH

r2
H − i Q2)l(l + 1)(r − rH ) + O((r − rH )2)

)]
,

F0 = e−iωR
[
A−
g (O(r − r H)) + A−

F (1 + O(r − rH ))

+A−
φ (O(r − r H))

]
,

F1 = e−iωR
[
A−
g

(−2iωe−γφH

l(l + 1)
+ O(r − rH )

))

+A−
F

(
−ieδH ωr2

H

l(l + 1)
+ O(r − r H)

)

+A−
φ

(
iγωQe−γφH

l(l + 1)
+ O(r − r H)

)]
,

φ1 = e−iωR
[
A−
g (O(r − r H))

+A−
F (O(r − r H)) + A−

φ (1 + O(r − rH ))
]

. (A.10)

In the previous expressions we have three undetermined
amplitudes: the space-time perturbation amplitude A±

g , the

electromagnetic perturbation amplitude A±
F and the scalar

perturbation amplitude A±
φ .
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