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Abstract In this paper we investigate the thermodynamic
properties of the stationary Lifshitz black hole solution of
New Massive Gravity. We study the thermodynamic stabil-
ity from local and global point of view. We also consider the
space of equilibrium states for the solution within the frame-
work of thermodynamic information geometry. By investi-
gating the proper thermodynamic metrics and their curvature
invariants we find a set of restrictions on the parameter space
and the critical points indicating phase transitions of the sys-
tem. We confirm our findings by analytical analysis of the
geodesics on the space of equilibrium states.
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1 Introduction

In the recent years alternative gravitational theories in three
dimensions with black hole solutions have become very
attractive area of research. This is mainly due to the impres-
sive gauge/gravity correspondence, where such solutions are
dual to two-dimensional quantum field theories at finite tem-
peratures. In general, there are two ways to construct three-
dimensional models of gravity.

In the first approach, one add topological Chern–Simons
terms to the standard Einstein–Hilbert action. The resulting
theory is known as topologically massive gravity (TMG) pro-
posed by Deser et al. [1,2]. Here, the propagating degree
of freedom is a massive graviton. Among other exact solu-
tions the theory also admits the famous Banados–Teitelboim–
Zanelli (BTZ) black hole [3]. Since its proposal, TMG has
been extensively studied in the literature and different fea-
tures of the model has already been uncovered (see for exam-
ple [4–11]). An extension of TMG with additional curvature
squared term in the field equation has been proposed in [12]
called minimal massive gravity (MMG). For certain range
of the parameters MMG admits positive energy of the bulk
graviton and positive central charges of the dual conformal
field theory (CFT), thus avoiding the bulk-boundary unitarity
problem arising in TMG.

In the second approach, the Einstein–Hilbert action is
modified by higher-derivative correction terms, which give
rise to the three-dimensional new massive gravity theory
(NMG) [13]. In contrast to TMG, NMG is a parity preserving
theory [13] and with certain constraints on the parameters,
upon linearization about an AdS background, yields a uni-
tary and ghost free theory [14]. Furthermore, a holographic
renormalization study of NMG was conducted in [15], where
in the context of AdS/CFT correspondence it was suggested
that the dual CFT could be a logarithmic conformal field
theory (LCFT). Several exact solutions of NMG and their
properties can be found in [16–23].
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Recently, a three dimensional stationary black hole solu-
tion of NMG, called stationary Lifshitz black hole,1 has been
obtained by Sariouglu [22]. It can be derived by perform-
ing a specific boost on the static Lifshitz black hole [24]. In
general, only few exact static Lifshitz black hole solutions
[25–32] in various modified theories of gravity and even less
stationary ones [24] are currently known. As it turns out, such
Lifshitz spacetimes play an important role in non-relativistic
holography, where studies of critical phenomena in strongly
correlated non-relativistic gauge theories at finite tempera-
tures have dual description in terms of Lifshitz gravitational
backgrounds [30,33]. The latter suggests that the thermo-
dynamics of the stationary Lifshitz black hole should be an
essential ingredient for understanding the properties of its
quantum dual. This motivates us to study the phase structure
and the thermodynamics of the new stationary Lifshitz black
hole solution, which is the main goal of this paper. For this
purpose, our investigation will take advantage of some known
standard and non-standard statistical and purely geometrical
techniques.

A special class of non-standard tools for studying the
equilibrium thermodynamics of gravitational systems falls
within the formalism of the so called Thermodynamic Infor-
mation Geometry. It utilizes powerful concepts from differ-
ential geometry and mathematical statistics, thus making it a
very useful framework. This is due to the fact that geometry
studies mutual relations between elements, such as distance
and curvature, thus one can naturally uncover essential fea-
tures and gain valuable insights of the system under consid-
eration. Thermodynamic geometry was first introduced by
Weinhold [34] in 1975 and later by Ruppeiner [35]. Wein-
hold showed that the laws of equilibrium thermodynamics
can be represented in terms of an abstract metric space. This
can be achieved by utilizing the Hessian of the internal energy
with respect to the extensive parameters of the system and
considering it as a Riemannian metric on the space of macro
states. On the other hand, Ruppeiner developed his geomet-
ric approach within fluctuation theory, where one implements
the entropy as a thermodynamic potential. Here, one can use
the Hessian of the entropy to find the probability for fluctua-
tion between different macro states. Later it was discovered
that both metric approaches are conformally related via the
temperature being the conformal factor.

However, Hessian thermodynamics is not the only way
to define a Riemannian metric on the equilibrium manifold.
More general approach was proposed by Quevedo [36], who
considers Legendre invariant metrics. The latter preserve the
physical properties of the system under different choices of

1 The name “stationary Lifshitz black hole” was depicted by the author
in [22], since it derives from the static Lifshitz black hole, even though
the metric in Eq. (2.8) is neither left invariant under the proper Lifshitz
scalings, nor asymptotically Lifshitz.

thermodynamic potential, but there are infinitely many Leg-
endre invariant metrics to choose from. For this reason, two
additional approaches were proposed. The first one is given
by Hendi, Panahiyan, Panah and Momennia (HPEM) in [37],
where the authors consider thermodynamic metric with spe-
cific conformal function, which seems to resolve the prob-
lem of redundant singularities in Quevedo’s approach. The
second one is considered by Mirza and Mansoori (MM) [38–
41], which is based on conjugate thermodynamic potentials,
specifically chosen to reflect the relevant thermodynamic
properties of system under consideration. Some applications
of these approaches to different gravitational systems can be
found for example in [38–52]. In order to identify the admis-
sible thermodynamic metrics for a given black hole solution,
a case by case study is required.

This paper is organized as follows. In Sect. 2 we present
the stationary Lifshitz black hole solution of New Massive
Gravity obtained in [22]. Here, we calculate some of the
curvature invariants of the solution and identify the rele-
vant physical singularities. We also find the location of the
event horizon and the Hawking temperature by investigat-
ing the Killing symmetries of the solution.Additionally, the
Smarr relation between the relevant thermodynamic parame-
ters has also been obtained. In Sect. 3 we identify the param-
eter regions of local and global thermodynamic stability of
the black hole solution in different ensembles. In Sect. 4
we study the problem of thermodynamic stability within the
framework of Thermodynamic Information Geometry. We
identify the admissible thermodynamic metrics and study
their properties. In Sect. 5 we investigate geodesics on the
space of equilibrium states, which correspond to the available
thermodynamic metrics. This allows us to study the thermo-
dynamic length (the shortest distance) between two macro
states, which can be used to optimize the implementation of
quasi-static protocols in a given ensemble. Finally, in Sect. 6
we give our concluding remarks.

2 Stationary Lifshitz black hole solution of NMG

The three-dimensional new massive gravity (NMG) was orig-
inally proposed in [13,14] as a parity-preserving and unitary
solution to the problem of consistently extending the Fierz–
Pauli field theory for a massive spin-2 particle to include
interactions. Its action is given by

S =
∫

d3x
√−g

(
R − 2�0 + 1

m2

(
SμνSμν − S2)) , (2.1)

where �0 is the cosmological constant, m is a mass param-
eter, and Sμν is the Shouten tensor,

Sμν ≡ Rμν − 1

4
Rgμν, S = gμνSμν = R

4
. (2.2)
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The field equations for the metric can be derived by varying
the action with respect to the metric tensor, thus

Rμν − 1

2
Rgμν + �0gμν + 1

m2 Kμν = 0, (2.3)

where we have defined the following tensor quantity

Kμν ≡ �Sμν − ∇μ∇νS + SSμν − 4SμρS
ρ
ν

+1

2
gμν

(
3Sρσ Sρσ − S2

)
. (2.4)

Imposing specific choice of the parameters, namely

�0 = − 13

2�2 , m2 = 1

2�2 , (2.5)

one can obtain as a solution the static Lifshitz black hole [25]

ds2 = −x3
(

1 − M

x

)
dt2 + �2dx2

2x(x − M)
+ �2dθ2, (2.6)

where x = ρ2/�2. Now, boosting the metric (2.6) via

(
dt
dθ

)
→ 1√

1 − ω2

(
1 −ω�

−ω/� 1

) (
dt
dθ

)
, (2.7)

where ω is a real constant with |ω| < 1, one arrives at the
stationary Lifshitz metric [22]:

ds2 = gμνdx
μdxν = − x(x2 − Mx − ω2)

1 − ω2 dt2

+ 2ω�x(x2 − Mx − 1)

1 − ω2 dtdθ

+ �2

2x(x − M)
dx2 + �2x(1 − ω2x2 + Mω2x)

1 − ω2 dθ2.

(2.8)

Without loss of generality, we can assume 0 ≤ ω < 1. Solv-
ing the equation gxx = 0 one finds two positive roots, namely
the event horizon at x = M , and a central singularity at
x = 0. The root x = 0 is a true singularity, due to the diver-
gence of the Ricci curvature,

R = 4M − 13x

x�2 . (2.9)

Some higher-order invariants also confirm this statement,
namely

Rαβ
δγ R

δγ
αβ = 8M2 − 48Mx + 91x2

x2�4 , (2.10)

Rαβ
δγ R

στ
αβ R

δγ
στ = 16M3 − 144M2x + 540Mx2 − 757x3

x3�6 .

(2.11)

∇σ Rαβγ δ∇σ Rαβγ δ = 8(x − M)(4M2 − 6Mx + 9x2)

x3�6 .

(2.12)

Furthermore, considering the Killing symmetries of the
solution we can identify the surface x = M with a Killing
horizon H . In this case, the standard rotating Killing vector
takes the form

Kμ = Kμ

(t) + �Kμ

(θ), (2.13)

where Kμ

(t) = (1, 0, 0)T , Kμ

(θ) = (0, 0, 1)T , and � is the
angular velocity on the horizon. If the surface x = M is a
Killing horizon, then the Killing vector should become null
on H , i.e.

gμνK
μK ν = KμK

μ = 0. (2.14)

There are two solutions to this equation, namely

�± = ω(Mx − x2 + 1) ± (ω2 − 1)
√
x(x − M)

xω2�(M − x) + �
, (2.15)

which, on the surface x = M , yield a constant angular veloc-
ity

�± = ±ω

�
. (2.16)

Therefore, the rigidity theorem is valid and x = M satisfies
all requirements for an event horizon.

One can now calculate the Hawking temperature T cor-
responding to the event horizon x = M . In this case, it is
proportional to the surface gravity κ , defined by Kμ∇μK ν =
κK ν on the horizon H , thus one finds

T = κ

2π
= M3/2

√
1 − �2�2

2π�
. (2.17)

The thermodynamics of the stationary Lifshitz black hole
(2.8) is further described by the energy E , the entropy S, and
the angular momentum L , as found in [22]

S = 2π�
√
M√

1 − �2�2
, E = M2

(
1 + 3�2�2

)
4

(
1 − �2�2

) ,

L = M2��2

1 − �2�2 . (2.18)
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One can check that the first law of thermodynamics is satis-
fied

dE = TdS + �dL , (2.19)

together with the Smarr relation

E = 1

4
T S + �L . (2.20)

The latter is a direct consequence of Euler’s theorem for
quasi-homogeneous function, where we can simply write
down E = E(S, L) as

E(S, L) = 1

4

∂E

∂S
S + ∂E

∂L
L . (2.21)

Hence, under re-scaling with a parameter α, one has
E(αS, α4L) = α4E(S, L), which shows that the energy E
is a quasi-homogeneous function of degree 4. This can be
directly confirmed by analyzing the roots of the following
cubic equation

E3 − 1

4

(
S

2π�

)4

E2 − 9L2

8�2 E + L2
(

27π4L2

4S4 + S4

64π4�6

)
= 0.

(2.22)

We present this simple, but lengthy calculation in Appendix
A.

3 Local and global thermodynamic stability

3.1 Specific heats and local thermodynamic stability

Throughout the paper the local coordinates on the equilib-
rium space of macro-states for the stationary Lifshitz black
hole are going to be the intensive parameters T and �. Con-
sidering 0 ≤ ω < 1 and � > 0, one finds

0 ≤ �� < 1. (3.1)

Solving Eq. (2.17) for M in terms of (T,�),

M =
(

2πT �√
1 − �2�2

)2/3

, (3.2)

one can immediately express the relevant extensive thermo-
dynamic quantities in (T,�) space

S = T 1/3(2π�)4/3

(
1 − �2�2

)2/3 , E = (π�T )4/3
(
1 + 3�2�2

)
22/3

(
1 − �2�2

)5/3
,

L = ��2(2π�T )4/3

(
1 − �2�2

)5/3
. (3.3)

The specific heats of the black hole in (T,�) space are given
by [40]

C�(T,�) = T

(
∂S

∂T

)
�

= T 1/3(2π�)4/3

3
(
1 − �2�2

)2/3 , (3.4)

and

CL(T,�) = T

(
∂S

∂T

)
L

= T

∣∣∣∣ (∂T S)� (∂�S)T
(∂T L)� (∂�L)T

∣∣∣∣∣∣∣∣ (∂T T )� (∂�T )T
(∂T L)� (∂�L)T

∣∣∣∣
= (2π�)4/3T 1/3(1 − 3�2�2)

(1 − �2�2)
2/3

(3 + 7�2�2)
. (3.5)

The Davies critical points are the set of divergences forC�,L ,
namely the spinodal

�� = 1, (3.6)

where the metric (2.8) is also singular, thus one has to con-
sider only the case � �= 1/�. The latter is already assured by
Eq. (3.1). The second spinodal occurs when the specific heat
changes its sign (C� = CL = 0). For C� this is possible
only in the extremal case T = 0, which is not allowed by the
principles of thermodynamics. For CL = 0, besides the case
T = 0, the change of sign occurs also on the curve

√
3�� = 1. (3.7)

On the other hand, local thermodynamic stability requires
only positive specific heatsC�,L > 0, which leads to (T > 0,
0 ≤ �� < 1) for C�, and (T > 0, 0 ≤ √

3�� < 1) for CL .
Therefore, if we want for both specific heats to be positive,
one has to impose

0 ≤ � <
1√
3�

, � > 0, T > 0. (3.8)

This is the condition for local thermodynamic stability of the
stationary Lifshitz black hole solution of NMG. However,
one can also consider a weaker condition for values of the
angular velocity in the range 1/(

√
3�) ≤ � < �. In this

case, the black hole is locally stable from thermodynamic
standpoint only with respect to C�, but not with respect to
CL .

3.2 Ensembles and global thermodynamic stability

While local thermodynamic stability identifies whether a cer-
tain phase in equilibrium is a local maximum of the total
entropy, global thermodynamic stability is concerned with
phases of the system corresponding to the global maximum.
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In canonical and grand-canonical ensembles local thermo-
dynamic stability translates to positive specific heats, while
global stability under thermal fluctuations translates in the
concavity of Helmholtz and Gibbs free energies respectively.

In canonical ensemble the preferred phase of the system
is the one that minimizes the Helmholtz free energy [53],

F(T,�) = E − T S = − (πT �)4/3 (
3 − 7�2�2

)
22/3

(
1 − �2�2

)5/3
. (3.9)

It has local extrema at � = √
21/(7�) and � = 0, which are

saddle curves for arbitrary values of the temperature T > 0.
The free energy F and its derivatives are discontinuous on
�� = 1, thus indicating a phase transition. In order for the
black hole to be in a global thermodynamic equilibrium, the
following concavity condition must be satisfied

∂2F

∂T 2 = − (2π�)4/3
(
3 − 7�2�2

)
9T 2/3

(
1 − �2�2

)5/3
< 0. (3.10)

This leads to the constraint

� <

√
21

7�
, (3.11)

which is less restrictive than the condition (3.8) for local
thermodynamic stability.

In the grand-canonical ensemble the preferred phase of
the system is the one that minimizes the Gibbs free energy,

G(T,�) = E − T S − �L = − 3

22/3

(
πT �√

1 − �2�2

)4/3

.

(3.12)

Considering T > 0, the local extremum is located at � = 0,
which is a local maximum. The Gibbs free energy and its
derivatives are also discontinuous at �� = 1. The concavity
condition in this case,

∂2G

∂T 2 = − (2π�)4/3

3T 2/3
(
1 − �2�2

)2/3 < 0, (3.13)

assures global thermodynamic stability. This is always true
within the range given in Eq. (3.1).

One notes that the conditions for global thermodynamic
stability in both ensembles restricts distinctively the angular
velocity � of the black hole. However, the condition for local
thermodynamic stability (3.8) always falls within them.

The thermodynamic stability of the stationary Lifshitz
black hole solution can be further analyzed by identifying
the proper Riemannian metrics on the space of equilibrium
states, which we show in the next section.

4 Thermodynamic geometry on the equilibrium
manifold

In this section we investigate the thermodynamic stability of
the system by several Riemannian metrics defined on (T,�)
equilibrium space of the stationary Lifshitz black hole.

4.1 Hessian thermodynamic metrics

The simplest choice one can consider is the Ruppeiner metric
defined by the Hessian of the entropy,

g(R)
ab = −∂a∂bS(T,�)

=
⎛
⎜⎝

2(2π�)4/3

9T 5/3(1−�2�2)
2/3 − 4��2(2π�)4/3

9T 2/3(1−�2�2)
5/3

− 4��2(2π�)4/3

9T 2/3(1−�2�2)
5/3 − 4�2(2π�)4/3T 1/3

(
3+7�2�2

)
9(1−�2�2)

8/3

⎞
⎟⎠ ,

(4.1)

where ∂a denotes derivatives with respect to (T,�). Due to
the probabilistic interpretation of Hessian metrics [54], one
requires their positive definiteness. This can be assured by
imposing Sylvester’s criterion, which states that all the prin-
cipal minors of the metric tensor be strictly positive definite,
i.e.

gTT > 0, g�� > 0, det(gab) > 0. (4.2)

Unfortunately, these conditions cannot be simultaneously
satisfied for g(R)

ab , because g(R)
�� < 0 is always negative, thus

there are no sub-regions in (T,�) space, where the metric
tensor (4.1) is positive definite. The same is true if one con-
siders the angular momentum L or the Helmholtz free energy
F as thermodynamic potentials in (T,�) space. Therefore,
we will not study these metrics here.

On the other hand, one can take advantage of Weinhold’s
approach utilizing the Hessian of the internal energy of the
system instead of the entropy [55]. In this case, one finds

g(W )
ab = ∂a∂bE(T,�)

=
⎛
⎜⎝

(2π�)4/3(3�2�2+1)

9T 2/3(1−�2�2)
5/3

4�(2π�)4/3T 1/3(3�2�2+7)

9(1−�2�2)
8/3

4�(2π�)4/3T 1/3(3�2�2+7)

9(1−�2�2)
8/3

�2(2πT �)4/3(
21�4�4+118�2�2+21

)
9(1−�2�2)

11/3

⎞
⎟⎠ .

(4.3)

Here, the Sylvester criterion (4.2) is applicable and further
restricts the possible values of the angular velocity. To show
this, one notes that the first two principal minors g(W )

T T and

g(W )
�� of the metric are strictly positive only for �� < 1. On

123
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the other hand, the third principal minor, i.e. the determinant
of the metric, is given by

det ĝ(W ) = −�2T 2/3(2π�)8/3(27�6r3 + 99�4r2 + 201�2r − 7)

27(1 − �2r)16/3 ,

(4.4)

where we have substituted �2 = r . The expression in
Eq. (4.4) is strictly positive for r < r+, where r+ ≈
0.0342/�2 is the only positive real root of the cubic expres-
sion

27�6r3 + 99�4r2 + 201�2r − 7 = 0. (4.5)

In terms of the angular velocity � one finds

0 ≤ � <
√
r+, (4.6)

which is more restrictive than �� < 1. The Weinhold scalar
curvature yields

R(W )(T, �)

= 3 × 22/3
(
1 − �2�2

)8/3 (
9�2�2

(
9�4�4 − 57�2�2 + 7

) + 49
)

(πT �)4/3
(
27�6�6 + 99�4�4 + 201�2�2 − 7

)2 .

(4.7)

It is singular at the root � = √
r+, but this point is

safely excluded by Sylvester’s criterion. In other words,
no geodesics (quasi-static processes) can pass through this
spinodal within this approach. Moreover, the root

√
r+ ≈

0.185/� lies within the region of local thermodynamic sta-
bility (3.8), suggesting Weinhold’s metric as a viable metric
in the (T,�) space.

We can now follow the standard interpretation [56], where
the sign of the thermodynamic scalar curvature can be linked
to the nature of the inter-particle interactions in composite
thermodynamic systems. In this case, we find that R(W ) > 0
within the region given in Eq. (4.6), which suggest repulsive
interactions in the gravitational theory and hence in the dual
gauge theory. Moreover, looking at the following limits

lim
�→∞ R(W )

∣∣
T=const = 0, lim

T→∞ R(W )
∣∣
�=const = 0, (4.8)

lim
�→1/�

R(W )
∣∣
T,�=const = 0, lim

�→0
R(W )

∣∣
T,�=const

= 3 × 22/3

(πT �)4/3 , (4.9)

one finds that for large � at a fixed temperature the Wein-
hold thermodynamic curvature vanishes, thus the correla-
tions between the particles become weak and we approach
free non-interacting system. The same is true for large tem-
peratures at fixed �. For states near the curve �� = 1, the

curvature R(W ) is also vanishing, thus we have a weakly
coupled system near �� = 1. In the static case, � = 0, the
strength of the interactions saturates at a value inversely pro-
portional to the temperature T of the black hole. Therefore,
in this case, the interactions weaken for larger temperatures
and strengthened for smaller temperatures.

One can consider also the Hessian of the Gibbs free energy

g(G)
ab = −∂a∂bG(T,�)

=
⎛
⎜⎝

(2π�)4/3

3T 2/3(1−�2�2)
2/3

4��2(2π�)4/3T 1/3

3(1−�2�2)
5/3

4��2(2π�)4/3T 1/3

3(1−�2�2)
5/3

�2(2π�T )4/3(3+7�2�2
)

3(1−�2�2)
8/3

⎞
⎟⎠ . (4.10)

Imposing Sylvester’s criterion one finds

0 ≤ � <
1√
3�

, (4.11)

which precisely coincides with the range for local thermody-
namic stability (3.8), thus one can take the Gibbs metric as a
viable thermodynamic metric. The upper limit � = √

3/(3�)

is where the inverse of the Gibbs metric becomes singular.
The scalar curvature is given by

R(G)(T,�) = 22/3(1 − �2�2)
5/3

π4/3T 4/3�4/3(1 − 3�2�2)
2 , (4.12)

which is positive in the range (4.11), specified by Sylvester’s
criterion. This suggests elliptic information geometry, which
corresponds to repulsive inter-particle interactions. As in the
Weinhold’s case, the Gibbs curvature vanishes for high tem-
peratures or large values of the gravitational parameter �.
In the static case R(G) is again inversely proportional to the
temperature

lim
�→0

R(G) = 22/3

(πT �)4/3 . (4.13)

In this subsection we have considered the most commonly
used Hessian thermodynamic metrics. In what follows, we
are going to consider the new thermodynamic geometry
approach to the equilibrium manifold of the Lifshitz black
hole.

4.2 New thermodynamic geometry

Although their convenient probabilistic interpretation Hes-
sian thermodynamic metrics often fails to reproduce all rel-
evant critical points. One way to avoid such problem is pro-
posed in [38–41], where the authors take advantage of conju-
gate thermodynamic potentials to construct the proper Rie-
mannian metrics on the space of equilibrium states of a given
black hole system. Within the formalism of the new thermo-
dynamic geometry (NTG) [39] one can find a positive definite
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metric on (T,�) space by utilizing the Gibbs free energy as
conjugate potential. For this purpose, let us take the differ-
ential from both sides of G = E − T S − �L ,

dG = dE − TdS − SdT − �dL − Ld�. (4.14)

Now, we can express dE and use the first law (2.19) to find

dG(T,�) = −SdT − Ld�. (4.15)

The metric with respect to G(T,�) is defined by

g̃(G)
ab = − 1

T
∂a∂bG(T,�)

=
⎛
⎜⎝

2 3√2π4/3�2

3T (T (�−�3�2))
2/3

8 3√2π4/3�4�

3(T �)2/3(1−�2�2)
5/3

8 3√2π4/3�4�

3(T �)2/3(1−�2�2)
5/3

2 3√2π4/3�3 3√T �
(
3+7�2�2

)
3(1−�2�2)

8/3

⎞
⎟⎠ .

(4.16)

Sylvester’s criterion leads to the same restriction as in
Eq. (4.11). However, most unexpectedly, this geometry is
Ricci flat everywhere,

R̃(G)(T,�) = 22/3
(
4(1 − 4Y )�2�2 − 7�4�4 + 3

)
9π4/3 3

√
T �4/3

(
3�2�2 − 1

)3 (Y − Y )

= 0, (4.17)

where Y = 1−�2�2, which suggests free dual gauge theory.
In order to make this more explicit we change coordinates to
(S,�) space. Taking into account the Jacobian of the trans-
formation,

J = ∂(T,�)

∂(S,�)
=

(
∂ST ∂�T
∂S� ∂��

)

=
(

3S2(�2�2−1)
2

16π4�4
S3�(�2�2−1)

4π4�2

0 1

)
, (4.18)

where

T = S3
(
�2�2 − 1

)2

16π4�4 , (4.19)

and ĝ = J t .g̃(G).J , we end up with the metric on the cylinder

dŝ2 = 3

S
dS2 + S�2(1 − 3�2�2)

(1 − �2�2)
2 d�2 = dσ 2 + σ 2dχ2.

(4.20)

In the last step we traded our coordinates for

σ = 2
√

3S, χ = 1√
6

arctan

( √
2��√

1 − 3�2�2

)

−1

2
arcsin(

√
3��). (4.21)

Further substitution by X = σ cos χ and Y = σ sin χ yields
the desired flat two-dimensional Euclidean space. The latter
means that the curve �� = 1 is only a coordinate singular-
ity in (T,�) space. It is most obvious, if one calculates the
relevant thermodynamic quantities in (S,�) space

E = S4(1 − �2�2)(1 + 3�2�2)

64π4�4 , L = S4�(1 − �2�2)

16π4�2 ,

T = S3(1 − �2�2)
2

16π4�4 , (4.22)

F = S4(1 − �2�2)(7�2�2 − 3)

64π4�4 ,

G = −3S4(1 − �2�2)
2

64π4�4 , (4.23)

and the specific heats of the black hole

C�(S,�) = T

(
∂S

∂T

)
�

= T
{S,�}S,�

{T,�}S,�

= T
1(

∂T
∂S

)
�

= S

3
, (4.24)

CL(S,�) = T

(
∂S

∂T

)
L

= T
{S, L}S,�

{T, L}S,�

= T

∣∣∣∣ (∂S S)� (∂�S)S
(∂SL)� (∂�L)S

∣∣∣∣∣∣∣∣ (∂ST )� (∂�T )S
(∂SL)� (∂�L)S

∣∣∣∣
= S(1 − 3�2�2)

3 + 7�2�2 ,

(4.25)

which are regular everywhere.
Nevertheless, the metric g̃(G)

ab comes from more general
microscopic considerations. Consider a physical system in
equilibrium with a large thermal reservoir. The configura-
tional probability distribution is given by

p(y|λ) = 1

Z
e−βH(y,λ) = 1

Z
e−λi (t)Xi (y), (4.26)

where y is the configuration (a set of random variables or a
sample space), t is a time variable, β = 1/T is the inverse
temperature of the environment (kB = 1), Z is the parti-
tion function, and H is the Hamiltonian of the system. The
Hamiltonian is split into two parts – collective variables Xa

and their conjugate momenta λa , i.e. βH = λa(t)Xa(y). The
λ’s are the experimentally controllable parameters of the sys-
tem and define the accessible thermodynamic state space. In
our case, one has λa = (T,�) and Xa = (S, L). If the
partition function Z , which normalizes the probability dis-
tribution (4.26), is calculated in the fixed-� ensemble, then
it can be directly related to the Gibbs potential G via [57]

ln Z = −βG = ψ, (4.27)
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where ψ is the free entropy. In statistical quantum thermody-
namics the first derivatives of the free entropy give the first
moments of the collective variables [58]

∂ψ

∂λa
= −〈Xa〉 , (4.28)

while the second derivative yields the covariance matrix

Gab = ∂2ψ

∂λa∂λb
= 〈(Xa − 〈Xa〉) (Xb − 〈Xb〉)〉 . (4.29)

Substituting λa = (T,�), Xa = (S, L) and β = 1/T , we
find that the covariance matrix (4.29) exactly corresponds to
the thermodynamic metric from Eq. (4.16). Thus the Mirza–
Mansoori (MM) approach has a direct relation to quantum
statistics.

Let us briefly comment on the results of this section. We
have considered the Hessian metric approach to the space
of macrostates of the stationary Lifshitz black hole. Here, a
case by case study has revealed that a set of viable thermo-
dynamic metrics can be given by the Hessian of the energy
E (Weinhold’s approach) of the system and the Gibbs free
energy G. However, the Hessian of the entropy S did not
produced a suitable metric formalism on the (T,�) thermo-
dynamic manifold. A further investigation lead us to con-
sider the New Thermodynamic Geometry approach, where
we have constructed a proper positive definite thermody-
namic metric utilizing the Gibbs free energy. It turned out
that the new metric lead to a flat statistical manifold, which
corresponds to a free non-interacting underlying theory. We
have also showed that the new Gibbs metric coincides with
the covariance matrix from quantum thermodynamics in the
so called fixed-� ensemble.

Next, we are going to consider the optimal (with minimal
energy loss) paths on the equilibrium manifold for imple-
menting quasi-static processes, under which the systems has
enough time to equilibrate on every basic step.

5 Thermodynamic length and quasi-static processes

In this section we consider geodesics on the equilibrium state
space spanned by (T,�). The action for the thermodynamic
geodesics is written by [58]

L =
∫ t f

ti

√
gab(λ)

dλa

dt

dλb

dt
dt, (5.1)

where t is an affine parameter on the geodesics (not necessar-
ily corresponding to time), λa(t) = (T (t),�(t)) are the set
of intensive thermodynamic parameters, and (ti , t f ) denote
the initial and final states. We can vary the action to obtain
the system of coupled geodesic equations

λ̈c(t) + �c
ab(ĝ)λ̇

a(t)λ̇b(t) = 0, (5.2)

where the dot is a derivative with respect to t . By defini-
tion the thermodynamic length L, between two equilibrium
states at ti and t f respectively, is the on-shell value of the
action (5.1) for the geodesic curve connecting those states.
We can also define a related quantity, called the thermody-
namic divergence of the path,

J = τ

∫ τ

0
gab(λ)

dλa

dt

dλb

dt
dt, (5.3)

which is a measure of the energy dissipation or entropy pro-
duction for a transition between two equilibrium points at
particular rates of change. In other words, J measures the
efficiency of the quasi-static protocols and satisfies the fol-
lowing bound

J ≥ L2. (5.4)

The latter follows from the Cauchy–Schwarz inequality for
integrals and provides a formal definition of the degree
of irreversibility of the process2 (see [59] and references
therein). We are now ready to begin our analysis of the ther-
modynamic geodesics in (T,�) parameter space.

For the Gibbs metric (4.16) one finds the following cou-
pled geodesic equations

�̈ + �̇

3

(
Ṫ

T
+ �2��̇(1 − 21�2�2)

3�4�4 − 4�2�2 + 1

)
= 0, (5.5)

T̈ − 5Ṫ 2

6T
+ �2(21�4�4 − 22�2�2 + 21)

6(1 − 3�2�2)(1 − �2�2)
2 T �̇2 = 0, (5.6)

where

� �=
{

1

�
,

√
3

3�

}
, T > 0. (5.7)

The singular points in Eq. (5.7) correspond to the singu-
larities of the metric (4.16) and its inverse. One way to find
analytically a non-trivial solution is to consider a quasi-static
process with a constant geodesic profile for the angular veloc-
ity, �(t) = �0 = const . In this case, Eq. (5.5) is trivially
satisfied, while Eq. (5.6) for the temperature becomes simply

T T̈ − 5

6
Ṫ 2 = 0. (5.8)

For later convenience let us solve the more general equation

T T̈ + αṪ 2 = 0, (5.9)

2 With reversibility only for J = 0.
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where α is a real constant. This equation is equivalent to

d

dt
(T α Ṫ ) = 0, (5.10)

giving the first integral

T α Ṫ = C1, (5.11)

and consequently the general solution to (5.9):

T (t) = ((α + 1)C1t + C2)
1

α+1 . (5.12)

Given some initial conditions T (0) = T0 and Ṫ (0) = T0,
one finds

T (t) = T0

(
1 + t (α + 1)

T0

T0

) 1
α+1

. (5.13)

In Eq. (5.8) one has α = −5/6, thus the temperature profile
along the geodesics is

T (t) = T0

(
1 + t

T0

6T0

)6

. (5.14)

Here, we have assumed an initial macro-state T (0) = T0

and an initial rate of temperature change Ṫ (0) = T0. The
thermodynamic length L̃(G), between two macro-states at
t = 0 and at t = τ , yields

L̃(G) =
∫ τ

0

√
g̃(G)
T T (T (t),�(t)) Ṫ 2(t)dt

= (2π�)2/3|T0|τ√
3T 5/6

0 (1 − �2
0�

2)
1/3 . (5.15)

For this specific choice of geodesics, the thermodynamic
divergence J = L2 saturates the equality, thus L2 mea-
sures also the energy dissipation along the path. In the limit
�0 → 1/� the thermodynamic length L̃(G) becomes infinite.
This means that one cannot use (T,�) coordinates for quasi-
static evolution near this limit. In this case, a change of exper-
imentally controllable parameters of the system, for example
to (X,Y ) chart given just below Eq. (4.21), is necessary to
define meaningful thermodynamic states near �� = 1. The
price to pay is that we loose clarity of the physical process,
due to the fact that it is unclear how to treat (X,Y ) as ther-
modynamic quantities.

When one considers a constant angular velocity geodesic
profile for the Hessian–Gibbs metric (4.10) the system of
geodesic equations (5.2) reduces to

�0(1 − �2
0�

2)

1 − 3�2
0�

2

Ṫ

T
= 0, 3T̈ − 1 + 5�2

0�
2

1 − 3�2
0�

2

Ṫ 2

T
= 0. (5.16)

In this case, one has two options, namely �0 = 0 or �0 =
1/�. The first option, �(t) = �0 = 0, leads to

3T T̈ = Ṫ 2, (5.17)

with the following solution

T (t) = T0

(
1 + t

2T0

3T0

)3/2

. (5.18)

Therefore, the corresponding thermodynamic length reduces
to

L(G) =
∫ τ

0

√
g(G)
T T (T (t),�(t)) Ṫ 2(t)dt = (2π�)2/3τ |T0|

3T 1/3
0

.

(5.19)

It is always finite, thus a quasi-static protocol is always pos-
sible on this path. The second choice, �0 = 1/�, leads to
non-singular geodesic equation

T T̈ + Ṫ 2 = 0 (5.20)

with solution

T (t) = T0

(
1 + t

2T0

T0

)1/2

. (5.21)

However, in the limit � → 1/�, the thermodynamic length
diverges

L(G)
2 =

[
1 −

(
1 + 2τ

T0

T0

)1/3
]

lim
�0→1/�

√
3(2π�T0)

2/3

2(1 − �2
0�

2)
1/3

= ∞. (5.22)

In Weinhold’s case (4.3), if one is moving along a path of
constant angular velocity, �(t) = �0, the system of coupled
geodesic equations (5.2) reduces to

�0(1 − �2
0�

2)(9�4
0�

4 + 24�2
0�

2 + 7)

27�6
0�

6 + 99�4
0�

4 + 201�2
0�

2 − 7

Ṫ

T
= 0, (5.23)

3T̈ + 45�6
0�

6 + 237�4
0�

4 + 191�2
0�

2 + 7

27�6
0�

6 + 99�4
0�

4 + 201�2
0�

2 − 7

Ṫ 2

T
= 0.

(5.24)

A non-trivial profile for the temperature T (t) can be obtained
if we set�0 = 0. In this case, the second equation (5.24) turns
out to be the same as in the previous case (5.17) with the same
solution (5.18) for T (t). However, the thermodynamic length
of the path, connecting two macro states, is different

L(W ) =
∫ τ

0

√
g(W )
T T (T (t),�(t)) Ṫ 2(t)dt

= (2π�)2/3τ |T0|
(3T0)

1/3 . (5.25)
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The other possibility in Eqs. (5.23) and (5.24) is � = 1/�,
where the thermodynamic length is again singular

L(W )
2 =

[
1 −

(
1 + τ

3T0

2T0

)4/9
]

× lim
�0→1/�

(2π�T0)
2/3

√
1 + 3�2

0�
2

2(1 − �2
0�

2)
5/6

= ∞. (5.26)

By comparing the thermodynamic lengths in the consid-
ered cases above one can determine in which approach the
system has greater probability of fluctuating from one macro
state to another with minimal energy loss. In other words,
which thermodynamic manifold leads to optimal implemen-
tation of quasi-static protocols in (T,�) space. The ratios of
the computed thermodynamic lengths,

L̃(G)

L(G)
= 1√

T0
,

L̃(G)

L(W )
=

√
3

T0
,

L(G)

L(W )
= √

3, (5.27)

compared at �0 = 0, are independent of the initial rate of
temperature change T0. One notices that for small initial tem-
peratures, T0  1, the length L̃(G) in the fixed-� ensemble
is greater than both Hessian–Gibbs (grand-canonical) L(G)

and Weinhold’s length L(W ). In this case, it is less proba-
ble for the system to fluctuate into neighboring states, if it
is realized in the fixed-� ensemble. For large temperatures,
T0 � 1, L̃(G) is smaller and it becomes more efficient to
fluctuate into neighboring states. Finally, Weinhold’s length
is always smaller than the Hessian–Gibbs length along the
chosen geodesics, thus it is more efficient for the implemen-
tation of quasi-static protocols.

6 Conclusion

Investigating the thermodynamic properties of various black
hole solutions in three dimensions plays an important role
in revealing hidden relations between classical gravitational
theories and quantum field theories in general. In this context,
motivated by the remarkable dualities between gravitational
(string) and gauge field theories [60], also known as the holo-
graphic principle, we study the thermodynamic properties of
the stationary Lifshitz black hole solution of New Massive
Gravity obtained in [22].

Our findings uncover the suitable Riemannian metrics
on the space of equilibrium states of the black hole solu-
tion, together with several criteria for thermodynamic sta-
bility of the system. Our investigation has been conducted
mostly within the framework of Thermodynamic Informa-
tion Geometry, which takes advantage of differential geom-
etry to study statistical features of various models.

The first set of restrictions (3.1) on the parameter space of
the stationary Lifshitz black hole comes from its metric (2.8).
The scalar curvature (2.9) and other higher-order invariants
(2.10)–(2.12) are regular everywhere except at � = 0. The
curve �� = 1 is also a regular one with respect to the curva-
ture invariants, suggesting it is only a coordinate singularity
in the metric. This is also true in the thermodynamic case,
where all corresponding thermodynamic scalar curvatures
vanish on this curve.

The second set of restrictions (3.8) comes from imposing
local thermodynamic stability on the black hole. However, for
values of the angular velocity in the range 1/(

√
3�) ≤ � < �,

the black hole is locally stable only with respect to C�, but
not CL . On the other hand, imposing global stability in the
grand-canonical ensemble, we find the same restriction as
in (3.1), while there is a different condition (3.11) on � in
the canonical ensemble. Nevertheless, the restrictions in both
ensembles include partially or entirely the condition (3.8) for
local thermodynamic stability.

Further conditions comes from the admissible thermody-
namic metrics on the (T,�) equilibrium state space of the
black hole solution. Here, several approaches were consid-
ered. In Weinhold’s case, one requires positive definite met-
ric, which leads to condition (4.6), where the upper bound
values of the angular velocity � are defined by the positive
real roots of the cubic equation (4.5). When one considers
the Hessian of the Gibbs free energy one finds the condi-
tion (4.11), which stays within the local and global thermo-
dynamic stability of the black hole. By defining a positive
definite metric within the New Thermodynamic Geometry
we found that the metric is in one to one correspondence
with the covariance matrix from quantum thermodynamics.
In our specific case, when utilizing the Gibbs free energy
as conjugate thermodynamic potential, the correspondence
is valid in the fixed-� ensemble. The resulting condition on
the parameter space is the same as in (4.11). For clarity, we
briefly state the results from all cases in Table 1.

By considering geodesics on the equilibrium manifold one
can find the most optimized implementation of quasi-static
protocols. This can be achieved by investigating the thermo-
dynamic length along a chosen geodesic path, which we did
in Sect. 5. Considering constant angular velocity geodesics
we found that Weinhold’s approach is more efficient than the
Gibbs metric from (4.10). On the other hand the efficiency
of the NTG approach depends on the initial temperatures
of the black hole. A relative comparison of the thermody-
namic lengths in the corresponding approaches is given in
Eq. (5.27).

In addition to our analysis, one can go further and con-
sider logarithmic corrections to the entropy due to small ther-
mal fluctuations around its equilibrium configuration. It was
shown that for any thermodynamic system with well-defined
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Table 1 Conditions for thermodynamic stability in different cases.
Notations in the table are as follow: LTDS (local thermodynamic sta-
bility), GTDS (global thermodynamic stability), NTG (new thermody-

namic geometry), Hess(S) hessian of the entropy,
√
r+ ≈ 0.185/�. In

all cases we assume � > 0, T > 0

Cases Conditions Positive definite Stat. geometry

LTDS 0 ≤ � <
√

3/(3�) Heat capacity C > 0 –

GTDS (Helmholtz) � <
√

21/(7�) Concave (∂2F/∂T 2 < 0) –

GTDS (Gibbs) 0 ≤ � < 1/� Concave (∂2G/∂T 2 < 0) –

Ruppeiner (Hess(S)) – No –

Weinhold (Hess(E)) 0 ≤ � <
√
r+ Yes Elliptic (R(W ) > 0)

Gibbs (Hess(G)) 0 ≤ � <
√

3/(3�) Yes Elliptic (R(G) > 0)

Helmholtz (Hess(F)) – No –

NTG (Gibbs) 0 ≤ � <
√

3/(3�) Yes Flat (R̃(G) = 0)

first law one can write the corrected form of the entropy in
the form [61–64]

S̃ = S + α log(ST 2) + · · · (6.1)

where S is given in Eq. (3.3) and α is an unknown coefficient.
It is straightforward to compute the corrected specific heats
of the stationary Lifshitz black hole:

C̃� = T

(
∂ S̃

∂T

)

�

= C� + 7α

3
, (6.2)

where C� is given in Eq. (3.4), and

C̃L = T

(
∂ S̃

∂T

)

L

= CL + α(7 + 11�2�2)

3 + 7�2�2 , (6.3)

where CL is defined in Eq. (3.5). Assuming α �= ±∞, the
corrected heat capacities show no additional singularities.
Imposing local thermodynamic stability, C̃�,L > 0, one finds
two cases. The first case is for α < 0, where one has

T >
|α|3(1 − �2�2)

2
(7 + 11�2�2)

3

16π4�4
(
1 − 3�2�2

)3 ,

3�� <
√

3, α < 0. (6.4)

Here, local thermodynamic stability requires a specific α-
dependent relation (6.4) between the temperature T and the
angular velocity �. For bigger values of |α| higher temper-
atures are necessary to maintain locally stable equilibrium.
Therefore, Eq. (6.4) can be interpreted as a lower positive
bound on T . The second possibility is α > 0, where one
finds

0 < T <
α3(1 − �2�2)

2
(7 + 11�2�2)

3

16π4�4
(
3�2�2 − 1

)3 ,

3�� >
√

3, α > 0, (6.5)

in which case T acquires an upper bound.

Acknowledgements The authors would like to thank Radoslav
Rashkov, Hristo Dimov, Stoycho Yazadjiev, Petia Nedkova and Galin
Gyulchev for the useful discussions on the manuscript. T. V. is grateful
to Seyed Ali Hosseini Mansoori for careful reading of the draft. This
work was partially supported by the Bulgarian NSF Grants No. DM18/1
and No. N28/5, and the Sofia University Grant No. 80-10-149. T. V. and
K. S. gratefully acknowledge the support of the Bulgarian national pro-
gram “Young Scientists and Postdoctoral Research Fellows”.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: There is no asso-
ciated data or any other codes related to this manuscript, and no such
data will be deposited in the future.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: The Smarr relation and quasi-homogeneity
of the energy

One can verify the following Smarr relation between the rel-
evant thermodynamic quantities

E = 1

4
T S + �L . (A.1)

It is a consequence of Euler’s theorem for quasi-homogeneous
function, where we can simply write down E = E(S, L) as
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E(S, L) = 1

4

∂E

∂S
S + ∂E

∂L
L . (A.2)

Hence, under re-scaling of the form S → αS and L → α4L
with a parameter α, one has E(αS, α4L) = α4E(S, L),
thus the energy E is a quasi-homogeneous function of
degree 4. We can also directly check if E(S, L) is a quasi-
homogeneous functions by analyzing the roots of the follow-
ing cubic equation with respect to E

E3 − 1

4

(
S

2π�

)4

E2 − 9L2

8�2 E

+ L2
(

27π4L2

4S4 + S4

64π4�6

)
= 0. (A.3)

Taking into account the various ranges of the parameters one
notes that the only real root, which gives the correct T =
∂E/∂S and � = ∂E/∂L , is given by

E(S, L) = S4

192π4�4 + S28/3

192π4�4 3
√
A(S, L)

+72π4�2L2S4/3

3
√
A(S, L)

+
3
√
A(S, L)

192π4�4S4/3 , (A.4)

where the auxiliary function A(S, L) is defined by

A(S, L) = 192π4�3LS8
(√

3
√

1728π8�6L2 − S8 − 180π4L�3
)

− 331776π12�9L3
(√

3
√

1728π8�6L2 − S8 + 72π4�3L
)

+ S16, (A.5)

Let us re-scale the arguments S → αS and L → α4L , hence
the energy becomes

E(αS, α4L) = α4S4

192π4�4 + α28/3S28/3

192π4�4 3
√
A(αS, α4L)

+72π4�2α28/3L2S4/3

3
√
A(αS, α4L)

+
3
√
A(αS, α4L)

192π4�4α4/3S4/3 . (A.6)

The new function A(αS, α4L) yields

A(αS, α4L)

= 192π4�3α12LS8
(√

3
√

1728π8�6α8L2 − α8S8 − 180π4α4L�3
)

− 331776π12�9α12L3

×
(√

3
√

1728π8�6α8L2 − α8S8 + 72π4�3α4L
)

+ α16S16

= α16
[
192π4�3LS8

(√
3
√

1728π8�6L2 − S8 − 180π4L�3
)

−331776π12�9L3
(√

3
√

1728π8�6L2 − S8 + 72π4�3L
)

+ S16
]

= α16A(S, L).

Substituting the last expression in Eq. (A.6) one finds

E(αS, α4L) = α4S4

192π4�4 + α28/3S28/3

192π4�4α16/3 3
√
A(S, L)

+72π4�2α28/3L2S4/3

α16/3 3
√
A(S, L)

+ α16/3 3
√
A(S, L)

192π4�4α4/3S4/3

= α4
(

S4

192π4�4 + S28/3

192π4�4 3
√
A(S, L)

+72π4�2L2S4/3

3
√
A(S, L)

+
3
√
A(S, L)

192π4�4S4/3

)

= α4E(S, L).

Therefore, the energy is a quasi-homogeneous function of
degree 4, E(αS, α4L) = α4E(S, L).
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