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Abstract We present a model for generating spacetime
coordinates in the Monte Carlo event generator Herwig 7,
and perform colour reconnection by minimizing a boost-
invariant distance measure of the system. We compare the
model to a series of soft physics observables. We find rea-
sonable agreement with the data, suggesting that pp-collider
colour reconnection may be able to be applied in larger sys-
tems.

1 Introduction

As the LHC reaches unprecedented levels of precision and
data collection, the playground for studying QCD effects has
increased manifold. In particular, Monte Carlo event gener-
ators [1–5] provide an ideal arena for testing novel ideas in
the low-energy regime, i.e. the mechanisms of hadroniza-
tion, where non-perturbative effects have to be phenomeno-
logically modelled, and the underlying event. One aspect of
proton-proton collisions that is poorly understood is exactly
how multiple parton-parton interactions from the initial scat-
tering process interfere and interact with one another during
the hadronization stage.

Multiple parton interactions were first introduced in [6],
and implemented in Pythia [4], where its importance in
hadronic collisions was highlighted beyond a doubt. A sim-
ilar physical notion was introduced in [7] and later imple-
mented in Herwig++ [1,8,9], with some recent improve-
ments to soft and diffractive scatterings in [2,10] to Herwig 7.

One such model of this interference between subcollisions
in an event is colour reconnection [11–15], whereby a Monte
Carlo event generator reduces some kinematic, momentum-
based measure of the event. The physical intuition for such
a mechanism is twofold: to correct for errors in the leading-
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colour approximation of the parton shower, and to allow
multiple parton interactions, which may have been colour-
connected, to have cross-talk. A summary of the history of
colour reconnection and the effects of such a mechanism
on precise measurements is given in [16]. Colour reconnec-
tion in Herwig 7 first focused on reconnecting excited qq̄
pairs called clusters, minimizing the sum of the invariant
masses. Later work [14] expanded upon this model to intro-
duce the possibility of forming so-called baryonic clusters
qqq and q̄q̄q̄ from three ordinary/mesonic clusters. Other
methods have investigated colour reconnection at the pertur-
bative stages of event simulation or taken inspiration from
perturbative techniques [17–19].

Most pp event generators are developed in the energy-
momentum framework for the various stages of event simula-
tion, meaning that none of the physics modelled involves any
notion of spacetime separation. While the energy-momentum
framework has been very successful, there are still several
issues at hand. In particular, it does not have an adequate
answer to what parts of the event are allowed to undergo
colour reconnection within a given slice of phase space, if one
thinks that colour reconnection needs to be a causal effect.
Collisions of heavy ions have shown that spacetime struc-
ture is important in modelling where interactions start, since
a jet starting at the edge of the quark-gluon plasma will lose
far less energy to one travelling through the centre of dense
medium, a phenomenon known as jet quenching [20–22].
As a result, pp-oriented event generators have also started
to include more spacetime information, using these coordi-
nates for various aspects of the simulation, such as collective
hadronization effects [23,24], and a spacetime evolution of
the parton shower [25]. Pythia recently introduced a frame-
work for generating spacetime coordinates [26] for quantita-
tive studies of Lund string fragmentation [27]. The effects of
introducing spacetime coordinates have been recently stud-
ied in dipole evolution in γ ∗A collisions [28].
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As high energy and heavy ion phenomenology begin to
have more interaction with each other, an immediate question
one should ask is if the models developed in each field can
be applied to the other successfully. Without spacetime infor-
mation, high energy event generators cannot hope to be able
to describe hadronization of large systems well. This work
aims to be the first steps of introducing spacetime coordinates
and using them to aid the baryonic colour reconnection model
[14]. We intend this to be a proof of concept that will allow us
to apply this hadronization model to heavy ions in later work.

The format of the article is as follows: we start by recall-
ing elements of modelling high energy collisions, such as
the underlying event, cluster hadronization, and colour recon-
nection models in Herwig 7, in Sect. 2. In Sect. 3, we describe
our method of systematically assigning coordinates to the
multiple parton interactions and the partons at the end of
the shower. We then present our model of using this space-
time information to perform colour reconnection in Sect. 4.
We briefly describe additional modifications that have been
applied in the making of this and related works in Sect. 5.
We tune our new model in Sect. 6 and present the results of
the procedure in Sect. 7. Lastly, with Sect. 8, we summarize
our model and future work.

2 Event simulation in Herwig 7

We briefly summarize the pertinent points of modelling the
underlying event and hadronization in Herwig 7.

2.1 Multiple parton interactions (MPI)

Since the proton is a composite particle, when two pro-
tons collide, there may be several parton-parton interactions,
which fall into two classes in Herwig 7: hard and soft. Par-
tons from hard scatters undergo parton showering, while soft
scatters do not.

For a given event, Herwig 7 generates a number of each
type of these scatters. The average number of interactions for
a given impact parameter b and centre of mass energy s is
schematically given by:

〈nint〉 = A(b;μ)σ inc(s; pmin⊥ ), (1)

where σ inc is the inclusive cross section to produce a pair
of partons above a defined minimum transverse momentum,
A(b;μ) is the overlap function between the two protons, and
μ2 is commonly referred to as the inverse hadron length. In
Herwig 7, both the hard and soft MPI scatters have the same
form for Eq. 1, and indeed it is assumed that they both have
the same functional form for the overlap function, but with
different values for μ2. Similarly, the inclusive cross sections
are different values for hard and soft scatters.

Herwig 7 assumes the MPI to be independent of one
another (including energy-momentum conservation), lead-
ing to a Poissonian probability distribution. Using the nota-
tion of [3], we can write the joint probability distribution to
produce h hard and k soft scatters at a given b1 as:

Ph,k(b) = (2χh)
h

h!
(2χk)

k

k! e−2(χh+χk ), (2)

where 2χh,k = A(b;μh,k)σ
inc
h,k is the so-called eikonal factor.

This formalism was developed in [29] and Herwig’s imple-
mentation is built on the JIMMY framework [7].

Equation 2 is then integrated over b space to produce an
exact probability to produce the corresponding number of
hard and soft scatters in an event:

Ph,k =
∫

d2bPh,k(b, s)∫
d2b

∑∞
h≥1,k=0 Ph,k(b, s)

. (3)

Herwig 7 samples the distribution in Eq. 3 probabilistically,
to obtain a number h of hard scatters, and k of soft scatters.
The primary hard subprocess in Minimum Bias event gen-
eration in Herwig 7 is an interaction between two valence
(antiquarks) [12], while subsequent MPI collisions are ini-
tiated by regular 2 → 2 QCD processes. The incoming
legs are evolved backwards to pairs of gluons extracted from
the beam remnant, with the colour topology defined in the
NC → ∞ limit. The colour topology is motivated by the
leading-colour approximation used in the shower, though as
discussed in [12], this is a phenomenological choice rather
than an approximation.

As Herwig 7 produces each scatter, it checks the available
energy and momentum in the protons. If the protons cannot
produce another scatter, the MPI production algorithm ter-
minates. As a result, Herwig 7 typically generates a subset of
the total number of scatters sampled from Eq. 3. More details
of the technicalities involved in the implementation of MPI
algorithm can be found in [1].

2.2 Cluster model

Partons from a scattering process are showered down to the
parton shower cutoff scale, and the resulting colour topology
has triplets connected to anti-triplets via gluon connections.
At the hadronization scale and below, Herwig 7 uses the clus-
ter hadronization model [30], based on the pre-confinement
property of angular-ordered showers [31].

The first step in the cluster model is to non-perturbatively
split the gluons into quark-antiquark pairs. To split the glu-
ons, Herwig 7 uses a kinematic map at the end of the shower
to put the gluons on-constituent-mass-shell and performs an

1 We have suppressed the functional dependence on centre of mass
energy s.
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isotropic decay. The constituent-mass of the gluon is a non-
perturbative parameter of Herwig 7 hadronization model.

Nearest quark-antiquark neighbours in colour space,
which are typically nearest neighbours in momentum space
due to pre-confinement, are then collected into colourless,
excited quark-antiquark pairs, i.e. clusters. From there, the
clusters undergo colour reconnection.

2.3 Colour reconnection

Clusters typically connect partons from the same multiple
parton interaction scattering. Colour reconnection alters the
colour topology of the event, and allows the different MPI to
interact with one another at the hadronization level.

As mentioned in Sect. 2.1, Herwig 7 chooses the leading-
colour topology for the additional scatters, thus they are
colour-connected to the beam remnant and other subpro-
cesses. As noted in [12], colour reconnection is a required
part of hadronization modelling in hadron collisions since the
leading-colour approximation performs significantly worse
in non-perturbative parts of the event generation.

Colour reconnection aims to minimize a given measure of
the event, typically momentum-based. Herwig 7 has a variety
of colour reconnection algorithms [12,14], namely:

• Plain,
• Statistical/metropolis,
• Baryonic.

The plain colour reconnection model locally minimizes pair-
wise cluster invariant masses:

m2
qq̄ = (

pq + pq̄
)2

. (4)

The criteria for two clusters to undergo colour reconnection
and swap partners is:

mqq̄ ′ + mq ′q̄ < mqq̄ + mq ′q̄ ′ . (5)

If a pairing reduces the invariant mass, it is allowed to recon-
nect with a flat probabilistic weight, typically tuned to LHC
data, while ensuring that the model doesn’t adversely affect
LEP simulations. Baryonic colour reconnection was recently
implemented in Herwig 7 [14], and it uses a more sophisti-
cated algorithm. For each cluster in the event, the algorithm
searches for other clusters which occupy the same neighbour-
hood in rapidity-space. It searches for two types of candidate
clusters for reconnection: baryonic, and (ordinary) mesonic.

In the baryonic case, given a cluster A, transform the
momenta of all other clusters to the rest frame of A, and
search for two other clusters that have the same orientation
of quark axis in rapidity space. It then chooses the pair of
candidate clusters which have the largest rapidity span in
this frame. If the reconnection is accepted, the quarks are

then collected into a three-component cluster, called a bary-
onic cluster, and similarly the antiquarks are collected into
an anti-baryonic cluster.

In the mesonic case, if the candidate cluster B with the
largest rapidity span has a quark axis oriented in the opposite
direction to cluster A, reconnect qAq̄B and qBq̄A, in much
the same manner as the plain colour reconnection model.
For both types of cases in baryonic colour reconnection, the
probabilities for reconnection are given by two different flat
weights, pM,reco and pB,reco.

While the statistical colour reconnection model is outside
the scope of this paper, we mention that it aims to minimize
mass, much like the plain model, but it allows reconnection
to increase the mass of the system with a suppressed proba-
bility, and is based on the simulated annealing optimization
algorithm [32].

In all cases, colour reconnection qualitatively aligns
colours between partons that move into the same direction
such that the multiplicity of particles produced in between
them is reduced and the produced particles carry more
momentum on average.

3 Spacetime coordinate generation

We present the two parts of how our model systematically
generates coordinates for the multiple parton interaction scat-
tering centres and the hadronization stage. We argue that
these are the two stages of event generation that are most
impactful on spacetime coordinates.

3.1 MPI coordinate generation algorithm

To obtain an intelligent and relevant value for the impact
parameter, the MPI coordinate generator takes the produced
values for h, k in Eq. 3 and stochastically samples the dis-
tribution of Eq. 2, vis-a-vis a veto algorithm. Thus, the pro-
duced b, when the number of events tends to infinity, will be
the correct distribution for a given set of h and k.

As shown in Fig. 1, the joint Poissonian behaves as we
expect. The more scatters that Herwig 7 produces, the more
likely it is that the sampled b will be central, while hav-
ing more soft scatters for a fixed number of total scatters
makes the distribution have a broader tail. In this work we
will be using the Bessel proton profile, meaning that the over-
lap function is a Bessel function of the third kind:

A(b;μ) = μ2

96π
(μb)3K3(μb). (6)

It should be noted that the results of the sampling should
not be surprising. At large numbers of interactions, the sam-
pled impact parameters tend to be closer to 0, since a larger
than average number of interactions requires a more central

123



1003 Page 4 of 15 Eur. Phys. J. C (2019) 79 :1003

Fig. 1 Joint Poissonian distribution Ph,k(b), as a function of impact
parameter b, for a number of h hard scatters and k soft scatters. We
have picked one large (7) and one small (1) value, and show the vari-
ous combinations. The more collisions that occur, the more likely the
collision is to be central. Keeping the number of interactions fixed but
having more soft interactions makes the distribution have a broader
tail. We have used the following fixed values for the normalized dis-
tributions: σ inc

hard = 83 mb, σ inc
soft = 127 mb, μ2

hard = 0.71 GeV2, and
μ2

soft = 0.52 GeV2. These distributions are normalized independently
to unit area

collision. Once b is determined for a given event, we set the
incoming beam positions to be at (±b/2, 0, 0, 0), i.e. aligned
along the x-axis, for simplicity.

The overlap function A(b;μ) in Eq. 6 is generated by the
convolution of the two protons’ form factors, G(b;μ):

A(b) =
∫

d2b′G(b′)G(b − b′), (7)

where we have suppressed the dependence on μ for clarity.
The overlap function governs the density of MPI scattering
centres in the transverse plane for a given offset between the
protons.

To obtain the MPI centre positions, we sample the inte-
grand of Eq. 7. We generateh hard scatters, and k soft scatters,
using two different μ2 values for the hard and soft interac-
tions. As a result, hard scatters are slightly more concentrated
in the centre of the transverse plane, while soft scatters have
a longer tail.

Once these points have been generated, all coordinates
including the proton positions get the same random global
rotation in the transverse plane. The beam remnants receive
the sampled proton positions. A schematic diagram of the
results of the MPI coordinate generation algorithm is shown
in Fig. 2. The overlap need not necessarily be a Bessel func-
tion, and we have included the results of the MPI coordinate
generation for a uniform proton profile in Fig. 2. For this
type of proton profile, MPI centres can only be situated in
the overlap. However, for the rest of the paper, we will work
with the Bessel function profile.

3.2 Tracing spacetime during parton showers

The spacetime structure of the parton-shower evolution was
already considered in the early paper on QCD cascades by
Fox and Wolfram (see Fig. 1 of [33]). Later the spacetime
evolution of the parton shower was introduced, for example,
to study jets in hadronic e+e− events at LEP [34] and in
deep-inelastic ep scattering [35]. Very recently in a publica-
tion on the space–time structure of hadronization in the Lund
Model [26] the authors mention that a sensible spacetime pic-
ture of parton-shower evolution would introduce some space-
time offsets to their model. However, the authors assumed
that the offsets are most likely small in their case and there-
fore neglected them in their studies.

In the following section, we will investigate in more detail
how the parton shower affects the spacetime structure of an
event as implemented in the family of Herwig 7 generators.
Referring to [36, Section 3.8] for details, we briefly recall
the essential concepts of the Herwig 7 spacetime model.
It should be noted that there are two major parton shower
options in Herwig, namely the angular-ordered shower [37]
and the dipole shower [38]. For this work, we will focus on
the angular-ordered shower, and its use of virtuality as an
evolution variable.

The mean lifetime τ of a parton in its own rest frame,
during the parton shower evolution, is calculated in a similar
manner as for particles decays, i.e. taking into account its
natural width � and virtuality q2:

τ(q2) = h̄
√
q2

√
(
q2 − M2

)2 +
(

�q2

M

)2
. (8)

Equation 8 interpolates between the lifetime for an on-mass
shell parton τ(q2 = M2) = h̄/�, and for a highly virtual
(i.e. off-mass shell) parton τ(q2 
 M2) = h̄/

√
q2. We note

that the mean lifetime in Eq. 8 is equivalent to the standard
notion of formation time used in heavy ion phenomenology
as well as in general jet quenching research [39–42]. We
show the equivalence in Appendix.2

Once a lifetime is calculated according to Eq. 8, the parton
decays according to an exponential decay law, with a rest-
frame decay time t∗:

Pdecay(t < t∗) = 1 − exp

(

− t∗

τ

)

. (9)

After sampling a rest-frame decay time, this time can be con-
verted to the lab-frame decay time t , and a distance travelled
in the lab-frame, d:

t = γ t∗, d = βγ t∗, (10)

2 The authors are grateful for Gavin Salam’s notes on the notion of
formation time for massless soft and collinear gluons.
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Fig. 2 Result of MPI Coordinate Generator algorithm with the Bessel proton profile (left), and an example for a uniform (black disc) proton profile
(right). Green and orange points are partons sampled in a given proton, mauve points are accepted MPI collision centres, and black are the beam
remnants

where γ and β are the usual Lorentz factors.
Very light quarks and gluons with a small natural width

may travel unphysically large distances according to Eq. 8 in
the final steps of the parton shower. Similarly, there are issues
with assigning particles with no well-defined width space-
time coordinates in the above manner. In order to counter this
issue, a minimum width � = ν2/M is introduced, where ν2

(GeV2) is a free parameter of the order of lower limit of par-
ton’s virtuality. This is essentially the spacetime equivalent of
a shower Q2 ≈ 	2

QCD cutoff scale. The daughters of the par-
ton splitting are then given the starting coordinates defined
by Eq. 10. We note that the above considerations are, in our
model, a phenomenological model of the spacetime structure
of an event, which arise during the initial collision of the pro-
tons, and the subsequent perturbative evolution of the event.

In order to study the size of the parton-shower spacetime
effects, we will first consider the distance that each parton
propagates during the shower. The distance that we are inter-
ested in is the difference between a given parton’s production
and decay vertex, L:

L =
√(

ddecay − dprod
)2

, (11)

where d ≡ dμ = (t, x, y, z) is the position of a parton rel-
ative to the centre of the collision, i.e. the origin. However,
since the MPI smearing discussed in the previous section
affects only the transverse plane we will also consider trans-
verse distance, constructed from the transverse components
of the above vertices, r = √

Δx2 + Δy2.

In Fig. 3 we show the Lorentz-invariant distance L (left
panel) and transverse distance (right panel) traveled by the
gluons at the last step of the parton shower evolution for three
different processes: minimum bias, Drell–Yan and Higgs-
boson production at the LHC at the collision energy 7 TeV.
The simulation was performed using default version of Her-
wig 7 with three different values of ν2: 1, 2 and 5 GeV2.
We see that most of the partons reach fermi-scale distances
which are comparable to the size of the MPI coordinate gen-
eration, as shown in Fig. 2. Therefore, it is important to take
the parton shower effects into account. We also see that in soft
Minimum Bias processes the partons travel shorter distances,
as expected since there is less parton-shower activity in these
types of events than in the two other processes. Finally we
see that the results, and especially the long distance tails of
the distributions, are strongly dependent on the scale ν2. This
indicates that the furthest distances are traveled by partons
in the final step of the evolution.

This is also visible in Fig. 4 where we show the spacetime
structure of a parton shower of a sample Minimum Bias event,
with ν2 = 1 GeV2, neglecting the spacetime structure of
the MPI positions. The final step distances are denoted by
red dotted lines, while the intermediate steps are black solid
lines. In order to quantify this effect in Fig. 5 we show the
ratio of distance traveled by partons in the last step of their
evolution to the total distance (distance traveled during the
entire evolution).

We see that in the case of both minimum bias and Drell–
Yan processes for ν2 values similar to a typical parton-shower
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Fig. 3 The total
Lorentz-invariant distance L
(left panel) and transverse
distance r (right panel) traveled
by the gluons at the last step of
the parton shower evolution for
three different processes:
minimum bias, Drell–Yan and
Higgs-boson production at the
LHC at the centre-of-mass
energy 7 TeV. The simulation
was performed using default
version of Herwig 7 using three
different values of ν2: 1, 2 and
5 GeV2
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Fig. 4 An example of a parton
shower spacetime structure (i.e.
neglecting spacetime structure
of MPI) of a Minimum Bias
event in the transverse plane
generated with the minimum
virtuality ν2 = 1 GeV2. The red
dotted lines represent the
evolution of the last particle in
the parton shower while the rest
of the evolution is denoted by
the black lines. Both panels
show the same event with the
right panel magnifying the
center of the event
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cutoff scale, i.e. below 2 GeV2, 90% of the total distance is
indeed due to the final step of the parton shower. In the case
of the Higgs boson production, the distributions look very
different. It is because in the simulation we took into account
the decay lifetime of the Higgs boson, however when we
neglect it, the distributions look very similar to the two other
processes.

To summarize, we can expect the fermi-scale parton
shower and even further intermediate particle decay dis-
tances. As such, these effects have to be included in spacetime
colour reconnection model. We also showed that tracing out
the microscopic detail of the parton shower spacetime evo-
lution is somewhat unnecessary, since only the low-energy
scale of emissions (final steps) have any major impact on the
spacetime position of partons, i.e. soft emissions close to the
hadronization scale. Finally, it is important to stress that the
Heisenberg uncertainty relations impose limits on how much
simultaneous energy-momentum and spacetime information
one can have on an individual parton.

These results should not be considered as physical, but
give us a benchmark of roughly what part of the event sim-
ulation drives the creation of large separations in distance
between partons.

Instead, we propose a simpler model that assigns coor-
dinates only to the very last partons of the parton shower,
just before the hadronization. This is in line with the uncer-
tainty principle as the smearing is only visible for particles
at a very soft scale. We may understand the partons’ posi-
tions then as being smeared out around the scattering cen-
tres. This idea represents us taking the semi-classical limit of
the parton shower, and generating coordinates in a similarly
semi-classical manner.

3.3 Parton shower coordinates

As the partons propagate during the shower, we may assign a
spacetime propagation to their motion, but as we have shown
above, these distances are only significant at energy levels
close to the hadronization scale. As a consequence, we will
only give spacetime coordinates to the partons that remain at
the end of the shower. In our model of spacetime coordinates,
we will not consider z, t coordinates and keep our discussion
to the transverse plane. We note that we have chosen the
centre of mass frame in order to construct our model, and to
extend this to any given frame, one need only transform the
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Fig. 5 The ratio of the distance traveled by partons in the last step of
evolution to the total distance (distance traveled during entire evolution)

variables correspondingly. All considerations below will be
invariant to any boosts along the z-axis.

Before the clusters are formed, each surviving parton from
a given MPI scattering centre receives an extra transverse
propagation distance from the scattering centre coordinates.
Instead of tracing out the positional history of each parton
during the shower, we take all partons at the end of the shower
and propagate them according to Eq. 9. As argued above, this
resembles a smearing of each partons’ coordinate around the
scattering centre within its intrinsic uncertainty.

As discussed in Sect. 3.2, at the end of the perturbative
shower, partons will have very small virtualities, meaning
that using the precise form of Eq. 8 performs poorly. We
instead approximate the mean lifetime by considering the
width term in the denominator. Each parton of species p
will automatically receive a minimum virtuality, ν2, for their
mean lifetime in their rest-frame:

τ0,p = h̄m p

ν2 . (12)

This mean lifetime is derived from Eq. 8, by taking the on-
mass shell limit – τ(q2 = M2) = h̄/� and using the follow-
ing form for the width of the on-mass shell partons:

� = ν2

mp
. (13)

With the mean lifetime from Eq. 12, we proceed as
explained in Sect. 3.2, using Eqs. 9 and 10 to set each par-
ton’s position relative to the MPI scattering centre that they
originated from, adding only the transverse coordinates of
the propagation distance.

Equation 12 corresponds to a lab-frame mean lifetime of:

τ ′
0,p = γ τ0,p = h̄E p

ν2 , (14)

x

y

Fig. 6 A schematic diagram for how our model introduces trans-
verse spacetime coordinates for the multiple parton interactions (black
points), and for the end of the parton shower. Different coloured points
are partons from different, respectively ring-coloured MPI centres. The
thin black circles represent a characteristic scale for parton propagation
about the MPI centre

where Ep is the lab-frame energy of the given parton. The
main motivation for the mass dependence of the mean life-
time in Eq. (12) is that the decay distance of external light
quarks is proportional to their energy (and independent of
their mass) which is in agreement with expectations from
the linear confining potential of QCD, see e.g. [43] and ref-
erences therein, as well as other hadronization models such
as the Lund string model [27].

As a result of this construction, quark-antiquark pairs pro-
duced during the non-perturbative gluon splitting will receive
the same spacetime position. One may believe this leads to
issues where colour reconnection wants to pair these partons
together, but Herwig 7 does not allow them to since they
would be in a colour-octet state [12,44]. These partons will
also have slightly different rapidities, due to kinematics from
the gluon splitting.

Once all the partons have their new coordinates with
respect to their MPI scattering centre, we then shift these
coordinates using the points produced from the MPI coordi-
nate generator, as shown schematically in Fig. 6. The black
points are the MPI centres, and partons from those systems
are spread by Eq. 10, around their respective centre. Different
coloured partons refer to partons originating from different
MPI systems.

4 Spacetime colour reconnection

With the transverse coordinates in place, we use this informa-
tion to perform and inform colour reconnection. We present
the outline for plain spacetime colour reconnection model,
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but we will use the baryonic spacetime model for tuning and
in the discussion in the rest of the paper.

4.1 Plain spacetime colour reconnection

As mentioned in Sect. 2.3, the measure for allowing plain
colour reconnection is the sum of invariant cluster masses
before and after, and the reconnection is given by a flat tuned
weight. However, there is at least one major issue with this
construction: this measure aims to reconnect cluster con-
stituents so that they are closer in momentum space, but with-
out any input from spacetime which would perhaps prohibit
a causally-disconnected colour reconnection.

Using the coordinates we have introduced in Sect. 3, we
now define the following spacetime-inspired measure for a
single cluster with constituents i, j :

R2
i j = Δr2

i j

d2
0

+ Δy2
i j , (15)

where d0 is the characteristic length scale for colour recon-
nection in our spacetime model, which is a tunable parameter.
Δr2

i j = (x⊥,i −x⊥, j )
2 is the transverse spacetime separation

squared between the constituent quarks. We include rapidity
differences in Eq. 15. This is inspired by conventional jet
algorithms, where we replace the azimuthal separation Δφ2

i j
with transverse separation. The parameter d0 effectively acts
as a measure to increase the importance of transverse to lon-
gitudinal components. The measure in Eq. 15 captures the
transverse separation between the constituents and their lon-
gitudinal separation.

Using the measure from Eq. 15, we proceed in the same
fashion as Eq. 5, by minimizing the sum of the pairing of
cluster constituents. For a given cluster, we pick the candidate
cluster that minimizes the measure the most. If the sum of the
cluster separations is smaller after a possible reconnection:

Rqq̄ ′ + Rq ′q̄ < Rqq̄ + Rq ′q̄ ′ , (16)

then we accept the reconnection with a flat probability,
pM,reco. A similar model was studied earlier in [45].

4.2 Baryonic spacetime colour reconnection

Baryonic spacetime colour reconnection uses the algorithm
from [14], and outlined in Sect. 2.3. The partners for mesonic
and baryonic colour reconnection are found by using the pro-
jection onto a given cluster’s quark axis.

If instead we find a baryonic reconnection, we cannot
directly compare the sum of Eq. 15 for the constituents of
the clusters before and after colour reconnection, since we
would be starting with 3 clusters – each with 2 partons –
and ending with 2 clusters with 3 partons, and the distance
measure is an ill-defined quantity in the latter situation.

In the ordinary baryonic colour reconnection algorithm,
3-component clusters, once formed, are reduced to a quark-
diquark system, where the diquark system is chosen as the
pair of quarks with the lowest total invariant mass. In keep-
ing with our spacetime paradigm, we choose the pair as the
closest in spacetime. Given 3 mesonic clusters, we look at the
set of triplets {q1, q2, q3} and select the pair that are closest –
calculated via Eq. 15, and similarly for the set of antitriplets.
We choose these partons to become a diquark system, with
their constituents’ mean spacetime position and rapidity.

We allow baryonic reconnection if the following criterion
is true:

Rq,qq + Rq̄,q̄q̄ < Rq,q̄ + Rqq,q̄q̄ , (17)

which is analogous to Eq. 16, and we accept this reconnection
with probability pB,reco = wb. If the reconnection is rejected,
all three candidate clusters remain ordinary mesonic clusters.

We note that the baryonic spacetime colour reconnec-
tion has a bias for using rapidity as its first discriminating
factor when searching for potential partners. However, we
hope that, by using the extra information provided by the
transverse separation between constituents, we will be able
to improve upon the original baryonic colour reconnection
model, especially in larger systems like heavy ion collisions.

To see the spacetime picture of an event, we have produced
Fig. 7, which highlights the spacetime coordinate generation
procedure outlined in Sect. 3. In the upper panel of Fig. 7, we
have plotted all the clusters formed from the non-perturbative
gluon splitting at the end of the shower, before any colour
reconnection. The points in the plots represent cluster con-
stituents, and the connecting lines represent the clusters.

Performing baryonic spacetime colour reconnection, using
ν2 = 1 GeV2, d0 = 0.5 fm, and wb = 0.5, on this event then
produces the lower panel in Fig. 7, where we have highlighted
the different types of clusters. Red lines correspond to rear-
ranged clusters: (dotted) baryonic, and (solid) mesonic, while
black lines are untouched clusters.

5 Modifications to the existing model

While incorporating spacetime coordinates into the
Herwig 7 MPI model, we have had to modify parts of the
original implementation. These changes are of a more gen-
eral nature than the specifics of our model. As we wish to
focus on the changes that our model has, we will report the
changes in a separate contribution [46]. We summarize the
most relevant modifications below:

• The kinematics is improved and produces the wanted
inclusive spectrum.
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Fig. 7 The colour-topology of
a sample Minimum Bias event
in rapidity and transverse
spacetime coordinates, before
(top) and after (bottom) colour
reconnection. The parameters
used for reconnection here are
ν2 = 1 GeV2, d0 = 0.5 fm, and
baryonic reconnection weight
wb = 0.5. Black lines
correspond to clusters which are
automatically produced from the
parton shower and which have
not undergone any colour
reconnection, while red lines are
the newly rearranged (dotted
lines) baryonic and (solid lines)
mesonic clusters

• Introduction of diffraction ratio RDiff parameter for better
tuning performance.

• Cross-section handling takes into account the diffractive
cross section to calculate the eikonalised cross sections.

• The dummy process used by Herwig 7 in Minimum Bias
events is replaced to contain only initial state quarks.

• The partner finding process and scale setting are modified
with respect to the standard Herwig 7 mode.
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In the right plot we pick three parameter pairs to define variations to be shown in the data comparison, see Figs. 9, 10, 11 and 12

The effects of these changes and their discussion are post-
poned to [46].

6 Tuning

We started the tuning process within the Autotunes [47]
framework that internally makes use of the Rivet and Profes-
sor frameworks [48,49] for Monte Carlo event generators.
To elucidate the effects of parameter variations, we illustrate
the modifications in χ2-values in Fig. 8. Here, we show by
variation of strongly correlated parameter pairs where the
minimum of the parameters are located. The white spaces
in the planes for the parameter sets (RDiff , σtot) and (μ2

hard,
pmin⊥ ) are regions in parameter space where the model fails to
fit the soft and hard cross-sections without violating the total
cross-section. In the left χ2-plane, we added lines to mark the
total cross sections that are predicted by the Donnachie and
Landshoff model, where DLMode 1 refers to [50], DLMode2
refers to [50] but normalized to [51].3

In the (ν2, d0)-plane, we define three parameter points to
be used in the later data comparisons. The red point, corre-
sponding to the best fit value (ν2 = 4.5 GeV2, d0 = 0.15
fm) will be referred to as “H7 + STCR”. To show variations
in the spacetime model, we choose two other points: blue –
(ν2 = 2.1 GeV2, d0 = 0.55 fm), and green – (ν2 = 3.3
GeV2, d0 = 0.05 fm). These two points will be referred to
as “Variation 1” and “Variation 2” in the following.

We compared the model in the tuning procedure to data
from [53–57] and the red parameter point in Fig. 8 corre-
sponds to the parameters that are reflected in Table 1.

3 A third mode that is implemented in Herwig 7 that would refer to
[52] would predict a total cross section of σtot = 120.496 mb and is not
acceptable with our tuning.

Table 1 The newly tuned parameters for minimum bias simulation and
our baryonic spacetime colour reconnection model. The top row is the
re-tuned parameters of the old Herwig 7 minimum bias model. The
bottom row is the three new parameters of the spacetime components
of our model, and a determined parameter of the old model

σtot [mb] RDiff pmin⊥ [GeV] μ2
hard [GeV2]

96.0 0.2 3.0 1.5

ν2 [GeV2] d0 [fm] wb (μ2
soft [GeV 2])

4.5 0.15 0.98 0.254

The parameters in the first row have been previously
included in the Herwig 7 minimum bias model. RDiff was
not explicitly part of the regular model in Herwig 7 but was
effectively tuned as the amplitude of the non-diffractive cross
section. pmin⊥ is the cut on the transverse momentum where
the hard MPI component, described by perturbative QCD
2 → 2 process is taken over by the soft, multi-peripheral MPI
model [9,10]. The parameter for the inverse proton radius is
μ2

hard and is communicated together with the determined (not
tuned) parameter for the soft inverse radius μ2

soft to the MPI
coordinate generator.

The parameters in the second row are the three new param-
eters introduced for our spacetime model. First, the minimum
virtuality ν2, which dictates the traveling of the final partons
after the shower step, takes a rather large value 4.5 GeV2 in
comparison to the parton shower Q2 cutoff.

Second, the colour reconnection distance scaled0 in Eq. 15
has a tuned value of 0.15 fm. This length scale is the strength
of the transverse component of the spacetime measure rel-
ative to the rapidity component. It can also be considered
the characteristic length scale of colour reconnection in the
transverse plane in our model.

Finally, the baryonic colour reconnection probability
weight wb, after tuning, has a value of 0.98. This seems to be
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Fig. 10 Differential cross-section with respect to the number of charged particles as measured by [55]

very large but the model, as described in [14], already makes
strong restrictions on the possible cluster configurations such
that the cluster triplets that are potential candidates for the
baryonic reconnection are strongly favoured.

We have kept the probability for strangeness production
during the non-perturbative gluon splitting as the tuned value
from [14], although there have been recent developments in
the description of non-perturbative strangeness production in
cluster hadronization [58]. We leave a full retune of all the
hadronization parameters to future work.

7 Results

In this section, we describe the data comparison of the tuned
parameter set. In Fig. 9, we have collated various cuts on the
track momentum, and similarly on the minimum number of

charged particles for the rapidity and transverse momentum
distributions as measured in [55]. Beside the central param-
eter set (red), we also show the results of the variations as
gray lines (solid and dashed). These are crucial observables
for the description of Minimum Bias and soft physics, and
we find that the model is perfectly capable at describing the
distributions.

In Fig. 10, we compare the differential cross-section with
respect to the number of charged particles as measured by
[55] with our model’s results. We observe that for high
charged particle multiplicity the central line overshoots the
data and that “Variation 1” is closer to the central data line.
With the increased d0 in “Variation 1”, the colour reconnec-
tion probability is increased. For a high number of additional
scatters, the probability is increased to produce smaller clus-
ters and therefore less particle production in the cluster fission
and decay processes.
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To illustrate examples of observables that are hardly mod-
ified by the variations in the spacetime components of the
model, we show in Fig. 11 the measured rapidity gap frac-
tion and the pion, kaon, and proton yields as measured by
[53,59]. Variations in the spacetime components of the model
have very little impact on these observables. The rapidity gap
for small values is mostly driven by the hard and soft MPI
that could potentially be modified but is known to be rel-
atively invariant to colour reconnection effects. The tail of
the rapidity gap cross section is mainly filled by double and
single diffraction, which are not modified by the smearing of
the MPI collision centers. The fairly poorly described proton
yield will be the subject of further studies.

Typical observables that are used to verify the description
of MPI models in underlying event measurements are the
angle of the particle production with respect to the leading
track as well as the average sum of transverse momenta in
the region towards, away, and transverse to the leading track.
Comparing our model to data measured at the ATLAS col-
laboration [56], we find that the turn on behaviour, p⊥ < 2.5
GeV for the leading track, is slightly too low. This has also
been seen in the previous Herwig models. For leading tracks
above 2.5 GeV, the average transverse momentum sum is
about 10% too large. This can also be seen in the radial
dependence with respect to the leading track. In the Her-
wig MPI model, there is no azimuthal correlation between
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the additional scatters. Herwig’s only mechanism to correlate
the additional scatters is the colour reconnection. Introduc-
ing methods to correlate these scatters, as well as correlate
them angularly, is left to future work (Fig. 12).

8 Conclusion and outlook

We have implemented spacetime coordinate generation for
two stages of event simulation: the positions of MPI scatter-
ing centres, and the propagation distance in the transverse
plane of partons at the end of the parton shower. We then
used these transverse coordinates and the rapidity of the clus-
ter constituents to define a measure that we minimize when
performing baryonic colour reconnection, creating a model
we call baryonic spacetime colour reconnection.

Overall we find that the proposed algorithm for baryonic
spacetime colour reconnection gives meaningful results for
many observables in Minimum Bias interactions at the LHC.
This is an important step as with this prescription at hand we
may explore larger systems, where spacetime structure will
play an important role, as is the case in heavy ion collisions.
However, we deliberately leave these new areas of study to
future work after establishing the algorithm in pp collisions
in the first place.

There is plenty of room for future work based on the pre-
scription we present here. One avenue might be to look at
only allowing certain MPI subsystems to reconnect with each
other based on closeness in spacetime [60]. Alternatively,
one may try to use the ideas of [18] but limit the compu-
tation complexity of the problem by only performing the
soft-gluon-evolution inspired colour reconnection in a small
neighbourhood of spacetime.

One may also look to study the final state of the event in
more detail using spacetime coordinates, an avenue started
by [26]. One interesting idea is the interplay between Bose–
Einstein correlations, and hadron position and extent [61].
Studying these effects could help one develop a more sophis-
ticated and systematic model for generating spacetime coor-
dinates.

As perturbative calculations become more precise,
improving hadronization phenomenological models remains
a key part of Monte Carlo event generator development.
Overall, we have shown that it is possible to introduce space-
time coordinates and then use this information to help assist
colour reconnection and potentially other soft physics phe-
nomena.
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Appendix: Formation time and mean lifetime

The discussion below is adapted from [62]. For a branching
of the kind i → jk where j is the produced soft, collinear
gluon, we start with the definition of qi and expand in terms
of the products of the branching:

q2
i = (

p j + pk
)2

= 2p j · pk
= 2E j Ek (1 − cos θ) (18)

∼ E j Ekθ
2

= Ek

E j
k2⊥

where k⊥ := E jθ (19)

where in the second line we have assumed the products are
massless, and the fourth line is the small angle approxima-
tion.

Using Eq. 8 for a virtual splitting parton, and ignoring the
natural width term, one obtains:

τ ∼ 1
√
q2
i

. (20)

Since Eq. 20 is defined in the rest frame of the decaying
parton, the boost factor is:
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γ = Ei√
q2
i

= E j + Ek
√
q2
i

(21)

The lifetime in the lab frame is then:

τ ′ = γ τ ∼ E j + Ek
√
q2
i

1
√
q2
i

= (E j + Ek)
E j

Ek

1

k2⊥
(22)

= E j

k2⊥
where we have used the result of Eq. 19 in the second line,
and in the last line we have used the soft approximation:
E j � Ek , i.e. a very soft gluon produced from a splitting
where the quark takes most of the energy and momentum.

The final expression in Eq. 22 is the standard expression
for the formation time of a massless soft, collinear gluon (see
[39–42] for more details).
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