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Abstract We investigate the collision of a new class of
topological defects that tends to become compact as a control
parameter increases to larger and larger values. These new
compactlike defects have, in general, more than one internal
discrete mode depending on the value of the control param-
eter and, as usual, there is a critical velocity above which
the defects escape after the collision. We noticed that below
the critical velocity there are the windows of escape present-
ing fractal structure. An interesting novelty is the appear-
ance of metastable structures with the formation of compact-
like defects, maintaining a fixed distance from each other.
Another new feature is the formation of boosted localized
distributions of the scalar field which we called moving oscil-
lons. These oscillons carry away almost all scalar field energy
producing a complete disruption of the compactlike defects.
The pattern of the moving oscillons depends on the control
parameter, and becomes more complex as we increase its
value. We conjecture that the new effects may be connected
with the presence of more than one vibrational mode in the
spectrum of the stability potential of the model under inves-
tigation.

1 Introduction

Topological defects are of current interest in high energy
physics, where they can be used to describe phase transi-
tions in the early universe or map interfaces separating dis-
tinct regions in space, among several other possibilities [1–
5]. Some interesting illustrations of the use of topological
defects appeared before, for instance, in Refs. [6–12], and
also for more recent applications of the interactions involv-
ing kinks in models with power-law tails, we mention the
Refs. [13–19].

In this work we study topological defects of the kink type,
which appear in relativistic models described by a real scalar
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field in (1 + 1) spacetime dimensions. We focus attention on
models that support kinks with the compact profile, but we
recall that kinks with the standard profile appeared before in
the φ4 model. Although compact structures first appeared in
the presence of nonlinearity and nonlinear dispersion, acquir-
ing spatial profile with compact support [20], here we will
follow another route [21], in which one shows how to get
topological structures that may acquire the compact profile
in a scalar field model with standard kinematics. We work
with natural units (h̄ = c = 1) and use dimensionless field
and space and time coordinates.

As one knows, compact structures behave trivially out-
side a compact region, so they are different from the stan-
dard kinklike configurations and their collisions may bring
new effects. This is the main aim of the current work, and
we will compare the results with the scattering or collisions
of kinks that have been investigated in Refs. [22–35] and
in references therein. In [22], in particular, the authors have
suggested that the two-bounce windows that appeared in the
collisions of kinks in the φ4 model are due to the existence
of the translational and vibrational modes. Motivated by this,
in the present work we consider a model that may support
several vibrational states, so the scattering of kinks may have
a richer structure. In fact, we study the scattering of kinks in a
model controlled by an integer n = 1, 2, 3, . . ., which leads
to the compact limit for n → ∞, where the kinks shrink to
a compact interval of the real line. We do this to examine
how the scattering behave as we increase the parameter that
controls the scalar field theory, since this will contribute to
increase the number of vibrational states in the system. We
organise the work as follows: in Sect. 2 we briefly review
the model introduced in [21], which is capable of describing
compact solutions in a model with a single real scalar field in
(1+1) spacetime dimensions. In Sect. 3 we consider the col-
lisions of the compactlike configurations presented in Sect. 2
and collect the main results of the numerical investigations.
We conclude the work in Sect. 4.
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2 The model

In order to investigate the problem, let us write the Lagrange
density for a scalar field with standard kinematics. It has the
form

L = 1

2
φ̇2 − 1

2
φ′2 − V (φ), (1)

where we are using φ̇ = ∂φ/∂t , φ′ = ∂φ/∂x , the metric is
(+,−) and φ is a real scalar field. V (φ) is the potential and
the equation of motion is given by

φ̈ − φ′′ + dV

dφ
= 0. (2)

In this work we will consider a non negative potential V (φ)

that supports two minima, at φ̄± = ±1, and a single topo-
logical sector. It supports the kinklike solution φ(x), which
connects the two minima: φ(x → −∞) = −1 and φ(x →
∞) = 1. The kinklike solution obeys the equation

φ′′ = dV

dφ
, (3)

with φ(x → −∞) → −1 and φ(x → ∞) → 1, with
vanishing derivatives. It has energy density ρ(x) given by

ρ(x)= 1

2
φ′2 + V (φ(x)) = φ′2 = 2V (φ(x)). (4)

We study linear stability, to see how the solution behaves
under the presence of small fluctuations. We add small fluc-
tuations around the static solution φ(x), writing φ(x, t) =
φ(x)+η(x) cos(ωt). We use this into the equation of motion
and expand it up to first-order in η to get the Schroedinger-
like equation(

− d2

dx2 +U (x)

)
η = ω2η, (5)

with

U (x) = d2V

dφ2

∣∣∣∣
φ=φ(x)

. (6)

This is the potential that appears in the study of stability, so
we call it the stability potential. We see from the above Eq. (6)
that U (x) goes asymptotically to m2, which is the (squared)
classical mass of the field at the minima ±1.

An important model which falls within the class of models
that we are interested in is the φ4 model, with spontaneous
symmetry breaking. The potential can be written as

V (φ) = 1

2
(1 − φ2)2. (7)

We focus on this model, which has the minima ±1 and a
maximum at the origin, such that V (0) = 1/2. We also have
the kink solution given explicitly by

φ(x) = tanh(x), (8)

where we are taking the center of the kink at the origin, for
simplicity. The energy density has the form

ρ = sech4(x), (9)

and the energy gives E = 4/3. In this case, the stability
potential has the form

U (x) = 4 − 6 sech2(x). (10)

It is the modified Poeschl-Teller potential and is reflectionless
and has two bound states, the zero mode, with ω0 = 0, and
the excited state, with ω2

1 = 3.
Let us now consider another model, given by

Ln = 1

2
∂μφ∂μφ − Vn(φ), (11)

where the potential has the form

Vn(φ) = 1

2

(
1 − φ2n

)2
, (12)

with n being an integer, n ≥ 1. For n = 1, we get back to
the φ4 model. This model is different from the previous one,
and the parameter n is now a natural number that controls
the model.

The equation of motion for this model is

φ′′ = −2nφ2n−1(1 − φ2n). (13)

The second derivative of the potential is

d2Vn
dφ2 = 4n2φ4n−2 − 2n(2n − 1)φ2n−2(1 − φ2n). (14)

This potential is non-negative and also has the two minima
φ± = ±1, with Vn(±1) = 0, for any n. Also, the mass is
such that m2

n = 4n2, which increases to very large values for
very large values of n.

The equation of motion (13) can be solved numerically,
and in Fig. 1 we depict the potential (top left), kinklike
solution (top right), energy density (bottom left) and stabil-
ity potential (bottom right) for several values of n. We see
from the stability potential that it changes with increasing n,
becoming a well with increasing walls that gets more and
more bound states, as n increases to larger and larger val-
ues. One also notes that, as n increases to larger and larger
values, the kinklike solution approaches the compact limit;
in this case, the solution tends to become a straight line that
goes from − 1 to 1 in the compact interval [− 1, 1] and the
energy density shrinks to be nested inside the same interval.

3 Scattering

Let us now investigate the scattering of the kink-like struc-
tures or the new topological defects that appear in the model
described by Eq. (12), for some specific values of n. The
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Fig. 1 The potential (12) (top left), its corresponding kinklike solution
(top right), energy density (bottom left) and stability potential (bottom
right), depicted for n = 1 and for several other higher values of n

case n = 1 reproduces the φ4 model, and we use it as a stan-
dard situation. We refer to the topological defects for n = 1
as kinks, and we distinguish them from the new kinklike
structures that we call compactlike defects characterised by
n > 1. We will consider several values of n > 1 to investi-
gate how the usual scattering of the φ4 model changes when
one increases n, remembering that the case n → ∞ leads to
the compact kinks.

We consider an initial configuration that represents a pair
of the compactlike defects moving towards each other with
velocity u. At t = 0, we have

φ0(0, x) = −1 + φC (0, x + x0) − φC (0, x − x0), (15)

where 2x0 is the initial distance between the two kinklike cen-
ters, located at x = −x0 and x = x0, respectively. Also, we
need to include the initial condition v0(0, x) = (∂φ/∂t)t=0.
In this case, it is necessary to extend the static compact-like
solution to include the boost factor [1,4]. However, it is not
possible to obtain an explicit exact solution for a boosted
compactlike solution, φC (t, x) (n > 1), unless for the case
n = 1, which describe the standard kinks. We circumvent this
problem by obtaining the implicit solution after integrating
Eq. (3) with the introduction of a boost factor, which results
in∫

dφ

1 − φ2n = x − x0 − ut√
1 − u2

. (16)

After selecting n = 2, 3, 4, etc, we integrate the LHS of the
above equation to obtain the corresponding implicit solution
of a compactlike defect located initially at x = x0 and moving
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Fig. 2 (Top panel) The profile of the initial data (15) for successive
values of n varying from n = 1 corresponding to the φ4 model, up to
n = 20. (Bottom panel) The initial configuration of the energy density
corresponding to the configuration in the top panel

with speed u in the positive x direction if u > 0. For the
sake of illustration, we show in Fig. 2 the initial profiles
of the scalar field and the energy density corresponding to
the initial data (15) with x0 = 5 and u = 0.15 for n =
1, 2, . . . , 8.

We integrate the equation of motion (2) numerically with
the spectral code introduced in Ref. [25]. Briefly, we approx-
imate the scalar field as

φ(t, x) =
N∑
j=0

a j (t)ψk(x) (17)

where a j (t) are the unknown coefficients associated to the
basis functions ψ j (x) and N is the truncation order whose
value coincides with the number of collocation points [25].
The equation of motion is then reduced to a set of N + 1
coupled ordinary differential equations for the modes a j (t).
We improved the code resolution by setting N ≥ 1000 in
such a way that the relative error in the total energy δE(t) =
|Einitial−E(t)|/Einitial×100 is not superior to 10−4%, where
the total scalar field energy is given by
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Fig. 3 The eigenfunctions χ(x) associated to the internal modes of the
compactlike structures with n = 6 and n = 8. In the inset, we display
the corresponding eigenfrequencies

E(t) =
∫ ∞

−∞
dx

(
1

2

(
∂φ

∂t

)2

+ 1

2

(
∂φ

∂x

)2

+ V (φ)

)
. (18)

Collision of kinks

The collision of kinks of the φ4 model (n = 1) results in two
primary outcomes depending on the initial impact velocity.
For velocities higher than the critical value, ucrit ≈ 0.2598,
the kinks interact briefly and emerge moving apart from each
other. On the other hand, for u < ucrit , in general, there is
a formation of a bound state constituted by an oscillating
structure at the origin. The interaction between the kinks is
almost elastic with a small loss of the scalar field.

As shown in several works [22,36–40], the remarkable
nonlinear aspect of the interaction of kinks manifests with the
presence of the windows of escape or the resonance windows.
It means that for u < ucrit there exist some narrow intervals
in which the kinks emerge and escape after performing one
or more bounces. The best explanation for the appearance of
the windows of escape is the reversible exchange of energy
between the vibrational and translational modes of the kink

Table 1 Values of the discrete eigenfrequencies corresponding to n =
1, . . . , 6

n ωk

1
√

3 ≈ 1.7321

2 1.8421, 3.8366

3 1.7896, 4.6036

4 1.7472, 4.8465, 7.1687

5 1.7170, 4.9231, 7.644, 9.6901

6 1.6952, 4.9426, 7.8662, 10.3842

and antikink. When the kinks collide, they separate, but part
of their kinetic energy is transferred to the vibrational mode
supported by the stability potential. Then, the kinks emerge
and due to their mutual attraction return to collide again since
u < ucrit . This process can be repeated several times, giving
rise to the bounces. However, the energy stored in the oscil-
latory modes can be transferred to the translational modes
resulting in the escape of the kink and antikink. This mech-
anism is not particular for the φ4 model, but it is extended to
other similar models. Furthermore, the edges of the windows
of escape are not smooth but have a fractal structure.

Internal modes of the compactlike structures

In general, the internal modes of a topological defect may
play an essential role when the defects interact. For this rea-
son, it is of interest to identify the internal modes of the
stability potential of the present model for n increasing from
unity to higher values.

For the sake of completeness, we obtained the internal
modes of a compactlike defect following the standard pro-
cedure [4,38]. We first perturb the compactlike structure as
φ(x, t) = φ(x) + χk(x) cos(ωk t). After obtaining the lin-
earised Schörindger-like equation, we solve it for the eigen-
functions χk(x) and the corresponding eigenfrequencies ωk .
For the case of n = 1, there is one discrete mode identified as
the vibrational mode with eigenfrequency ω = √

3, besides
the translational or zero mode characterised by ω = 0. Con-
sidering now the compactlike structures (n > 1, integer),
we found that there exist, in general, more than one discrete
mode besides the zero mode. Moreover, the continuous radia-
tive spectrum is characterised by ωk ≥ 2k for all k = 1, 2, 3,

etc, with k controlled by n. We present the plots of some
eigenfunctions for the cases n = 6 and n = 8 in Fig. 3.
As a consequence, we expect new features arising from the
interaction of the compactlike structures when the impact
velocities are smaller than the critical velocity due to a pos-
sible complex transfer of energy among the distinct internal
modes. In Table 1 we present the single precision discrete
eigenfrequencies for some values of n.
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Critical velocity and escape of compactlike kinks

In the case of the collision of compactlike defects, there also
exists a critical velocity defined for each n > 1. We found
that the critical velocity increases slightly with the parameter
n, for instance, for the sake of illustration, we obtain the
sequence of some critical values as ucrit ≈ 0.25104 (n =
2), 0.26052 (n = 3), 0.26357 (n = 4), 0.26573 (n =
5), 0.26733 (n = 6).

For the impact velocity higher than the critical speed, the
compactlike structures reflect and move apart from each other
similarly to the reflection and escape of kinks. We illustrate
this situation in Fig. 4 with the 3d plots of the scalar field and
energy density for the collision of compactlike kinks with
n = 20 and initial velocity of u = 0.278577. We notice that
the receding compactlike defects oscillate as the result of the
excitement of their internal vibrational modes. It is also clear

that the presence of compact structures before and after the
collision.

Fractal structure

The numerical experiments indicated the existence of fractal
structures in the edges of the windows of escape for any
n > 1. We show in Fig. 5 the illustration of the fractal
structure by zooming in the boundaries of some windows of
escape, where white indicates the escape of the compactlike
defects. Like the collision of kinks, it is a robust nonlinear
aspect of the interaction of compact-like defects. However,
the interaction of compactlike defects exhibits striking dif-
ferences with respect to the kinks (n = 1) as we are going to
describe.

In connection with the fractal structure, the presence of
the windows of 2, 3, 4, . . . , k-bounces or resonance windows
are ubiquitous. From the collision of kinks, we know that the

Fig. 4 3D plots of the scalar
field and the energy density of
the escape of the compactlike
kinks for u > ucrit . Here n = 20
and u = 0.278577

Fig. 5 illustrations of the fractal structure by zooming in some of the boundaries of the windows of escape for the collision of compactlike kinks
with distinct values of n

123



1000 Page 6 of 11 Eur. Phys. J. C (2019) 79 :1000

0 10 20 30 40 50 60 70
t

-1.5

-1

-0.5

0

0.5

1

1.5
(0
,t)

0 10 20 30 40 50 60 70
t

-1.5

-1

-0.5

0

0.5

1

1.5

(0
,t)

0 10 20 30 40 50 60 70
t

-1.5

-1

-0.5

0

0.5

1

1.5

(0
,t)

Fig. 6 Resonant 2-, 4- and 8-bounce solutions for n = 4 viewed from the plots of the scalar field at the origin (left panels) and the 3D plots of the
energy density (right panels)
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Fig. 7 Illustration of a 5-bounce solution for n = 16

bounces are a consequence of an intricate exchange of energy
stored into the vibrational and translational internal modes
along with a resonance mechanism [22,39,40]. In the col-
lision of compactlike defects, the transfer of energy among
the distinct vibrational models produces a rich structure of
resonance windows. For the sake of illustration, we show
in Fig. 6 examples of 2-, 4- and 8-bounce solutions or res-
onances for the compactons with index n = 4 and impact
velocities u = 0.2634594, 0.2630744, 0.2630701. Note that
we identify the bounces by inspecting the scalar field at the
origin. We conjecture that a similar resonance mechanism
takes place but involving the energy exchange through dis-
tinct vibrational modes. According to Fig. 6, there are several
small bounces after a larger one, but it is possible to find more
significant bounces depending on the correct fine-tuning of
the impact velocity. In Fig. 7, we present a 5-bounce reso-
nance for the collision of compactlike structures with n = 16
and u = 0.20.
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Fig. 8 Long-lived compactlike oscillon after the collision of compact-
like kinks with n = 4 and u = 0.08098484

Presence of oscillons

The collision of kinks is almost elastic, meaning that only a
small fraction of the scalar field energy is radiated away. Also,
the formation of a bound oscillating scalar field at the origin
is the primary outcome for u < ucrit . On the other hand,
in general, the collision of compactlike defects is inelastic,
with a considerable amount of energy of the scalar field radi-
ated. However, there are specific values of the impact velocity
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Fig. 9 Top to bottom: moving oscillons generated for the cases n = 2, 6 and 8
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Fig. 10 Metastable structure formed by a pair compact-like defects
viewed from the 3D plots of the energy density

where we found the formation of long-lived states we called
compactlike oscillons. We show a typical compactlike oscil-
lon for n = 4 and u = 0.08098484 with the 3d plots of the
scalar field and energy density in Fig. 8.

A new and significant feature we observed after the colli-
sion of compactlike kinks is the formation of several struc-
tures identified as moving oscillons together with a remnant
oscillon at the origin. It is a general outcome for u < ucrit

and the pattern of moving oscillons is sensitive to the param-
eter n (n > 1) as well as the impact velocity. Before the
formation of the moving oscillons, there is always a period
of transient oscillations that can also be interpreted as small
bounces. In this case, the energy transferred to the vibra-
tional modes of both compactlike configurations and then
back to the translational modes is not enough for the escape of
compactlike structures. However, probably due to some reso-
nance mechanism related to the time of unstable oscillations,
the transferred energy from the vibrational modes form mov-
ing oscillating structures or simply moving oscillons. These
oscillons escape in distinct patterns forming a type of cas-
cade. Some examples of the formation of moving oscillons
are in Fig. 9 for the collision of compactlike defects charac-
terised by n = 2, n = 6 and n = 8 for u = 0.1816, 0.1635
and 0.25, respectively.

Stationary compactlike defects

The last relevant outcome resulting from fine-tuning the
impact velocity at the edges of the bounce windows is the for-
mation of metastable structures, as illustrated in Fig. 10 for
n = 8 and u = 0.2694003. The compactlike defects are not
disrupted or undergo bounces, but emerge and remain to an
approximately fixed distance from each other. The time this
structure survives depends upon the fine-tuning of the impact

velocity. Eventually, the compactlike defects collide again.
The metastable configurations can be understood as result-
ing from the competition between the kinetic energy acquired
after the collision that makes the compactlike defects to move
apart and the attraction between both defects. Alternatively,
we may interpret the metastable configuration as a conse-
quence of a very long bounce, since eventually, the compact-
like defects collide again.

We remark that the above metastable configuration is not
observed for the interaction of kinks (n = 1). Also, in Ref.
[41] the authors reported on the appearance of this type of
configuration in the collision of a pair of two-kinks [42], but
there it was identified as a metastable lumplike configuration.
This issue requires further investigation.

4 Conclusion

In this work, we investigated the scattering of a new class of
topological structures identified as compactlike defects [21].
They represent a generalization of the φ4 model with the
addition of a parameter n to control the potential of the model.
We recover the kinks of the φ4 model for n = 1, whereas
for larger values of n the resulting topological defects tend
to have a compact profile.

A valuable piece of information for investigating the col-
lision of compactlike defects is the identification of their
internal modes. Contrary to the case of kinks, other discrete
internal modes appear, with the number increasing as one
increases the parameter n; see Table 1. This means that during
the interaction, energy can be stored and transferred among
the internal modes in an intricate manner resulting in a com-
plex dynamics and a richer collision outcome.

We described the main results of the compactlike scat-
tering where the choice of the parameter n > 1 and the
impact velocity are the two main factors that dictate the out-
come. For any value of n, there is a critical velocity, ucrit for
which whenever u > ucrit , the compact-like defects reflect
and move apart from each other. On the other hand, if the
impact velocity is smaller than the critical value we have:

• The compactlike defects can be trapped at the center
forming a long-lived oscillating structure we called com-
pactlike oscillon. In this case, a small amount of radia-
tion is released. It is similar to the oscillating bound state
found in the interaction of kinks.

• The prevailing outcome for the impact velocities smaller
than the critical velocity is the formation of moving oscil-
lons. Depending on n, distinct patterns of moving oscil-
lons are developed and become more intricate as we
increase the parameter n. We conjectured that a reso-
nance mechanism associated with the several vibrational
internal modes is the most probable explanation for the
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creation of the moving oscillons. Almost all scalar field is
radiated away, leaving behind a tiny oscillon at the center.

• We found a fractal structure at the edges of the windows of
escape. It means that even for u < ucrit , the compactlike
defects start to move apart but collide again to escape in
the case of the two-bounce windows. There are also the
three-bounce windows, the four-bounce windows, and so
on.

• For those impact velocities close to the edges of the res-
onance windows, we found the formation of metastable
structures in which the compactlike kinks neither escape
nor collide again.

The interaction of the more general topological defects
displays new features along with the one already known from
the case of the kinks of the φ4 model. We expect that these
main outcomes are robust since they are present even for the
simplest compactlike defect, characterised by n = 2. And
we also think this would also be the case for the interaction
of compactons, in the case of n → ∞.

There are several possibilities of future studies for the
present research, and here we point out a direction which
is related to the study of the dynamics of two-dimensional
defects where the scalar field φ = φ(t, r), r being the usual
radial coordinate, with the same potential given by Eq. (12).
The case n = 1 has been studied in the literature [43–47] in
connection with the formation of oscillons and application
in Cosmology, and we want to investigate how higher values
of n contribute to modify the physical picture.
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