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Abstract We construct black hole solutions to the lead-
ing order of string effective action in five dimensions with
the source given by dilaton and magnetically charged anti-
symmetric gauge B-field. Presence of the considered B-
field leads to the unusual asymptotic behavior of the solu-
tions which are neither asymptotically flat nor asymptotically
(A)dS. We consider the three-dimensional space part to corre-
spond to the Bianchi classes and so the horizons of these topo-
logical black hole solutions are modeled by seven homoge-

neous Thurston’s geometries of E3, S3, H3, H2×E1, ˜SL2R,
nilgeometry, and solvegeometry. Calculating the quasi-local
mass, temperature, entropy, dilaton charge, and magnetic
potential, we show that the first law of black hole thermody-
namics is satisfied by these quantities and the dilaton charge
is not independent of mass and magnetic charge. Further-
more, for Bianchi type V , the T -dual black hole solution is
obtained which carries no charge associated with B-field and
the entropy turns to be invariant under the T -duality.

1 Introduction

The low energy string effective action contains a rich vari-
ety of black hole solutions, which being characterized by
charges of dilaton, Yang–Mills fields and the antisymmetric
tensor gauge field (B-field), possess qualitatively different
properties from those of general relativity [1–4]. In this con-
text, the rotating and charged dilaton black hole solutions in
string theories have been obtained, for instance, with con-
stant dilaton for the dilaton-graviton system in [5] and with
including a coupling of dilaton to the Maxwell field within
a generalized class of theories that arise in low energy string
effective action in [6]. Furthermore, taking into account a
non-trivial B-field, or more generally the p-form fields, the
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charged and rotating string black hole solutions have been
found for example in [6–12]. In this category, the well known
Kerr-Sen rotating charged black hole solution in low energy
effective field theory of heterotic string theory is the first con-
structed solution by transforming the Kerr solution using the
twisting method [8].

The equations of motion of low energy string frame effec-
tive action are equivalent to the one-loop β-function equa-
tions which are the conformal invariance condition of the cor-
responding σ -model. Being differential equations, like Ein-
stein field equations, they characterize the local properties
of spacetime and not the global structure, namely the topol-
ogy of spacetime. The restriction on the topology of black
holes was first noticed in Hawking’s theorem where the event
horizon cross section of a stationary asymptotically flat 4-
dimensional black hole, which satisfies the dominant energy
condition, was determined to be S2 [13,14]. A generaliza-
tion of this result to the higher dimensional black holes was
then provided in [15], where the event horizon of a stationary
black hole in arbitrary dimension is required to admit a pos-
itive scalar curvature metric. The Emparan and Reall black
ring solution with S2 × S1 horizon topology is a relevant
example in this category [11]. Nevertheless, the black hole
solutions with non-trivial horizon topology, namely the topo-
logical black holes, are allowed to be considered if some of
the assumptions of these theorems are relaxed [16–19]. For
example, in the asymptotically anti-de Sitter (AdS) space-
times, where the dominant energy condition and asymptotic
flatness are both violated, the black hole solutions with com-
pact Riemann surfaces of any genus g as horizon have been
studied in [20–24]. Also, the rotating generalization of these
solutions in AdS4 with g > 0 has been presented in [25,26],
whose horizons are not compactificable and their described
spacetimes are rotating black branes [27].

Usually, the horizon geometries of topological black hole
solutions are considered to be spherical, hyperbolic or flat.
For the five-dimensional black hole solutions the situation
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can be more extensive. The geometries of three-dimensional
homogeneous manifolds has been classified by Thurston into
eight types [28], where in addition to three isotropic con-
stant curvature cases of spherical S3, Hyperbolic H3, and
Euclidean E3, there are five anisotropic alternative three-

dimensional geometries of S2 × R, H2 × R, ˜SL2R, solveg-
eometry, and nilgeometry. Admitting homogeneous metrics,
these model geometries have close correspondence with the
homogeneous geometries of Bianchi types and Kantowski-
Sachs [29,30]. The Bianchi types are defined based on the
simply-transitive three-dimensional Lie groups classifica-
tion. Since the isometries of the Riemannian manifold form
a Lie group, the Bianchi classification is widely used for
studying the spatially homogeneous spacetimes in relativity
and cosmology [31–35]. The spacetimes in these models are
assumed to possess a symmetry, namely the spatial homo-
geneity [36]. Families of five-dimensional black hole solu-
tions of gravity theories where the horizons are modeled by
some of the Thurston 3-geometries have been presented in
[37–41]. Also, extremal black branes whose geometries are
classified by nine Bianchi types have been studied in [42].

Recently, the black hole solutions in string theory have
attracted an increasing interest [43–49]. Nevertheless, the
effect of the magnetically charged B-field has not been dis-
cussed so much in previous works [6–11]. In this work, we are
interested in five-dimensional black hole solutions in string
theory including a dilaton field and a 3-form field strength
tensor of B-field associated with a magnetic charge. The
inclusion of B-field in this class will affect the asymptotic
properties of the black hole spacetime where the asymptotic
flatness condition can be violated, which brings up the pos-
sibility of considering the unusual geometries. The three-
dimensional horizons will be assumed to be homogeneous
spaces corresponding to Bianchi types with closed spatial
sections.

Generally, presence of a non-trivial dilaton, which intro-
duces a dilaton charge, leads to dependence of mass on the
asymptotic value of dilaton at infinity, φ∞. Dilaton charge has
a critical role in the physics of black holes. The no-hair the-
orems, for example in Brans-Dieke theory with minimally
coupled dilaton to gravity [50], indicate that the dilaton is
not allowed to carry a charge. However, in some cases, the
scalar field can have a non-trivial profile introducing a dila-
ton charge which is not an extra independent characteristic
of the black hole. This is usually referred as the scalar hair
of second kind [51]. For this kind of solutions, a cosmologi-
cal scenario has been provided in [52], where φ∞ does vary
and so the scalar charge appears in the first law of thermo-
dynamics. The problem with this modified first law of ther-
modynamics is that the dilaton charge, not being protected
by a gauge symmetry, is not a conserved charge [53,54].
This charge is non-localized, exists entirely outside the hori-

zon and usually corresponds to a secondary hair [52,53].
Also, in the AdS spacetimes, scalar charges are not compat-
ible with AdS/CFT since no such charge exist in dual CFT.
In fact, it is proved in complete generality that for asymp-
totically AdS black holes the first law is satisfied without
charge changes [55]. Noting that, even though the energy
does depend on φ∞ in general, see for instance the holo-
graphic stress–energy tensor expressions (from which the
energy can be computed) in [56,57]. An intriguing physical
discussion about the variation of φ∞ is presented in [58],
where using the solution phase space method and integra-
bility of charge variations, it is shown that for black hole
solutions of Einstein–Maxwell–(Axion)-Dilaton theories the
φ∞ is a redundant (non-physical) parameter, whose varia-
tion is not included in the first law of thermodynamics. Then
consolidated by the idea that some redefinitions based on
shift symmetry can eliminate the dependence of the mass
and charges on φ∞ [53,54], the applicability of the result in
any other theory is asserted, declaring that the φ∞ is gen-
erally a redundant parameter. Alternatively, inspired by the
counterterm subtraction method which has been developed to
define the conserved charges of AdS spacetimes in [59–62],
it is shown in [63] that a well defined variational principal
can be obtained by including a boundary term (counterterm)
for dilaton field in Brown–York formalism which leads to a
total energy with the contribution of scalar field where the
first law of thermodynamics for this total energy does not
contain the variation term of φ∞. Motivated by this, we will
consider an appropriate boundary term for the dilaton field
and investigate its consequence on the first law of black hole
thermodynamics.

The paper is organized as follows: in Sect. 2, a review
on low energy D-dimensional string effective action and its
equations of motion is presented. In Sect. 3, the string equa-
tions of motion are solved to obtain new five-dimensional
black hole solutions whose horizons are homogeneous spaces
corresponding to the Bianchi types. Then, the thermody-
namic behavior and the extremal condition of the solutions
are investigated in Sect. 4. Furthermore, for Bianchi type
V case the T -dual solutions and their thermodynamic prop-
erties are investigated in Sect. 5. Finally, some concluding
remarks are presented in Sect. 6.

2 Low energy string effective action and one-loop
β-functions

For a σ -model, the one-loop β-function equations of the
background fields of metric gμν , dilaton φ and antisymmetric
tensor gauge B-field are given by [64,65]

Rμν − 1

4
H2

μν − ∇μ∇νφ = 0, (1)
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∇μ
(
eφHμνρ

) = 0, (2)

R − 1

12
H2 + 2∇μ∇μφ + (∂μφ)2 − Λ = 0, (3)

where H2
μν = Hμρσ H

ρσ
ν and H is the field strength of B-

field defined by Hμνρ = 3∂[μBνρ]. These equations can be
also obtained by variation of the following string frame effec-
tive action with respect to metric, B-field and dilaton

S = −1

2λD−2
s

∫
dDx

√
geφ

(
R − 1

12
H2 + (∇φ)2 + Λ

)
,

(4)

where λs is the string length and the Λ is related to the central
charge deficit of theory which is given in non-critical D-
dimensional bosonic theory as Λ = 2 (26−D)

3α′ [66]. We will
set Λ = 0 in our analysis. This may be a good approximation
if the curvature and/or kinetic energy are large compared to
the Λ, i.e. Λ � R,∇φ, H2 [67]. Alternatively, the Einstein
frame can be introduced whose metric g̃μν is related to the
string frame metric gμν in D-dimensional spacetime by

g̃μν = e
2

D−2 φgμν. (5)

Performing this conformal transformation, the Einstein
frame effective action for bosonic string can be obtained as
[64,65]

S = − 1

2κ2
D

∫
dDx

√
g̃

(
R̃ − (∇̃φ)2

D − 2
− 1

12
e

4φ
D−2 H2

)
, (6)

in which ∇̃ indicates the covariant derivative with respect
to g̃, and κ2

D = 8πGD = λD−2
s e−φ = λD−2

p , where λp

is the Planck length and GD is the D-dimensional gravita-
tional Newton constant. Principally, understanding the grav-
itational phenomena is more convenient in Einstein frame
in which the dilaton coupling to Ricci scalar in (4) has
been eliminated. In this frame, the one-loop β-functions (1)-
(3) can be rewritten in the following form of Einstein field
equations that can be also obtained by the variation of the
action (6) with respect to g̃μν [65]

R̃μν − 1

2
R̃g̃μν = κ2

DT
(eff)
μν , (7)

where the effective energy–momentum tensor is defined as
follows

T (eff)
μν = T (φ)

μν + T (B)
μν , (8)

and

κ2
DT

(φ)
μν = 1

D − 2

(
∇̃μφ∇̃νφ − 1

2
g̃μν(∇̃φ)2

)
, (9)

κ2
DT

(B)
μν = e

4φ
D−2

4

(
HμκλH

κλ
ν − 1

6
H2 g̃μν

)
, (10)

Also, the equations of motion of dilaton and B-field are given
by [65]

∇̃2φ − 1

12
e

4φ
D−2 H2 = 0, (11)

∇̃μ

(
e

4φ
D−2 Hμ

νρ

)
= 0. (12)

3 Black hole solutions of equations of motion of low
energy string theory in five dimensions

In this paper we focus on D = 5 case, looking for black
hole solutions of low energy string theory effective equations
of motion on five-dimensional spacetimes where the r and
t constant hypersurfaces are given by homogeneous space
corresponding to a Bianchi types. In this regard, we start
with the string frame metric ansatz

ds2 = gμν dx
μ dxν = −F dt2 + 1

F U 2 dr2 + g2
i σ

iσ i ,

(13)

in which the metric components are function of radial coor-
dinate, F = F(r), U = U (r), and gi = gi (r), where
i = 1, 2, 3 and σ i are left invariant basis 1-forms. The
Bianchi type classification and their left invariant 1-forms
are presented in Appendix A. Respecting the homogene-
ity of spacetime, the dilaton field is taken to be a function
of r only. The contribution of field strength tensor H for
Bianchi classes with diagonal metrics can be classified based
on the orientation of its Hodge dual with respect to the three-
dimensional hypersurface of homogeneity sections. Here, the
field strength tensor of B-field, satisfying dH = 0, is chosen
to be in the following class [32]

H = 1

3! b σ 1 ∧ σ 2 ∧ σ 3, (14)

where b is a constant. Then, using (192)–(194), the (t, t),
(r, r) and (i, i) components of β-function of metric (1) and
β-function of dilaton (3) reduce to following coupled set of
differential equations

−1

2

F ′′

F
− 1

2
ln F ′

( ∑
ln g′

i + φ′ + lnU ′
)

= 0, (15)

−φ′′ −
∑ g′′

i

gi
− 1

2

F ′′

F
− 1

2
lnU ′ ln F ′

−1

2
(2 lnU ′ + ln F ′)

( ∑
ln g′

i + φ′
)

= 0, (16)

− g′′
i

gi
− ln g′

i

( ∑

j �=i

ln g′
j + φ′ + lnU ′ + ln F ′

)

−1

2
b2(g1g2g3U )−2F−1 − Yi = 0, (17)
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2φ′′ +
∑ (

2
g′′
i

gi
+ F ′′

i

Fi
+ 2 ln g′

i (φ
′ + ln F ′ + lnU ′) + Yi

)

+2φ′
(

lnU ′ + ln F ′ + 1

2
φ′

)
+ lnU ′ ln F ′

+2
∑

i< j

ln g′
i ln g′

j + 1

2
b2(g1g2g3U )−2F−1 = 0, (18)

where the prime stands for derivative with respect to r and
the Yi terms are Bianchi type dependent terms which will be
given in the following subsections. Furthermore, the equa-
tion (1) imposes the the following constraint equations in
Bianchi types of class B which possess non-diagonal com-
ponents of Ricci tensor

Rμν = 0, (μ �= ν). (19)

Now, adding (15), (16), and summed over i of (17) to (18)
leads to the following equation

φ′′ + φ′
( ∑

ln g′
i + ln(FUeφ)′ − b2(g1g2g3U )

)−2

F−1 = 0. (20)

Also, adding twice of (16) to (18) yields the initial value
equation as follows

φ′(φ′ + ln F ′) +
∑

ln g′
i (2φ′ + ln F ′) + 2

∑

j �=i

ln g′
i ln g′

j

+
∑

Yi + 1

2
b2(g1g2g3U )−2F−1 = 0. (21)

In order to have black hole solutions with regular horizon rH ,
we impose the following boundary conditions

FH = 0, F ′
H �= 0, (22)

with finite giH , φH and UH . Here and in what follows, the
subscript H indicates the quantities evaluated at the horizon.
Also, from (20) we get

φ′
H F ′

H = b2

(g1Hg2Hg3HUH )2 . (23)

In the asymptotic region r → ∞, we are interested in non-
logarithmic branch with F(r) = c + O(r−1) and

φ ∼ φ∞ + D
r

+ C
r2 , (24)

where c,D andC are finite constants. The relevant asymptotic
behavior for metric functions are

U ∼ r2
(
u∞ + u1

r

)
, (25)

gi ∼ gi∞ + gi1
r

, (26)

where u∞, u1, gi∞ and gi1 are finite constants.

To solve the set of equations of (15), (16), and (20) subject
to the initial value equation (21), we choose

U (r) = r2(g1g2g3)
−1e−φ. (27)

In this case, the equations (15), and (20) read

F ′′ + 2 r−1F ′ = 0, (28)

φ′′ + φ′ ln(r2 F)′ − b2

r4F
e2 φ = 0. (29)

Also, using (18) in (17) we get

ln(g2
i eφ)′′ + ln(g2

i eφ)′ ln(r2 F)′ + 2 Yi = 0. (30)

The solutions of (28) and (29) give the F(r) and φ(r), inde-
pendent of the type of three-dimensional Bianchi part, as
follows

F = c2 + c1

r
, (31)

φ = − ln
(
c2

3F
1
2 −n − b2F

1
2 +n

)
+ ln(2nc1c3), (32)

where the c1, c2, c3, and n are real integrating constants.
For dilaton φ (32) and φ′, which is given by

φ′ = − c1

r2

(
n + 1

2

)
b2F2n + c3

(
n − 1

2

)

F
(
c2

3 − b2F2n
) , (33)

to be regular at the horizon and consistent with the boundary
condition (23), the restriction of

n = 1

2
, (34)

is required.
To have black hole interpretation in the solutions, the c1

constant is required to be negative with positive c2. Also, to
have well defined dilaton field given by (32) in the black hole
solutions we assume that

c2
3 − b2 > 0, c3 < 0, c1 < 0. (35)

In some cases of topological black hole solutions whose hori-
zons are constant curvature spaces, the requirement of solu-
tion to be asymptotically AdS spacetime, i.e. Einstein space
with negative cosmological constant, relates the integrating
constant of type c2 to the curvature constant of horizon [24].
Here, considering (5), (7), (13) and (14) the components of
Ricci tensor in Einstein frame are given by

2R̃i
i = −R̃t

t = b2e
4
3 φ

3γ̃
, R̃r

r = −b2e− 4
3 φ + r4φ′2Fe− 2

3 φ

3γ̃
,

(36)

where γ̃ is the determinant of the Einstein frame metric of
three-dimensional homogeneous space in (13), defined by

γ̃ = (g̃1g̃2g̃3)
2 = (g1g2g3)

2 e2φ. (37)

Noting the (31), (32) and (36) it can be checked that our
solutions do not admit asymptotically Einstein spaces, with
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R̃μν = k g̃μν . Hence, having no explicit condition to fix the
c2 parameter, we set c2 = 1 for simplicity. The asymptotic
value of dilaton (32) is then given by

φ∞ = ln

(
c1c3

c2
3 − b2

)
. (38)

So far, we have not considered any special kind of geome-
try for three-dimensional homogeneous space. The effective
energy–momentum tensor (8) satisfies all of the energy con-
ditions but the Ricci scalar in Einstein frame

R̃ = −b2e− 4
3 φ + 2r4φ′2Fe− 2

3 φ

6γ̃
, (39)

has the following asymptotic form in r → ∞ limit

R̃ = 3 b2e
4
3 φ∞

2c2
3γ̃∞

(
2b2 − c2

3

)
, (40)

where γ̃∞ = limr→∞ γ̃ . Evidently, the presence of the
field strength tensor of type (14) has affected the asymptotic
behavior of these solutions. In such a way that, as long as
c3 �= −√

2b and the γ̃∞ is finite, the solutions are not either
asymptotically flat or (considering the (36)) asymptotically
(A)dS.1 Therefore, having violated asymptotically flatness
condition, the considered spacetimes are not fundamentally
forbidden to have negatively curved horizon geometries. In
other words, besides the flat Bianchi type I and positively
curved Bianchi type I X , we can consider the other Bianchi
types with negative three-dimensional curvatures.

Determining the Bianchi type dependent terms Yi in (30)
using relations of (192)–(194), we are going to find the solu-
tions of (30) in all Bianchi types in the following subsections
to establish the form of metric of the string and Einstein
frames.

3.1 Bianchi type I

This Bianchi type has Yi = 0 and solutions of (30) give the
components of homogeneous part of string frame metric (13)
as

g2
i = e−φF2 pi , (41)

where pi are integrating constants. Substituting them into the
initial value equation (21) gives the following condition on
constants

−2
∑

pi − 4
∑

i< j

pi p j = 0. (42)

1 As we will see in Sects. 4.1–4.7, all of the Bianchi type solutions have
finite γ̃∞.

Also, the conformal transformation (5) gives the Einstein
frame metric by

ds2 = − W− 2
3 F dt2 + W

1
3

(
F−(1−∑

pi ) dr
2

r4

+
∑

F+2 pi (σ i )2
)

,

(43)

where the W (r) function (here and hereafter) is given by

W = c2
3 − b2F

c2
3 − b2

e−φ∞ . (44)

If the conditions (35) hold, the W (r) is positive everywhere,
finite at rH = −c1, and blows up at r = 0.

3.2 Bianchi type I I

In this Bianchi type the Yi terms of (30) are given by

−Y1 = Y2 = Y3 = 1

2
g2

1

(
g2

2g
2
3FU

2
)−1

. (45)

The solutions of (30) give the string frame metric (13) com-
ponents as

g2
1 = e−φV−1F

1
2 (p1− 1

2 ), (46)

g2
2 = l22e−2φg−2

1 F2p2 , (47)

g2
3 = l23e−2φg−2

1 F2p3 , (48)

where

V = 2p1c1q1

q2
1 − F2p1

, (49)

and p1, p2, q1, l2 and l3 are real constants. Substituting these
solutions into initial value equation (21) gives the following
constraint on integrating constants

−p2
1 − 2 (p2 + p3) − 4 p2 p3 − 1

4
= 0. (50)

To preserve the signature of metric at spatial infinity and
near horizon, the q1 and p1 are required to have opposite
signs with q2

1 − 1 > 0. Also, using (5), the Einstein frame
metric is given by

ds2 = −W− 2
3 F dt2 + W

1
3 V−1F− 1

2 −p1

×
(
l22l

2
3 F

2(p2+p3) dr2

r4 + V 2F2p1(σ 1)2

+l22 F
1+2p2(σ 2)2 + l23 F

1+2p3(σ 3)2
)

. (51)

3.3 Bianchi type I I I

Belonging to class B, this Bianchi type gives the following
constraint equation by (r, x3) component of (19)

ln
(
g3g

−1
1

)′ = 0, (52)
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which essentially requires SO(2) isometry with g1 = g3.
Also, the Bianchi type dependent terms in this model are
given by

Y1 = Y3 =
(
g2

3FU
2
)−1

, Y2 = 0. (53)

Then, the solutions of (30) are

g2
1 = g2

3 = e−2φg−2
2 V 2F2p1−1, (54)

g2
2 = l22e−φF2p2 , (55)

in which we have defined

V = −2p1c1q1

q2
1 + F2p1

, (56)

and p1, p2, q1 and l1 are real constants. Substituting these
solutions into the initial value equation (21) gives

−4
(
p2

1 − p2
2

)
+ 2p2 + 1 = 0. (57)

Respecting the signature of metric at infinity and near hori-
zon, the q1 and p1 constants are required to have the same
signs. The Einstein frame metric is then given by

ds2 = −W− 2
3 F dt2 + W

1
3 V 2F2p2

×
(
l22V

2F4(p1−p2)−3 dr2

r4 + V−2l22(σ 2)2

+F−1+2p1−4p2
(
(σ 1)2 + (σ 3)2

) )
. (58)

3.4 Bianchi type I V

In this Bianchi type of class B, the constraint equation (19)
leads to

g2
3g

−2
1 = 0, ln

(
g2

1(g2g3)
−1

)′ = 0, (59)

and so this Bianchi type does not provide any non-singular
solution.

3.5 Bianchi type V

The Bianchi type dependent terms are given here by

Y1 = Y2 = Y3 = 2
(
g2

1FU
2
)−1

. (60)

Also, the following equation is given by the (r, x1) compo-
nent of (19) in this Bianchi type of class B

ln
(
g2

1(g2g3)
−1

)′ = 0. (61)

It imposes the constraint of g2
1 = g2 g3, which is satisfied by

the following solutions of (30)

g2
1 = V F p1− 1

2 e−φ, (62)

g2
2 = F2p2 g2

1, (63)

g2
3 = F−2p2 g2

1, (64)

where we have defined

V = c1q1 p1

F2 p1 + q1
2 . (65)

Here the p1, p2, and q1 are real constants and the q1 and p1

need to have opposite signs. The initial value equation (21)
gives

−3 p2
1 + 4 p2

2 − 3

4
= 0. (66)

Also, the Einstein frame metric is given by

ds2 = −W− 2
3 F dt2 + W

1
3 V F− 1

2 +p1

(
V 2F2p1−2 dr2

r4

+(σ 1)2 + F2p2(σ 2)2 + F−2p2(σ 3)2
)

. (67)

3.6 Bianchi type V Ih

In this Bianchi type we have

(h2 + 1)−1Y1 = (h(h + 1))−1Y2

= (h + 1)−1Y1 =
(
g2

1F U 2
)−1

. (68)

Also, the (r, x1) component of (19) is

−(1 + h) ln g′
1 + h ln g′

2 + ln g′
3 = 0, (69)

which imposes the following restriction

g3gh2
gh+1

1

= lh−1
2

lh+1
1

, (70)

where l1 and l2 are real constants. In this Bianchi type, the
h = 0, 1 cases give rise to Bianchi types I I I and V , respec-
tively. Excluding these two types, only the V I−1 admits
closed spatial section [30].2 Since the black hole is usually
assumed to have compact horizon [41], here we investigate
the solution of the h = −1 case which gives the following
solutions

g2
1 = F2 p1 e−16 q−2

1 p2
2F

−2 p2 e−φ, (71)

g2
2 = 4 l2 p

2
2c1q

−1
1 F−p2− 1

2 e−φ, (72)

g2
3 = l−2

2 g2
2, (73)

where p1, p2, and q1 are real constants. Assuming the l2 to be
positive, q1 should be negative. Substituting these solution
into the initial value equation (21) gives

−p2
2 + p2(4p1 + 1) + 3

4
= 0. (74)

2 The closed spatially homogeneous hypersurface is compact without
boundary.
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The Einstein frame metric is then given by

ds2 = −W− 2
3 F dt2 + W

1
3 F− 1

2

×
(

16 p4
2c

2
1q

−2
1 F− 3

2 +2 p1−2 p2 e
− 16p2

2
q2

1 F2p2 dr2

r4

+4 c1l2 p
2
2q

−1
1 F−p2

(
(σ 2)2 + l−2

2 (σ 3)2
)

+F
1
2 +2 p1 e

− 16p2
2

q2
1 F2p2

(σ 1)2
)

. (75)

3.7 Bianchi type V I Ih

In this case, the Bianchi type dependent terms in (30) are

Y1 = − g4
1 − g4

2

2 F (g1g2g3U )2 ,

Y2 = g4
1 − g4

2

2 F (g1g2g3U )2 − h2

F g2
3 U

2
,

Y2 =
(
g2

1 − g2
2

)2

2 F (g1g2g3U )2 − h2

F g2
3 U

2
.

(76)

Also, the constraint equations given by (19) are

h ln
(
g3g

−1
2

)′ = 0, h (g2
2g

−2
3 ) = 0, (77)

which restrict the solutions to be of type h = 0. In this case,
the equations of (30) can be integrated only with g1 = g2

which, leading to Yi = 0, reduces the equations to those of
Bianchi type I and consequently the solutions can be recov-
ered from there.

3.8 Bianchi type V I I I

Here the Yi terms are given by

Y1 = −1

2

(
g2

1 −
(
g2

2 + g2
3

)2
)(

(g1g2g3U )2F
)−1

,

Y2 = −1

2

(
g2

2 −
(
g2

1 + g2
3

)2
)(

(g1g2g3U )2F
)−1

,

Y3 = −1

2

(
g2

3 −
(
g2

1 − g2
2

)2
)(

(g1g2g3U )2F
)−1

.

(78)

Then, the solutions of (30) give the metric components of
string frame (13) as follows

g2
1 = g2

2 = e−2 φV 2
1 F2 p1−1g−2

3 , (79)

g2
3 = e−φV2F

p2− 1
2 , (80)

where

V1 = 2 c1q1 p1

q2
1 + F2p1

, V2 = −2 c1q2 p2

q2
2 − F2p2

. (81)

The pi , q1 and q2 are integrating constants, where q2 and
p2 should have the same sign and q2

2 − 1 > 0. Also, as a
consequence of initial value equation (21), pi are subject to
the following constraint

p2
2 − 4p2

1 + 3

4
= 0. (82)

Performing the conformal transformation (5) on (13) we get
the Einstein frame metric in the following form

ds2 = − W− 2
3 F dt2 + W

1
3 F− 1

2 −p2

(
V 4

1 V
−1
2 F4p1−2 dr2

r4

+ V2F
2p2(σ 3)2 + V 2

1 V
−1
2 F2p1

(
(σ 1)2 + (σ 2)2)

)
.

(83)

3.9 Bianchi type I X

Here, the Bianchi type dependent terms Yi are given by

Yi = (g2
j − g2

k )
2 − g2

i

2F(g1g2g3U )2 . (84)

where (i jk) is taken to be cyclically as (123). The equations
(30) can be integrated by setting g1 = g3. Then, we get

g2
1 = g2

3 = V 2
1 F2 p1−1e−2 φg−2

2 , (85)

g2
2 = V2F

p2− 1
2 e−φ, (86)

where

Vi = 2c1qi pi
q2
i − F2pi

, i = 1, 2, (87)

where qi and pi are constants and the q2 and p2 are especially
required to have opposite signs with q2

2 −1 > 0. Substituting
these solutions into the initial value equation (21) yields

−4 p2
1 + p2

2 + 3

4
= 0. (88)

Furthermore, the Einstein frame metric reads

ds2 = − W− 2
3 F dt2 + W

1
3 F− 1

2 −p2

(
V 4

1 V
−1
2 F4p1−2 dr2

r4

+ F2p2V2(σ
2)2 + V 2

1 V
−1
2 F2p1((σ 1)2 + (σ 3)2)

)
.

(89)
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4 Thermodynamic properties of the topological black
hole solutions

Having found the solutions of low energy string effective
action equations of motion in the previous section, we come
to investigate the physical properties of the solutions. The
black hole interpretation of the solutions with a horizon
located at rH = −c1 requires the pi constants to have some
appropriate values such that the g̃rr change its sign crossing
the rH . Assuming that the solutions are black hole solutions,
the relevant values of pi will be obtained demanding some
special properties of the solutions. Also, the singularity prop-
erties of these topological black hole solutions and verifica-
tion of the first law of thermodynamics will be investigated.

All of the obtained solutions for various Bianchi types
have finite γ̃∞ in (40). Therefore, as we mentioned ear-
lier, with c3 �= −√

2b the solutions are neither asymptot-
ically flat nor asymptotically (A)dS. Hence, the considering
of Bianchi classes with negative three-dimensional curvature
as the horizons has no conflict with the area theorems [15],
whose asymptotic flatness condition is violated.

For calculating the mass of these non-asymptotically flat
solutions we use the Brawn–York formalism which defines
the quasi-local conserved mass by [68]

M = 1

κ2
5

∫

3B
d3x

√
σ̃

(
Kab − h̃abK

)
na ξ̄b, (90)

in which κ5 is the five-dimensional Newton constant, 3B is
the three-dimensional boundary, na is the time-like unit nor-
mal vector to the boundary 3B, Kab is the extrinsic curva-
ture of the 4-dimensional boundary ∂M with induced metric
h̃ab, and K is the trace of Kab. We assume that the metrics
have a normalized asymptotically time-like Killing vector

ξ̄ μ = e− φ∞
3 δ

μ
t such that ξ̄2 = ξ̄ μξ̄ νgμν → −1 for r → ∞.

The σ̃ is determinant of the metric of 3B in Einstein frame
where, noting the relation between the coordinate and non-
coordinate basis (191), we have σ̃ = γ̃ |eaμ|2 in which γ̃

has been defined by (37) and |eaμ| is determinant of vielbine
matrix whose components for each Bianchi type are pre-
sented in Appendix A. Then, considering the metric (13)
along with (27) and (37), the mass expression (90) recasts
the following general form

M = −c1

κ2
5

lim
r→∞ F

1−λ
2 W

−1
6

(
d

dF

√
γ̃

)
ω3, (91)

where the volume element ω3 = 1
3!

∫
σ 1 ∧ σ 2 ∧ σ 3 and the

F(r) and W (r) functions have been given by (31) and (44),
respectively. Using the obtained solutions with considering
the given conditions in (35), the mass per unit volume for
Bianchi type solutions reads

M = −c1e− 1
3 φ∞

κ2
5

(
b2

2(c2
3 − b2)

+ α − λ

2

)

, (92)

in which, being different for each Bianchi type, the λ and α

are given for each type as

I&V I I0 : λ = 2
∑

pi , α = 0, (93)

I I : λ = 1

2
+ 2(p2 + p3) − p1, α = p1

q2
1 − 1

, (94)

I I I : λ = 2 − 4p1 + 2p2, α = 4p1

q2
1 + 1

, (95)

V : λ = 3p1 − 3

2
, α = 3p1

q2
1 + 1

, (96)

V I−1 : λ = −3

2
+ 2p1 − 2p2, α = −16p3

2

q2
1

, (97)

V I I I : λ = 4p1 − p2 − 3

2
, α = 4p1

q2
1 + 1

+ p2

q2
2 − 1

,

(98)

I X : λ = 4p1 − p2 − 3

2
, α = 4p1

q2
1 − 1

+ p2

q2
2 − 1

.

(99)

It is worth mentioning that the quasi-local mass (92) coin-
cides with the mass obtained by the Abbott–Deser approach
[69] using the normalized killing vector ξ̄ μ.

Also, the area of horizon is generally given by

AH = √
γ̃H ω3, (100)

where γ̃H is determinant of induced metric (37) on the hori-
zon. A common feature of the obtained Bianchi type solu-
tions is that their γ̃ is proportional to Fλ multiplied by a
factor which is finite on the horizon. Therefore, to have non-
zero area of horizon the λ = 0 is required and then the last
term in (92) vanishes.

Furthermore, the surface gravity is defined by3

κ =
√

−1

2
(∇̃μξ̄ν)

(
∇̃μξ̄ ν

)
|r=rH

= −e
φ∞

3

2

√−g̃rr (rH )g̃t t (rH )g̃′
t t (rH ).

(101)

The finite and non-zero surface gravity demands finite non-
vanishing g̃rr g̃t t on the horizon. Noting (27) and (37) and the
fact that γ̃ is proportional to Fλ, the g̃rr g̃t t is proportional to
F−λ. Hence, the finite surface gravity requires again λ = 0.
Then, the following general form for surface gravity can be
obtained

κ =−c1e− φ∞
3

2
√

γ̃H
. (102)

3 Here, we need to choose the normalized killing vector to have the first
law of black hole thermodynamics satisfied.
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Also, the Hawking temperature can be derived from the
Euclidean regularity methods [70] in our considered metric
by4

TH (r) =
√

(g̃−1
rr )′g̃′

t t |r=rH

4π
√
g̃t t

, (104)

which is infinite on the horizon and has the finite non-
vanishing value at infinity, given by

TH = −c1e− φ∞
3

2
√

γ̃ (rH )
= κ

2π
. (105)

Furthermore, the black hole entropy can be obtained using
the Wald’s formula [71]

S = −2π

∫

H
d3x

√
σ̃

δL
δ R̃μνρσ

εμαερν

= − π

κ2
5

εμνε
μν AH , (106)

which is evaluated on the horizon and εμν is the binormal
to the horizon whose normalization is usually chosen as
εμνε

μν = −2.
Presence of the 3-form field strength tensor (14) intro-

duces a charge associated to the antisymmetric B-field. Hav-
ing no Htμν component, the Noether electric charge of B-
field is zero, as well as its electric type potential, which is
actually defined by the difference of the values of Btα com-
ponent of tensor gauge field at infinity and at the horizon
[11]. On the other hand, a topological magnetic charge can
be defined here by [72]

Qm = 1√
2κ5

∫

3B
H = b√

2κ5
ω3, (107)

whose conservation is associated with the Bianchi identity
dH = 0. In the following, we will mention this charge by its
density defined by Qm = b√

2κ5
. To calculate the conjugate

potential of this magnetic charge, similar to the derivation
of electric and magnetic potentials in Einstein–Maxwell–
dilaton theory [73], we can use the electric-magnetic duality
[74]. The equations of motion in Einstein frame are invariant

under the transformation (H → H̃ = ∗He− 4φ
3 , φ → −φ),

where the ∗ stands for Hodge dual operation. Considering the
field strength tensor (14), the H̃ is a two-form corresponding
to an electrically charged Maxwell field

H̃ = b e2φ

12 r2 dt ∧ dr, (108)

4 The same result can be obtained via the normalized temperature def-
inition [18]

TH (r) =
√−(∇μξν) (∇μξν)|r=rH

4π
√−ξμξμ

, (103)

which is independent of the normalization of the horizon generator.

whose vector potential in a gauge where the scalar potential
vanishes on the horizon is

Ã =
(

c3

12 b W (r)
− ΦH

)
dt, (109)

where ΦH = (c2
3−b2)eφ∞
12 b c3

. The electric charge of this dual

vector field, defined by Qe = 1√
2κ5

∫
3B e

4
3 φ∞ ∗ H̃ , equals

Qm (107).5 Also, the electric potential is given by the time
component of the dualized tensor gauge potential by

Φ̃e = ξ̄ . Ã|r=rH − ξ̄ . Ã|r=∞ = 1√
2κ5

−c1b e− φ∞
3

(c2
3 − b2)

. (110)

Hence, our solutions can be alternatively described by
Maxwell electric Hodge dual field to the three form H (14).
Now, as a matter of fact that the roles of Maxwell electric and
B-field magnetic charges are exchanged under the extended
Hodge dualization, the magnetic potential Φm in our solution
can be interpreted as the electric potential in the dual frame
Φ̃e, which can be rewritten in the following form using (38)
and (107)

Φm = −c1Qme
2φ∞

3

c3
. (111)

To check the first law of black hole thermodynamics, the
relation between the solution parameters and physical ones
are required. Reminding the conditions (35) where the c1 and
c3 have been required to be negative, the inverse relations for
Bianchi type I are given by

− c1 = e
φ∞

3

(
Q2

me
4φ∞

3 − 4 κ2
5M2

2M

)

, (112)

−c3 = Q2
me

2 φ∞
3

M , (113)

where for the other Bianchi types we have6

− c1 = e
φ∞

3

(
κ2

5M
α

− 2Q2
me

4φ∞
3

M +
√

8
(
α − 1

2

)
α κ−2

5 Q2
me

4φ∞
3 + M2

)
,

(114)

−c3 = κ2
5M +

√
8

(
α − 1

2

)
αQ2

me
4φ∞

3 + κ2
5M

2

2 α e
2φ∞

3

. (115)

5 Since in D dimensions for a p-form a we have ∗ ∗ a =
(−1)D−1+p(D−p)a, the Qm and Qe have the same sign.
6 The α (or equivalently the qi ) will be considered as non-varying con-
stants which will be fixed by the first law of thermodynamics. In fact,
the α are related to the curvature of three-dimensional space part. This is
in analogy with the topological black hole solutions where the constant
curvature k of horizon appears in the mass [16–19].
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Before considering the first law of thermodynamics, let
us have a closer look at the dilaton field (32). Having a non-
trivial configuration, the dilaton introduces a dilaton charge.
Based on the definition of this charge [2]

D =
∫

d3Σμ∇μφ, (116)

where dΣμ =
√

γ̃

3! εμα1α3α3σ
α1 ∧ σα2 ∧ σα3 is the dual of

3-area form and the integral is evaluated at spatial infinity,
the dilaton charge per volume ω3 is given by

D = c1b2

c2
3 − b2

, (117)

which is negative holding the conditions (35). It is worth men-
tioning that, the same D can be obtained from the asymptotic
expansion of the dilaton field (24) in which the C is given by

C = c2
1b

4

2
(
c2

3 − b2
)2 = D2

2
. (118)

In addition, the Einstein frame effective action (6) is
invariant under the following scaling symmetry in five
dimensions

φ → φ + φ0, Bμν → e− 2
3 φ0 Bμν, (119)

which is a constant shift in dilaton accompanied by a scal-
ing in the gauge B-field. When a theory exhibits the shift
symmetry of dilaton, the associated Noether current can be
considered to identify whether or not a non-trivial configu-
ration for dilaton is allowed [51,75,76]. Especially, this kind
of current and its conservation have been used to establish
the no-hair theorem in [75], where the Jμ which is given in
terms of φ′, respecting the symmetries of metric, has only the
Jr as non-vanishing component and the finite value of Jμ Jμ

on the horizon requires the Jr to vanish on horizon. The
last step of their proof utilizes the conservation of J , which

being rewritten in the form of ∂μ

(√−g̃ Jμ
)

= 0 leads to

ρ2(r)Jr = const where the ρ function measures the area
of spheres with constant r . Then, since the ρ remains finite
and non-zero even on the horizon, therefore the constant in
this equation is zero and so the Jr has to vanish everywhere
implying that dilaton needs to be constant with forbidding
the dilaton hair. Following these steps in our considered case
with a field strength tensor of (14) and a φ(r), we can inves-
tigate the related Noether current to (119) which is given
by

Jμ = ∂μφ − 1

2
e

4
3 φHμνρBνρ, (120)

and is conserved only on-shell, using the equations of motion
(11) and (12). This current (120) does not generally respect
either the gauge invariance of B-field, i.e. Bμν → Bμν +
∂μΛν − ∂νΛμ, or the symmetries of the metric (isometries).

Although, the later one can be established by imposing an
extra condition especially when the T -dual solutions are of
interest.7 Also, considering (14) and noting that the dilaton is
a function of r only, the presence of the second term in (120)
indicates that besides Jr , there are also non-vanishing com-
ponents J i . At the horizon, this current has finite norm Jμ Jμ

and vanishing Jr . However, the presence of J i contests the
last mentioned step of proof of [75] where the conservation
of J does not require Jr to vanish everywhere. Then, having
a non-trivial configuration for dilaton field is not forbidden
in our considered case. This does not, however, imply that
the scalar charge is an independent charge carried by the
obtained black holes. In some hairy black hole solutions,
the regularity condition of φ and φ′ has been employed to
relate the dilaton charge to the mass of black hole implying
that the scalar hair is of secondary type [51]. In our case,
it just fixed the integrating constant n by (34). Considering
the mass expression (92) along with aforementioned λ = 0
condition, the dilaton charge (117) coincides with the first
term in mass (92) and we have

D = −2
(
κ2

5 e
φ∞

3 M + α c1

)
. (121)

Noting that the Bianchi type I model has α = 0 and the other
Bianchi types with non-zero α have the relation (114) for c1,
the relation (121) actually shows that the dilaton charge can
be expressed in terms of M, Qm and the parameter φ∞.
Therefore, the dilaton charge is not an independent charac-
teristic of the obtained black hole solutions and corresponds
to a secondary hair [78]. Also, considering the (107), (111),
and (117), the following relation is relevant between the dila-
ton charge and the magnetic charge multiplied by its potential

D = −2κ2
5 e

2
3 φ∞ΦBQm . (122)

The horizon radius rH = −c1 in Bianchi type I is given by
(112), but in the other types it can be also rewritten in terms
of mass and dilaton charge densities

rH = −c1 = 1

2α

(
2 κ2

5 e
φ∞

3 M + D
)

. (123)

Evidently, the solutions have been characterized by mass,
magnetic charge Qm associated to B-field and the parameter

7 In principle, the invariance of Jμ under the symmetries of metric is not
actually indicted by the field equations, but it can be desired as an extra
condition. In fact, considering the homogeneous spacetimes, there exist
some Killing vectors, i.e.Lχ g = 0, whereLχ is the Lie derivative along
the generator of the symmetry χ . Here, the field strength tensor H (14)
and dilaton (32) have the same invariance Lχ H = Lχφ = 0. Also, the
invariance of σ -model requires Lχ B = dω; however, to make the T -
dual transformation valid, one can use the gauge invariance of σ -model
under B → B + dω, to choose an adopted coordinate system where all
of the background fields are independent of isometry coordinate [77].
In this case, with Lχ B = 0 the shift symmetry current (120) respects
the symmetries of metric as well.
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φ∞ related to the asymptotic value of dilaton. The depen-
dence of mass on the φ∞ is one of the unusual features of
black hole solutions in dilatonic theories. For this type of
black hole solutions a cosmological scenario has been pro-
vided in [52], where considering the φ∞ as a varying param-
eter, the first law of black hole thermodynamics has been
modified as

dM = 1

κ2
5

κ d AH + ΦmdQm +
(

∂ M

∂φ∞

)

AH ,Qm

dφ∞,

(124)

in which the last term is actually proportional to dilaton
charge. As mentioned in introduction, the nature of dilaton
charge, which is not a locally conserved and gauge symme-
try protected charge, criticizes this modified version of first
law [53,54]. Here, motivated by [63], we consider the case
that besides the gravitational surface term which leads to the
quasi-local mass (90), the effective action is supplemented
with a dilaton field boundary term. In Hamiltonian formal-
ism where the variation of dilaton boundary term is given by
[79]

δQφ[ξ ] = − 1

6κ2
5

∫
ξ̄⊥δφ∇μφd3Σμ, (125)

where ξ̄⊥ = ξ̄ .n with n the unit normal to space-like surface
Σ and ξ̄ is the normalized time-like killing vector. Consid-
ering the obtained metrics, the d3Σr is proportional to r2

and so there is neither divergent term nor contribution of C
in δQφ . In such a way that the only non-vanishing term in
(125) at infinity is given by

δQφ[ξ ] = − 1

6κ2
5

De− φ∞
3 δφ∞. (126)

In particular, the integrability of this charge needs a func-
tional relationship between D and φ∞.8 In order to obtain a
well defined variational principle we have to add the bound-
ary term

Sctφ = −1

6κ2
5

∫

∂M
d4x

√
h̃
Y (φ∞)e

φ∞
3

√
γ̃∞

, (127)

with boundary condition

D = e
φ∞

3
dY (φ∞)

dφ∞
. (128)

Noting (27) and the asymptotic expansions of the metric
and scalar field (24)–(26), it can be easily shown that the
variation of the action which yields the following boundary
term

8 In fact, it was first observed in AdS context in [79] that the integra-
bility of energy in Hamiltonian formalism forces the D and C to be
functionally related.

δ(Sφ + Sctφ ) = 1

6κ2
5

∫

∂M
d4x

√
h̃

[√
g̃rrφ′

(
1 + 1

r

dD
dφ∞

)

+ D
√

γ̃∞

]
δφ∞, (129)

is well defined at r → ∞, i.e. limr→∞ δ(Sφ + Sctφ ) = 0.
Now, considering (90), the total energy is given by

Etot = M + 1

6κ2
5

∫

3B
d3x

√
σ̃habn

a ξ̄b
Y (φ∞)e

φ∞
3

√
γ̃∞

= M + 1

6κ2
5

Y (φ∞)ω3. (130)

On the other hand, the mass (92) can be expressed in the
following form using the (100), (102), and (117)9

M = 1

κ2
5

(
−1

2
De− φ∞

3 + ακAH

)
. (131)

Therefore, if the boundary term of dilaton with condi-
tion (128) is taken into account, the last term in (124) can
be concealed and so the variation of the total energy in the
first law of thermodynamics will be

dEtot = 1

κ2
5

κd AH + ΦmdQm, (132)

which, interestingly, does not contain the dilaton charge
through the variation term of φ∞.

In the following subsections, we present the explicit forms
of thermodynamic quantities AH (100) and κ (102) for each
Bianchi type solution to investigate the first law of black hole
thermodynamics by checking the satisfiability of

κ = κ2
5

(
∂ Etot

∂AH

)

Qm ,φ∞
, Φm =

(
∂ Etot

∂Qm

)

AH ,φ∞
, (133)

using the (112)–(115). As we have seen before, the follow-
ing extra condition are required on integrating constants of
solutions to ensure the finiteness of non-zero area of horizon,
entropy, and surface gravity

λ = 0, (134)

where λ for any Bianchi type as been given by (93)–(99).
It will be shown that these constraints along with the initial
value conditions, that have been obtained for each Bianchi
type via the Eq. (21), will fix the pi constants with compatible
values with the black hole interpretation. Also, the singularity
behavior of each Bianchi type solution, the classification of
horizon geometries based on the correspondence between
Bianchi types and Thurston geometries, and the extremal
condition of the solutions will be presented.

9 It is not a Smarr-like formula and is given here to clarify the variation.
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4.1 Bianchi types I and V I I0

The group of Bianchi type I models is isomorphic to
the translation group of three-dimensional Euclidean space
E3. This model corresponds to Thurston’s geometries of
R3, E2 × R and E3 with isotropy groups of e, SO(2) and
SO(3), respectively [30]. In addition, as we have seen in
Sect. 3.7, the constraint equation (19) restricts the V I Ih
model to have h = 0 where the solutions are equivalent to
those of Bianchi type I . Hence, thermodynamic properties
of these two types can be investigated in parallel.

Regarding the initial condition (42) and the physical
requirement of (134), in which the λ for these Bianchi types
is given by (93), the allowed real values of the integrating
constants are

pi = 0, (135)

which means that the generally anisotropic solutions (43)
reduce to the isotropic one by imposing the physical require-
ment (134). Then, in the Einstein frame we have

ds2 = − W− 2
3 F dt2 + W

1
3

(
dr2

r4 F
+

∑
(σ i )2

)
. (136)

Also, the area of horizon (100) and surface gravity (102) take
the following forms

AH =
√
c3c

−1
1 ω3, (137)

κ = −c1

2

√
c1c

−1
3 e− φ∞

3 . (138)

It is straightforward to check that the first law of thermody-
namics (132) is satisfied by these thermodynamic quantities.
Also, the Kretschmann and Ricci scalars are proportional to
the inverse of W , such that

Rμνρσ R
μνρσ ∝ 1

W
14
3

, R ∝ 1

W
7
3

. (139)

So the metric (136) has two irremovable singularities at r1 =
0 and r2 = c1b2

c2
3−b2 . Holding the conditions (35) the r2 is

negative. Since the metric blows up near r = 0, without lose
of generality we will study the solutions for r > 0 and r2

can be ignored. Also, it is worth mentioning that for these
Bianchi type solutions the asymptotic value of γ in (40) is
γ∞ = e−φ∞ .

As we will see in the following, all of the obtained Bianchi
type solutions have the r1 and r2 singularities and the given
discussion can be applied for all types. However, there may
be other singularities in the some Bianchi types which will
be discussed in any cases.

4.2 Bianchi type I I

There is a correspondence between Bianchi type I I and
Thurston’s nilgeometry and Heisenberg group whose isotropy
groups are SO(2) and e, respectively [30]. The solutions in
this Bianchi type have been found in Sect. 3.2. The initial
condition (50) along with physical requirement of (134), in
which the λ is given by (94), yields

p1 = 1

2
, p2 = p3 = 0. (140)

With this fixed constants, the metric (51) recasts the following
form

ds2 = −W− 2
3 F dt2 + W

1
3 V−1

(
l22l

2
3
dr2

r4F
+ V 2(σ 1)2

+l22(σ 2)2 + l23 (σ 3)2
)

, (141)

where preserving the signature of metric at infinity and near
horizon requires q1 < 0 and q2

1 −1 > 0. The area of horizon
(100) and surface gravity (102) are also given by

AH = |l2l3c−1
1 |√c3q1 ω3, (142)

κ = c2
1

2|l2l3|√c3q1
e− φ∞

3 , (143)

From the first law of thermodynamics (132) point of view,
if the l1 and l2 are taken to be non-varying constants, the
first law is satisfied with α = − 1

4 . In this case, black hole
interpretation of the solution is lost because the rH = −c1

parameter becomes negative. But, a consistent example can

be obtained if one sets l2 = l3 = (−c2
1q1

−1
) 1

4 which satisfies
the first law by fixing α = 1

4 , i.e. q1 = −√
3.

For this Bianchi type solution the asymptotic value of γ in
(40) is γ∞ = − 2c1

3 e−φ∞ . Also, the Ricci and Kretschmann

scalars are proportional to W− 7
3 V−1 and W− 17

3 V−1, respec-
tively. Hence, besides the r1 = 0 singularity which has been
mentioned in Bianchi type I , there is another initial singu-
larity at r3 = c1

q2
1 −1

, which is negative and can be ignored.

4.3 Bianchi type I I I

The Thurston geometries of H2 × E1 (where H2 is two-

dimensional hyperbolic space) and ˜SL2R locally possess
Bianchi type I I I symmetry with SO(2) isotropy [30].10 The
solutions in this type have been obtained in Sect. 3.3. The ini-
tial condition (57) along with the physical restriction (134) in
which the λ for this type is given in (95), fixes the constants
as

p1 = 1

2
, p2 = 0. (144)

10 The ˜SL2R can also have the Bianchi type V I I I symmetry.
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Then, the Einstein frame metric (58) takes the following form

ds2 = −W− 2
3 F dt2 + W

1
3

(
V 4

l22r
4 F

dr2 + l22(σ 2)2

+l−2
2 V 2((σ 1)2 + (σ 3)2)

)
, (145)

where the V function has been defined by (56). Also, the
surface gravity (102) and area of horizon (100) read

AH =
√
c3c3

1

|l2|q2
1

ω3, (146)

κ = |l2|q2
1

2
√
c1c3

e− 1
3 φ∞ . (147)

Similar to the Bianchi type I I , considering the l2 as non-
varying constants, the satisfaction of first law with these ther-
modynamics quantities needs α = 1. This value can not be
accepted because leads to non-real c1 and c3 in (114) and

(115). But, for example, choosing l2 = q−2
1 (−c1)

3
2 the fist

law can be satisfied consistently with α = 1
4 , i.e. q1 = √

7.
Here the asymptotic value of γ in (40) is γ∞ =

− 20401c1
8 e−φ∞ . Also, investigating the behavior of Ricci and

Kretschmann scalars, which are proportional to W− 7
3 V−5

and W− 17
3 V−11, respectively, shows that besides the r1 = 0,

there is another initial singularity at r3 = −c1
q2

1 +1
, which is not

naked since r3 < rH .

4.4 Bianchi type V

In isotropic case, the Bianchi typeV has hyperbolic geometry
H3 with SO(3) isotropy [30]. But, an anisotropic expansion
is not allowed for this Bianchi type if it is required to admit
a closed spatial section [30]. The solutions in this Bianchi
type have been presented in Sect. 3.5, which are initially
anisotropic. To have the black hole interpretation in this
model, the metric (67) needs to be isotropic. Interestingly,
being consistent with this demand, the solution of the set
of initial value equation (66) and physical condition (134),
in which the λ is given by (96), restricts the solutions to be
isotropic by

p1 = 1

2
, p2 = 0. (148)

Then, the Einstein frame metric (67) recasts the following
form

ds2 = −W− 2
3 F dt2 + W

1
3 V

(
V 2

r4 F
dr2 +

∑
(σ i )2

)
,

(149)

where the V function is given by (65) and the q1 is required
to be negative. Also, the (100) and (102) give

AH = −c1

√
2c3q

−3
1 ω3, (150)

κ =
√

2q3
1c

−1
3 e− 1

3 φ∞ . (151)

It can be checked that with non-dynamical q1, the first law
of thermodynamics (132) is satisfied only with α = 3

4 , i.e.
q1 = −1.

Here, the asymptotic value of γ in (40) is γ∞ = −c3
1

8 e−φ∞ .
Also, the Ricci and Kretschmann scalars are proportional to

W− 7
3 V−5 and W− 17

3 V−11, respectively. Then, considering
the W and V functions given by (44) and (65), there are
initial singularities at r1 = 0 and r3 = −c1

q2
1 +1

, which are

hidden behind the horizon since r1 < r3 < rH .

4.5 Bianchi type V I−1

As we have mentioned in Sect. 3.6, the h = 0, 1 cases of V Ih
are equivalent to Bianchi types I I I and V . Besides them,
only the V I−1 case admits a closed spatial section and is
equivalent to the Thurston geometry type of solvegeometry
with Abelian isotropy [30]. Here, the integrating constants
pi are subject to the initial value condition (74). Taking into
account the restrictive condition (134) along with (97), the
constants are constrained to be

p2 = −1

2
, p1 = 0. (152)

Then, the Einstein frame metric (75) recasts the following
form

ds2 = −W− 2
3 F dt2 + W

1
3

(
c2

1q
−2
1 e

− 4F
q2

1
dr2

r4 F

+ e
− 4F

q2
1 (σ 1)2 + c1l2q

−1
1

(
(σ 2)2 + l−2

2 (σ 3)2
) )

,

(153)

and the thermodynamic quantities are given by

AH = |q1|−1√c3 c1 ω3, (154)

κ = |q1|
√
c1c3

−1e− 1
3 φ∞ . (155)

Now, considering the mass of this model given by (92) and
(97), it can be checked that with non-dynamical l2 and q1, the
first law of thermodynamics (132) can be verified by fixing
α = 3

4 , i.e. q1 = −2.
The Ricci and Kretschmann scalars in these solutions have

analogs behavior with the Bianchi type I and so there is an
initial singularity at the origin r1 = 0. Also, the asymptotic

value of γ in (40) for this type is γ∞ = c2
1
4 e−(1+φ∞).
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4.6 Bianchi type V I I I

The Thurston type geometry in this Bianchi type is ˜SL2R
and the isotropy groups are e and SO(2) [30]. The solutions
in this type have been presented in Sect. 3.8. Considering
the initial value equation (82) and the condition (134), with
using (98), the constants are fixed as follows

p1 = p2 = 1

2
. (156)

Then, the Einstein frame metric (83) recasts the following
form

ds2 = −W− 2
3 F dt2 + W

1
3

(
V 4

1 V
−1
2

dr2

r4F
+ V2(σ

3)2

+V 2
1 V

−1
2

(
(σ 1)2 + (σ 2)2)

)
, (157)

in which the V1 and V2 functions are given by (81). The q1

can have any sign but q2 needs to be positive in such a way
that q2

2 − 1 > 0. Also, the thermodynamic quantities are
given by

AH = −c1q
−2
1

√−c3q2 ω3, (158)

κ = q2
1√−c3q2

e− 1
3 φ∞ . (159)

By assuming q1 and q2 as non-varying parameters, the first
law of thermodynamics (132) can be confirmed if the α

parameter in the mass (92) equals to 3
4 , i.e. 2

q2
1 +1

+ 1
2(q2

2 −1)
=

3
4 .

Furthermore, the Ricci and Kretschmann scalars are pro-

portional to W− 7
3 V−6

1 V−1
2 and W− 17

3 V−14
1 V−2

2 , respec-
tively. Accordingly, besides r1 = 0, there are two other ini-
tial singularities at r3 = −c1

q2
1 +1

, and r4 = c1
q2

1 −1
. Obviously,

r1 < r3 < rH and r3 is not a naked singularity. But, the
requirement of q2

2 −1 > 0 implies that the r4 is negative and
can be ignored. The asymptotic value of γ in (40) for this

type is γ∞ = − c3
1q

4
1 (q2

2 −1)

q2(q2
1 +1)

e−φ∞ .

4.7 Bianchi type I X

The Bianchi type I X has the spherical Thurston geometry S3

and a group isomorphic to three-dimensional rotation group
SO(3) [30]. Solutions of this type are given in Sect. 3.9. The
initial condition (88) along with condition (134), in which
the λ is given by (99), fixes the constants as

p1 = p2 = 1

2
. (160)

With these constants the Einstein frame metric (89) gets the
form of (157), but the V1 and V2 functions for this Bianchi
type are given by (87). Also, the q2 needs to be negative with

q2
2 −1 > 0 butq1 can have any sign. The area of horizon (100)

and surface gravity (102) are

AH = −c1
√
c3q2

q2
1

ω3, (161)

κ = q2
1√
c3q2

e− 1
3 φ∞ . (162)

Checking the first law of thermodynamics (132) with assum-
ing the q1 and q2 as non-varying parameters, shows that the
first law is satisfied if the α parameter in mass expression (92)
for this Bianchi type equals to 3

4 , i.e. 2
q2

1 −1
+ 1

2(q2
2 −1)

= 3
4 .

This Bianchi type can admit a constant curvature type
horizon, i.e. with Ri j = kgi j by constant k, if one sets
±q1 = q2. The Ricci and Kretschmann scalars are propor-

tional to W− 7
3 V−6

1 V−1
2 and W− 17

3 V−14
1 V−2

2 , respectively.
Hence, there are three initial singularity at r1 = 0, r3 = c1

q2
1 −1

,

and r4 = c1
q2

2 −1
. Since q2

2 − 1 > 0 then r3 < 0 and

can be ignored. However, we don’t have such a condition
on q1 but in the case of ±q1 = q2 the r4 is negative as
well. The asymptotic value of γ in (40) for this type is then

γ∞ = − 39
√

39c3
1

1000 e−φ∞ .
Possessing positive Ricci scalar with respect to the

induced metric on the horizon, Bianchi type I X model is
the only one which is allowed by the horizon theorem [15] to
be asymptotically flat. This limit can be obtained by setting
c3 = −√

2b, as indicated by (40). The first law of thermody-
namics for this solution is verified with α = 0. In this case,
the quasi-local mass equals the factor 4

3 times the Kumar
energy obtained by the normalized time-like killing vector
ξ̄ .

4.8 Near-horizon, extremal and asymptotic limits of the
solutions

To end this section, let us investigate some behaviors of
the solutions in near-horizon, extremal, and large r limits.
We have seen in Sects. 4.1–4.7 that the physical require-
ment (134) together with the initial value conditions on con-
stants, obtained from (21), fixed the pi constants, identify-
ing the final forms of black hole metrics. Also, satisfaction
of the first law of thermodynamics in Bianchi types I I -I X
constrained the α (or equivalently the qi ) constants to take
special values. Eventually, the obtained Einstein frame met-
rics (136), (141), (145), (149), (153), and (157) can be written
in the following general form

ds̃2 = −W− 2
3 F dt2 + W

1
3 X

r4F
dr2 +

3∑

i=1

g̃2
i (σ i )2, (163)

where the F(r) and W (r) are given by (31) and (44) but the
X (r) and g̃i (r) functions are different for any Bianchi types
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and can be read simply from the obtained metrics. To find
the near horizon limit of these metrics we define ξ = r − rH
and so as r → rH , i.e. in ξ → 0 limit, (163) reduces to

ds̃2 = −W
− 2

3
H r−1

H ξdt2 + W
1
3
H XH

r3
H

dξ2

ξ
+

3∑

i=1

g̃2
i H (σ i )2,

(164)

in which the WH , XH , and g̃i H are finite values taken by
the W (r), X (r), and g̃i (r) functions on the horizon. Then,
introducing a new coordinate x by

ξ = r3
H x2

4XHW
1
3
H

, (165)

we get

ds̃2 = −
(

4WH XHr
−2
H

)−1
x2dt2 + dx2 +

3∑

i=1

g̃2
i H (σ i )2,

(166)

Now, a closer look at the presented solutions in 4.1–4.7

sections reveals that the factor
(

4WH XHr
−2
H

)−1
for each

Bianchi type solution coincides the square of its surface grav-
ity κ . Therefore, the (t, x) part of spacetime in the above
metric is a flat Minkowski space written in the Rindler coor-
dinates.

In addition, the regularity of the black hole solutions can
be investigated to obtain the restriction on the amount of
magnetic charge that can be carried by these black holes.
From a physical point of view, the required condition is
rH = −c1 > 0. For Bianchi types I and V I I0, consider-
ing (112), the black hole interpretation of the solutions will
be lost unless

M2 >
1

4κ2
5

Q2
me

4
3 φ∞ . (167)

Also, for the Bianchi types I I and I I I the first law of ther-
modynamics has been satisfied with α = 1

4 . In this case,
the real and negative integration constants c1 and c3, given
by (114) and (115), require again the same condition (167)
to hold. The Bianchi types V , V I−1, V I I I and I X satisfied
the first law with α = 3

4 , where the integration constants
c1 (114) and c3 (115) are real, but negativity of them is
again guarantied by the restriction of type (167). In other
words, the condition (167) gives the extremal condition on
the magnetic charge of the all obtained Bianchi type black
hole solutions. For all solutions, in the extremal limit as
Qm → 2κ5e− 2

3 φ∞M , we have c3 → b and rH = −c1 → 0.
In fact similar to Einstein–Maxwell–dilaton solutions [1],
the solutions have two horizons at r = −c1 and r = 0. The
r = −c1 is the event horizon and r = 0 is generally singular.
In extremal case these two horizons coincide at r = 0.

Near the horizon in (near) extremal limit the behavior of
temperature and entropy depends on the type of Bianchi as
follows11

I & V I I0 : TH → 0, S → ∞, (168)

I I & I I I : TH → 0, S →
√√

2κ5Qm/4 ω3, (169)

V I−1 : TH → 0, S → 0, (170)

V : TH →
√

2 (
√

2κ5Qm)−1, S → 0, (171)

V I I I & I X : TH → q2
1

√
2|q2| (

√
2κ5Qm)−1, S → 0.

(172)

For Bianchi types I and V I I0 the behavior is similar to that
of Rindler space times [80]. In this limits, the I I and I I I
types have finite entropy with vanishing temperature, simi-
lar to extreme near horizon Reissner–Nordstrom black hole
solution. Thermodynamic analysis of black hole solutions
with this behavior has been studied in [81,82]. The V I−1

type solution has finite-valued κ/AH in this limit, consider-
ing (154) and (155). This characteristic, along with (170),
reminds the Extremal Vanishing Horizon (EVH) type black
holes [83,84]. However, noting (153), the g̃i part of near
horizon metric (166) in this type does not have any zero
eigenvalues and hence vanishing of entropy is not accom-
panied by a vanishing one-cycle on the horizon. Therefore,
the V I−1 solution cannot be regarded as an EVH black hole.
Also, for V , V I I I and I X type solutions the behavior of
temperature and entropy is similar to that of Schwarzschild
black holes in the zero-mass limit [85].

It is worth considering the attractor mechanism [86,87]
here to check the consistency of the analysis. The dilaton for
metric (166) is

φ(x) = 3

4
ln

(
3c1c3

2 (b c1x + c3)
2

)
, (173)

and no matter what is the value of φ∞, near the horizon we
have

eφH ≡ lim
x→0

eφ(x) =
(

3c1

2c3

) 3
4

, φ′
H ≡ lim

x→0
φ(x)′ = 3b c1

2c3
.

In the extremal limit, φ′
H vanishes, which is a fixed point and

eφH =
(

0
2Qm

) 3
4 = 0. Also, as discussed in Appendix B,

using the equation of motion we can consider Vef f =
2κ2

5Q2
me2φ , where the attractor condition ∂φVef f = 0 [87]

leads again to eφH = 0.12 Also, using the obtained expres-

11 It should be noted that in the extremal limit we have c1 → 0 and
c3 → b, simultaneously. It can be checked using L’Hospital’s rule that
the φ∞ (38) is finite in this limit.
12 In comparison with the cases of Vef f = P2eα1φ + Q2e−α2φ , where

α1 and α2 have the same signs and e(α1+α2)φ0 = α2Q2

α1P2 extremises the
effective potential [54,87], here we have Q = 0 and P proportional to
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sion for γ̃H in (202), noting (100) and (106), it can be easily
checked that in extremal limit, this formula gives the same
behavior for entropy as given in (168)–(172).

In addition, using (38), (107) and (134), the mass of black
holes (92) can be rewritten as follows

M = −Q2
m

c3
e

2
3 φ∞ + α rH

κ2
D

e− φ∞
3 . (174)

In the high energy limit rH → 0 [88], which can be alterna-
tively regarded as extremal limit here, the mass is non zero
and is govern by the magnetic charge term, where in the
asymptotic limit, i.e. as rH → ∞, the dominant term is the
second term which is zero for flat horizon cases.

It is worth mentioning that although the metric (163) looks
singular as r → ∞, its asymptotic scalar curvature given
by (40) is finite in this limit, noting that the value of γ̃∞ for
each Bianchi type solution given in previous subsections is
finite and non-zero. Also, the Ricci scalar (39) on the horizon

becomes R̃ = − b2(c1c
−1
3 )

4
3

6γ̃H
and γ̃H is finite for all Bianchi

type solutions.
Furthermore, non-zero components of effective energy

momentum tensor (8) are given by

T i(eff)
i = −T r(eff)

r = 1

12γ̃

(

3b2e
4φ
3 − 2c2

1F

(
dφ

dF

)2

e− 4φ
3

)

,

− T t(eff)
t = 1

12γ̃

(

3b2e
4φ
3 + 2c2

1F

(
dφ

dF

)2

e− 4φ
3

)

.

(175)

In r → ∞ limit

T i(eff)
i = −T r(eff)

r = b2

12c2
3 γ̃∞

(
3c2

3 − 2b2
)

e
4φ∞

3 ,

−T t(eff)
t = b2

12c2
3γ̃∞

(
3c2

3 + 2b2
)

e
4φ∞

3 , (176)

indicating that the pressures and energy density do not
diverge at r → ∞ limit. Also, noting (176), or equiva-
lently the (36), the asymptotic behavior of solutions can not
be regarded as asymptotically (A)dS behavior. Then, as we
have mentioned before, assuming c3 �= −√

2b in (40), we
call the solutions non-asymptotically flat, non-(A)dS topo-
logical black hole solutions. On the other hand, the γ̃ of any
Bianchi type solutions diverges at its irremovable singulari-
ties, the pressures and energy density blow up at these points.

Qm which, as mentioned before, can be interpreted as electric charge
in Hodge dual theory.

5 T -dual solutions of Bianchi type V black hole

In the presence of the isometries of background fields, where
the following conditions are satisfied

Lχg = Lχφ = Lχ H = 0, (177)

with killing vectors χ , the Buscher’s T -duality transforma-
tions are valid [89]. In this case, a convenient coordinate
system can be adopted where all of the background field are
independent of the isometry direction x and Lχ = ∂x [77].
Then, the T -dual transformation with respect to the isometry
direction x are given by13

ḡxx = 1

gxx
, ḡxμ = Bxμ

gxx
, B̄xμ = gxμ

gxx
, (178)

B̄μν = Bμν + (gxμBνx − gxνBμx )

gxx
, (179)

ḡμν = gμν − (gxμgxν − BxμBxν)

gxx
, (180)

φ̄ = φ + ln |gxx |, (181)

where ḡμν , B̄μν and φ̄ are metric, antisymmetric tensor field
and dilaton of the T -dual σ -model.

Here, as an example, we investigate the T -dual version
of the black hole solutions of Bianchi type V . Considering
the vielbeins of this Bianchi type given in the Table 1 of
Appendix A, there are two isometry directions of x2 and x3.
In this respect, the antisymmetric B-field associated to field
strength tensor (14) can be considered as14

B = 1

4
b e2x1

dx2 ∧ dx3. (182)

Now, given the dilaton (32), B-field (182), and the metric (13)
whose components are given by (27), (31) and (62)–(64),
we perform the T -dual transformations of (179)–(181) for
example with respect to x2. Then, the T -dual dilaton, its
asymptotic value, and dilaton charge are obtained as follows

φ̄ = ln(V ) + 2 x1 + 1

2
(4 p2 + 2 p1 − 1) F,

φ̄∞ = 2 x1 + ln
c1q1

2(q1
2 + 1)

,

D̄ = c1

2
(4 p2 + 2 p1 − 1) − 2p1c1

q2
1 + 1

,

(183)

where the V (r) function is given by (65). Furthermore, all of
the components of T -dual B-field vanish and we have B̄ = 0.
Investigating the properties of T -dual metric, obtained by

13 Here, the (181) is given based on our notation for the β-function
equations of (1)–(3) in which the dilaton is minus twice of the dilaton
of Refs. [65,89].
14 The (182) is the general form of B-field which leads to the field
strength tensor (14) with Lχ B = 0, without including the constant
components of B which have no relevant physical interpretation here.
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(179) and (180), shows that the determinant of the three-
dimensional metric in Einstein frame, γ̃ , has been kept invari-
ant. Here, the non-zero and finite area of horizon and sur-
face gravity in (101) impose the conditions of λ = 0 and
13 p1 + 8 p2 − 13/2 = 0, which along with initial condi-
tion (66) fix the integrating constants again as (148). With
these fixed values, the first terms in dilaton and its charge
in (183) vanish and the T -dual string frame metric takes the
following form

ds2 = −F dt2 + WV 3

F r4 dr2 + WV (dx1)2

+ (WV )−1
(

e−2x1
(dx2)2 + b dx2dx3

+e2x1
(

(WV )2 + b2
)

(dx3)2
)

(184)

where W (r) function is

W = c2
3 − b2F

c1c3
. (185)

The Einstein frame metric can be easily obtained by perform-
ing the conformal transformation (5) using T -dual dilaton
(183). It can be checked that the T -dual solutions in Einstein
frame are again hairy black hole solutions where the loca-
tion of the horizon is unchanged, given by rH = −c1. Here,
the second term in shift symmetry current (120) vanishes
but the x1 dependence in the dilaton (183) indicates that the
non-vanishing components are J 1 and Jr . This current has
a finite norm on the horizon and, as a consequence of having
the J 1 component, its conservation has no conflict with the
presence of dilaton charge. Also, the singularity properties
of the black hole have not changed and the Kretschmann and
Ricci scalars of the T -dual black hole are divergent at the
same non-naked singularities of r1 = 0 and r3 = −c1

q2
1 +1

.

The invariance of γ̃ under T -duality shows that the area of
horizon and entropy remain invariant under T -duality. Also,
the mass (92) (specialized for Bianchi type V with (96)),
surface gravity (151) and consequently the temperature (105)
will be rescaled under T -duality, but their final forms are
similar to the original ones and just rewritten in terms of φ̄∞
instead of φ∞ as

M̄ = −c1e− 1
3 φ̄∞

2κ2
D

(
b2

c2
3 − b2

+ 3

q2
1 + 1

)

, (186)

κ̄ = 1

|l2l3|

√
2q3

1

c3
e− 1

3 φ̄∞ . (187)

However, except c1, the other constants’ role has been
changed in T -dual version of mass. The B̄ = 0 indicates
that no charge associated with B-field is carried by the T -
dual solutions and the b is just a constant appeared in three-
dimensional part of the metric (184). Also, instead of c3, the

q1 is related to dilaton here and the inverse relations for c1

and q1 are given by

− c1 = −4 e
1
3 φ̄∞M̄
β

+ 12 e
5
3 φ̄∞

√
M̄2 + (−β2 + 6 β

)
e

4
3 φ̄∞ − M̄

,

(188)

−q1 = β−1
(

−M̄e− 2
3 φ̄∞ +

√
M̄2e− 4

3 φ̄∞ − β2 + 6 β

)
,

(189)

in which β = b2

c2
3−b2 . Now, considering β as a non-varying

constant, the first law of thermodynamics can be verified with
β = 1

4 . Then, the dilaton charge can be expressed in terms
of T -dual mass by

D̄ = −2 e
5
3 φ̄∞

M̄ −
√
M̄2 + 5e

4
3 φ̄∞

, (190)

which indicates that the T -dual solution has also the scalar
hair of second kind.

6 Conclusion

We have constructed five-dimensional topological black hole
solutions at leading order of string effective action in pres-
ence of dilaton and antisymmetric B-field associated with
a magnetic charge. The asymptotic behavior of the solu-
tions at infinity have been affected by the presence of the
magnetic charge such that the solutions are neither asymp-
totically flat nor asymptotically (A)dS. The solutions have
been assumed to have horizons with Bianchi type symme-
tries where in the context of violated asymptotic flatness
assumption of the horizon geometry theorem [15], in addi-
tion to flat Bianchi type I and positively curved Bianchi
type I X , the other negatively curved Bianchi spaces were
also considered. These solutions can be regarded as black
hole solutions whose three-dimensional horizons are mod-
eled on seven types of Thurston 3-geometries corresponding
to Bianchi types, where there exist more possibilities for the
horizon geometry than the known constant curvature types of
spherical, hyperbolic or flat cases, which are given by prod-
uct constant curvature type H2×R and twisted product types

of ˜SL2R, nilgeometry, and solvegeometry.
Possessing non-trivial configuration, the dilaton field

introduced a dilaton charge in the solutions. We gave an argu-
ment based on the Noether current of shift symmetry, demon-
strating that this current does not cover all of the assumptions
of the no-hair theorem proof of [75] and so the presence of
dilaton charge has no conflict with the conservation of this
current. The solutions have dilaton hair which is, however,
of secondary type in the sense that the dilaton charge is not
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an independent charge carried by the black hole solutions
and can be entirely determined by the magnetic charge and
the mass of the black holes. Hence, the no-hair conjecture
still holds. Also, the dilaton charge turned to be proportional
to the magnetic charge multiplied by the magnetic potential
through Eq. (122). It is worth mentioning that a quite similar
relation has been obtained in [76] between the scalar charge
and the magnetic charge, accompanied by its potential, in
the case of the massless field φ coupled to the electromag-
netic field through the second Chern character by using the
Noether current of shift symmetry.

The mass and other thermodynamic quantities depend in
a non-trivial way on the asymptotic value of dilaton φ∞.
The problem with the drastic modification of the first law of
(static) hairy black hole thermodynamics which contains the
variation of φ∞ has been considered. Following the idea of
[63], where a boundary term for dilaton field was included in
the action in the quasi-local formalism of mass, we consid-
ered the case that the effective action is also supplemented
with a boundary term for dilaton. However, only the spheri-
cally symmetric solutions have been considered in [63]. We
applied a similar discussion inspired by the proposed bound-
ary term variation of dilaton in [79], where with vanishing
φ∞, the D and C coefficients in the asymptotic expansion
of the scalar field were required to be functionally related
for integrability of energy. This relation which is usually
imposed as a boundary condition, can be fixed uniquely
where the asymptotic AdS symmetry is of interest. Partic-
ularly, the C = kD2 with a constant k, besides preserving
AdS invariance, is compatible with the conformal symme-
try of the boundary [90] and makes the contribution of the
scalar field in energy vanish [91]. When the conformal invari-
ance is broken, the trace anomaly leads to an extra contribu-
tion of dilaton to the total energy with interesting interpre-
tations [90,92]. For instance, in dyonic black hole solution,
this contribution leads to satisfactions of the first law without
including an extra scalar charge dependent term [63]. In our
solutions we are dealing with non-AdS cases, however the
obtained dilaton solution satisfies C = D2

2 if the regularity of
φ and φ′ on the horizon is required. The φ∞ is non-zero here
and δQφ gives only a term with contribution of φ∞ and D,
which following [79], have been considered to be function-
ally related. Similar to [63], it turns out that, the scalar field
gives a non-vanishing contribution to the total energy which
leads to a well defined variational principle in such a way
that even if the φ∞ is assumed to vary the first law of ther-
modynamics does not include the scalar charge dependent
term.

Thermodynamics of the solutions and satisfaction of the
first law of thermodynamics have been investigated for all
Bianchi type solutions that admit compact event horizons.
The solutions are characterized by three parameters: the mass

M , the B-field magnetic charge Qm , and the constant φ∞.
We expressed the integrating constants of c1, c3, and b in
terms of these parameters where the remaining constants
have been fixed by requiring some restrictive conditions. In
such a way that, the n and pi have been fixed by certain con-
ditions, including the initial value condition, the regularity
of dilaton on the horizon, and the finite non-vanishing sur-
face gravity and area of horizon in the non-extremal black
hole cases. Also, it has been observed that the first law
holds for Bianchi type I solutions and for the other types
its satisfactions requires fixing the integrating constants of
qi .

The solutions have a horizon hiding the scalar curvature
singularities including one at the origin for all Bianchi types
and another one for some of them, where the later singular-
ity actually appears where the gi components of the metric
vanish. At these points, the Ricci and Kretschmann scalars,
the energy momentum invariants Tμ

μ and TμνTμν , energy
density, and pressures of the effective matter, which has been
considered to include the contributions of dilaton and B-field,
blow up.

The Hodge dual of our solutions can be interpreted as elec-
trically charged black hole solutions of Einstein–Maxwell–
dilaton theory. The dual transformation keeps the Einstein
frame metric fixed but changes the sign of dilaton. This
implies that the properties that depend on the Einstein met-
ric are not influenced by this transformation (for instance,
the singularity behavior and thermodynamic proprieties).
But, the dilaton charge, which was negative for magnetically
charge solutions, is positive for electrically charged ones. It
is worth mentioning that for electrically charged black hole
solutions the action should be supplemented with a surface
term which is required to make the variation of the Hamil-
tonian well defined [74,93]. This surface term is zero in the
magnetic cases but the variational principle for the gauge
field should be considered carefully.

The extremal and near horizon limit of the solutions has
been also studied. We have shown that in near horizon limit
2-dimensional Rindler space can be recovered in (t, r) part
of spacetime. Also, the extremal condition appeared to be the
same for all Bianchi type black hole solutions so the solutions

are regular only if 4κ2
5 M

2 − Q2
me

4
3 φ∞ > 0. Violation of

this inequality changes the nature of the curvature singularity
where the naked singularities appear for a sufficiently high
magnetic charge.

Furthermore, T -dual transformation is allowed by the
symmetries of the considered spacetimes. As an example,
a class of T -dual solutions is obtained in Bianchi type V
which has a non-trivial dilaton and vanishing B-field. This
solution admits hairy black hole, where the scalar charge,
being completely determined by the black hole mass, is sec-
ondary and there is no naked singularity. However, the mag-
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netic charge has not been preserved and no B-field charge is
carried by the T -dual black hole. Examining the properties
and thermodynamics of this solution showed that the location
of horizon is unchanged and the area of horizon and conse-
quently the entropy remain invariant under T -duality. In fact,
the T -duality invariance of entropy has been pointed out first
in [94], where the surface gravity and temperature are invari-
ant as well. However, unlike the considered solutions in [94],
the φ∞ is non-zero here and the mass, surface gravity, and
temperature which depend on φ∞ have been rescaled in such
a way that the T -dual versions have a similar expressions to
the original ones, but they have been rewritten in terms of
asymptotic value of T -dual dilaton, φ̄∞.

It worth mentioning that families of five-dimensional
black hole solutions of gravity theories whose three-
dimensional horizons are modeled by some of the eight
Thurston geometries have been obtained for instance in
[37,39–41]. Especially, the non-trivial geometries which are
not constant curvature or product of constant curvature types
hold attention. In this category, the solution with nilgeom-
etry and solvegeometry horizons have been studied, but the

case of ˜SL2R Thurston geometry, having somewhat more
complicated field equations, have been left open. We have
found black hole solutions in two Bianchi types I I I and

V I I I which correspond to ˜SL2R geometry. The Lifshitz
black hole solutions in these two Bianchi types in Einstein
gravity with cosmological constant have been obtained in
[38]. However, differently from their solutions which have
zero entropy with non-zero temperature, we have seen that
the our solutions admit non-zero entropy with some fixed
values of integrating constants.

The magnetic and scalar charges, masses, and the area
of horizons appeared to have a dependence on the volume
of three-dimensional homogeneous part of space, ω3. This
aspect of the solutions is similar to that of four-dimensional
topological black hole solutions where some of thermody-
namic quantities are proportional to the area of ω2 [18]. The
ω2 can be completely determined by the topology of horizon
in terms of the Euler characteristic of 2-manifold. But, a dif-
ficulty in the investigating of 3-manifolds has been the lack
of such a good topological invariant, like the Euler character-
istic of 2-manifolds. In fact, the Euler characteristic of closed
3-manifolds is zero [28]. However, in some cases the w3 can
be regarded as a topological invariant and further work is
under progress in this sense.

Acknowledgements The authors would like to thank M. M. Sheikh-
Jabbari for his valuable discussions and comments. This research was
supported by Iran National Science Foundation (INSF) under Grant no.
96011219.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This work is
entirely theoretical, so we have not used any specific data.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

A Bianchi type classification

In this Appendix, the classification of real three-dimensional
Bianchi type Lie algebras are presented. The relation between
coordinate and non-coordinate basis is given by

σ i = eα
i (x) dxα, (191)

where {σ i , i = 1, 2, 3} are left invariant basis 1-forms
and eα

i (x) are vielbeins. For each Bianchi type the associ-
ated vielbeins, corresponding Thurston type geometries and
the isotropy groups are presented in Table 1, in which for
Bianchi type V I Ih we have defined X = e−kx1

cos(a x1),
Y = − 1

a e−kx1
sin(a x1), k = h

2 , and a = √
1 − k2.

Considering the metric (13), non-zero components of Rie-
mann and Ricci tensors are given by

Ri
jkl = Γ m

l j Γ i
km − Γ m

kj Γ
i
lm − f m

kl Γ i
m j ,

Rr
jrl = Γ r

l j
′ + Γ m

l j Γ r
rm − Γ m

r j Γ
r
lm,

Rr
trt = Γ r

tt
′ + Γ r

ttΓ
r
rr − Γ t

r tΓ
r
tt ,

Rr
jkl = Γ m

l j Γ r
km − Γ m

kj Γ
r
lm − f m

kl Γ r
mj , (192)

Ri j = Γ r
ji

′ + Γ e
jiΓ

d
de + Γ r

jiΓ
d
dr + Γ r

jiΓ
r
rr − Γ e

diΓ
d
je

−Γ r
diΓ

d
jr − Γ e

riΓ
r
je − f e

d j Γ d
ei ,

Rr j = Γ e
jrΓ

d
de − Γ e

drΓ
d
je,

Rrr = Γ r
rr

′ − Γ i
jrΓ

j
rr − Γ t

trΓ
t
r t , (193)

where the prime symbol stands for derivative with respect to
r and f k

i j are the structure constants of Bianchi Lie algebras.
Also, the connection coefficients are given by

Γ k
i j = −gdk( f e

id gej + f e
jd gei ) + f k

i j ,

Γ i
ir = ln g′

i i , Γ t
tr = Γ t

r t = 1

2
ln F ′

Γ r
i j = −1

2
FU2gi j

′, Γ r
rr = ln

(
FU2)′

, Γ r
tt = 1

2
F U2F ′.

(194)

The Riemann and Ricci tensors in coordinate basis can be
obtained by multiplying the vielbeins e i

α , for example Rαβ =
e i
α e

j
β Ri j and Rα0 = e i

α Ri0.
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Table 1 Bianchi-type classification

Type Class dσ i = 1
2 f ijkσ

jσ k Coordinate basis Geometry Isotropy

I A dσ 1 = 0 σ i = dxi E3 SO(3)

dσ 2 = 0 E2 × R SO(2)

dσ 3 = 0 R3 e

II A dσ 1 = σ 2 ∧ σ 3 σ 1 = dx2 − x1dx3

dσ 2 = 0 σ 2 = dx3 Heisenberg G e

dσ 3 = 0 σ 3 = dx1 Nilgeometry SO(2)

III B dσ 1 = 0 σ 1 = dx1

dσ 2 = 0 σ 2 = dx2 H2 × E1 SO(2)

dσ 3 = σ 1 ∧ σ 3 σ 3 = ex
1
dx3

˜SL2R SO(2)

IV B dσ 1 = σ 1 ∧ σ 3+
σ 2 ∧ σ 3 σ 1 = e−x1

dx2 − x1e−x1
dx3

dσ 2 = σ 2 ∧ σ 3 σ 2 = e−x1
dx3 –

dσ 3 = 0 σ 3 = dx1

V B dσ 1 = 0 σ 1 = dx1

dσ 2 = σ 1 ∧ σ 2 σ 2 = ex
1
dx2 H3 SO(3)

dσ 3 = σ 1 ∧ σ 3 σ 3 = ex
1
dx3

V Ia B dσ 1 = 0 σ 1 = dx1

dσ 2 = hσ 1 ∧ σ 2 σ 2 = ehx
1
dx2

dσ 3 = σ 1 ∧ σ 3 σ 3 = ex
1
dx3

V I−1 Solvgeometry e

V I Ih B dσ 1 = −σ 2 ∧ σ 3 σ 1 = (X − k Y )dx2 − Ydx3

dσ 2 = σ 1 ∧ σ 3 σ 2 = Y dx2 + (X + kY )dx3

+ hσ 2 ∧ σ 3, dσ 3 = 0 σ 3 = dx1

V I I0 A E3 SO(3)

VIII A dσ 1 = σ 2 ∧ σ 3 σ 1 = dx1 + ((x1)2 − 1)dx2

+(x1 + x2 − x2(x1)2)dx3
˜SL2R e

dσ 2 = −σ 3 ∧ σ 1 σ 2 = dx1 + ((x1)2 + 1)dx2

+(x1 − x2 − x2(x1)2)dx3
˜SL2R SO(2)

dσ 3 = σ 1 ∧ σ 2 σ 3 = 2x1dx2 + (1 − 2x1x2)dx3

IX A dσ 1 = σ 2 ∧ σ 3 σ 1 = − sin x3dx1 + sin x1 cos x3dx2 SU (2) ≈ S3 e

dσ 2 = σ 3 ∧ σ 1 σ 2 = cos x3dx1 + sin x1 sin x3dx2 SU (2) ≈ S3 SO(2)

dσ 3 = σ 1 ∧ σ 2 σ 3 = cos x1dx2 + dx3 S3 SO(3)

B Effective potential

Here, we rewrite the equations of motion (7)–(12) to derive
the expression of the effective potential, Vef f , in attractor
mechanism. We have

R̃μν = 1

3
∇̃μφ∇̃νφ + e

4φ
3

4

(
HμκλH

κλ
ν

−2

9
H2 g̃μν

)
, (195)

1
√
g̃
∂μ

(√
g̃∂μφ

)
= e

4φ
3

12
H2, (196)

∂μ

(√
g̃e

4φ
3 Hμ

νρ

)
= 0. (197)

Using (195) we have

R̃tt = g̃t t
3γ̃

Vef f (φ), R̃ii = g̃i i
6γ̃

Vef f (φ), (198)

where

Vef f (φ) = 2κ2
5 e

4φ
3 Q2

m . (199)
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By definition [87], the Vef f can be regarded as an effective
potential for the scalar field, where from (196) we get

r2∂r (r
2F∂rφ) = 1

4
∂φVef f (φ). (200)

Also, the rr component of (195) gives

2r4g̃t te
− 2φ

3

(
1

2

∑

i< j

(ln g̃2
i )

′(ln g̃2
j )

′ − 1

3
φ′

)

+ r4(g̃t t )
′ ln(γ̃ )′e− 2φ

3 + Vef f (φ) + Ỹ = 0.

(201)

On the horizon g̃t t vanishes and r2g̃′
t t = −c1e

2φH
3 . Conse-

quently, we have

γ̃H = −c2
1
dγ̃
dF |r=rH

Vef f (φH ) + Ỹ |r=rH

, (202)

in which Ỹ for different Bianchi types is given as follows

I&V I I0 : Ỹ = 0, (203)

I I : Ỹ = V 2, (204)

I I I : Ỹ = 2l22V
2, (205)

V : Ỹ = 12 V 2, (206)

V I−1 : Ỹ = c2
1, (207)

V I I I : Ỹ = 4V 2
1 + V 2

2 , (208)

I X : Ỹ = 4V 2
1 + V 2

2 . (209)

where with the given metrics in Sects. 4.1-4.7, the V function
for each Bianchi types can be found in (49), (56), (65), (81),
and (87).
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