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Abstract Motivated by the conduction properties of
graphene discovered and studied in the last decades, we con-
sider the quantum dynamics of a massless, charged, spin 1/2
relativistic particle in three dimensional space-time, in the
presence of an electrostatic field in various configurations
such as step or barrier potentials and generalizations of them.
The field is taken as parallel to the y coordinate axis and van-
ishing outside of a band parallel to the x axis. The classical
theory is reviewed, together with its canonical quantization
leading to the Dirac equation for a 2-component spinor. Sta-
tionary solutions are numerically found for each of the field
configurations considered, from which we calculate the mean
quantum trajectories of the particle and compare them with
the corresponding classical trajectories, the latter showing
a classical version of the Klein phenomenon. Transmission
and reflection probabilities are also calculated, confirming
the Klein phenomenon.
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1 Introduction

By the end of 1928, the same year that Dirac published its
“quantum theory of the electron” paper, Klein [1,2] analysed
the behaviour of quantum relativistic electrons in presence
of a step barrier potential. His calculations revealed that, for
a sufficiently high enough energy barrier, electrons can push
forward against it and trespassing to the classical forbidden
region by switching the sign of their kinetic energy, the latter a
by-product of the Dirac Hamiltonian having negative energy
states in its spectrum. This theoretical prediction is the so-
called Klein phenomenon or Klein tunnelling, characterized
by the absence of the typical exponential suppression found
in non-relativistic quantum mechanics.

During the analysis of the transmission and reflection
coefficients, Klein apparently also found on a first approach
that more electrons were scattered back by the potential when
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compared with the number of incident ones. This implied a
reflection coefficient greater than one and in consequence a
negative transmission coefficient. But thanks to an insight-
ful observation by Pauli, as Klein himself acknowledged,
this situation was resolved by noticing that inside the barrier
potential the momentum changes its direction, being here
opposite to its group velocity. The modification suffices to
restore the physical meaning of the reflection and transmis-
sion coefficients. It has to be mentioned that although Klein
never considered this last result a real paradox – and in fact
that word does not appear in his paper – this phenomenon is
many times still known as the “Klein paradox”. A very inter-
esting historical approach to the Klein gedanken experiment
can be seen in [2–5].

It is by now widely understood [2] that this phenomenon is
a pure relativistic effect. In the regions where the total energy
E is smaller than the critical value V (x)−mc2, i.e., where the
kinetic energy is negative, the particle still propagates, with
an oscillating wave function. In a solid state context, this
can be interpreted as a particle (an electron) propagating in
the valence band, whereas in the region where the potential is
such that the kinetic energy is positive, E > V (x)+mc2, one
has a particle propagating in the conduction band. We shall
refer to such situations as the propagation of a VB, respec-
tively CB, particle (see Figure 2 in [2]). Thus a relativistic
particle may go through a potential step or barrier without
exponential damping irrespective of the energy value, pro-
vided |E−V | > mc2, in contrast to the non-relativistic case.
The classical counterpart of this effect is that the potential is
repulsive or attractive depending on the sign of the kinetic
energy (see Appendix B).

By the time Klein published his work, it was conjectured
that the “paradoxical” result mentioned above was caused
by the abrupt discontinuity of the step potential. Could a
smoother potential get rid of this unintuitive result? In this
respect, it was shown by Sauter [6] , that the conjecture was
partially correct: for weak smooth fields the reflection and
transmission coefficients behaves as expected, but for strong
fields Klein phenomenon shows up despite of the potential
being continuous.

Later, Hund [7] reconsidered the analysis from the quite
different perspective of multiparticle theory in quantum field
theory. Although his calculations were limited to the Klein-
Gordon equation, it was clear by the time that the poten-
tial barrier was spontaneously producing pairs of charged
particles/antiparticles. The analysis for the Dirac field was
successfully accomplished fifty years later by Nikishov [8–
10]). Since then, the Klein phenomenon has been adopted
by some authors as a good and pedagogical starting point
to justify the introduction of the multi-particle picture of the
Dirac equation against the single particle stand point. A closer
examination of the Klein phenomenon shows that this is not
necessarily true, since Klein tunnelling can occur even when

the potential is not high enough to produce pairs [2]. It has
also been suggested to trace Klein tunnelling back to the
classical relativistic theory [11,12] where massless charged
particles possess a very special dynamics in the presence of
external electromagnetic fields. Let us mention in particular a
result implicit in [11–13] that for a spinless particle travelling
with velocity v = (0, v0y = c, 0) right towards a constant
electric field (0, E, 0) barrier, no matter its intensity, the par-
ticle experience no back scattering at all (see equation (24)
of [13]). The explanation of this unexpected result is clear if
we remember that the massless and spinless particle already
moves at the speed of light; a reflection would imply a turn-
ing point at which the velocity would be zero, which is not
admissible. Therefore there is no such classically forbidden
region for this particular case. The reader can refer to [12]
for further discussions on this point.

It has to be noted that Klein phenomenon (along with the
Zitterbewegung) remains as a theoretical prediction with no
experimental evidence so far in high energy physics. This fact
seems to have contributed to keep alive the debate almost
a century after Klein’s work.1 A more refreshing debate
about the Klein phenomenon has been gaining attention in
recent years, this time in the context of condensed mat-
ter physics, more specifically the physics of graphene (see
[14] for a review). Indeed, the band structure of the mono-
layer of carbon known as graphene has been demonstrated
to be a suitable testing ground for quantum electrodynam-
ics phenomena. Its effective charge carriers obey a relativis-
tic linear energy-momentum dispersion relation of the form
E = vF|p|, the Fermi critical velocity vF ≈ 1000 km/s
playing the role of the “light velocity” c. Thus, graphene
stands out as an exceptional material for testing such a spe-
cial quantum behaviour. In particular, Klein tunnelling has
being experimentally confirmed ten years ago [3,15]. More
generally, a number of devices for applications have been
proposed in order to investigate this phenomenon [3,16].

The significant advances in the physics of graphene, first
on Klein tunnelling [17–19], then on the quantum Hall effect
[20,21], on the scattering properties and “electronic optics”
[22–26] and also some recent results on the so-called topolog-
ical semi-metals, e.g. Weyl semi-metals [27,28], are promis-
ing for novel applications for fundamental physics as well
as for probing for new theoretical and experimental elec-
tronic, optical and mechanical properties. On the other hand,
the novelties of graphene from the theoretical point of view
has not been unnoticed for the quantum gravity community
[29–36], once again offering a unique opportunity to develop
future experiments to guide theory.

1 An inspection of the cross reference database on the inspirehep.net
web site reveals a significant increasing of citations to the original Klein
article since 2010 (http://inspirehep.net/record/48390/citations).
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(a) The figure shows the disper-
sion relation for massless par-
ticles in 2+1 dimensions (the
double conic surface). For kx

fixed, the particle is constrained
to move along the hyperbola
(dashed curve) that lies in the
plane kx = const.; in this case
the effective dispersion relation
is ω(ky) = ±√

k2
y + k2

x, which is
equivalent to the dispersion re-
lation of a particle of mass |kx|
in natural units.

forbidden region

VB

CB

ω(ky) = ±
√

k2
y + k2

x

ω(ky) = V ±
√

k2
y + k2

x

(b) Representation of the transmission of a relativistic massless par-
ticle through a square potential barrier step of height V . For an
oblique collision the effective dispersion relation corresponds to a hy-
perbola. The dashed regions are the forbidden ones and separate
the positive kinetic energy states (CB particles) from the negative
ones (VB particles). For CB particles the momentum (long vector)
points in the same direction as that of the velocity (short vector);
for VB particles the momentum and the velocity point in opposite
directions. For a frontal collision the hyperbola would degenerate in
cone and there would be no forbidden regions. See [2, 37]

Fig. 1 Massles particle kinematics

Within the theoretical framework of condensed matter
physics Klein tunnelling can be interpreted as the interband
tunnelling (i.e. the transition of an electron from the con-
duction band to the valence band). The interband transition
is possible because the presence of the step barrier modifies
the dispersion relation to the right of the step (see [2,37] and
Fig. 1b). The electrons in the conduction band are analo-
gous of the ordinary electrons with positive energies in rela-
tivistic quantum mechanics, with its velocity and momentum
pointing in the same direction. The electrons in the valence
band are analogous to negative energy electrons; in this case
the velocity and momentum points to opposite directions. A
similar description applies to holes (the absence of an elec-
tron in any of the bands). Holes in the conduction band are
the equivalent to positive energy positrons, with the velocity
and momentum pointing to the same direction (the difference
with electrons would be in the direction of the current because
of the sign of the charge) whereas holes in the valence band
corresponds to negative energy positrons. This is a frame-
work compatible with the single particle picture of the Dirac
equation. It is clear that the problem of charge conservation
has no place in this case. What is most remarkable is that this
description already contains the clue ingredient pointed out
almost 100 years ago by Klein and Pauli, i.e., electrons inside
the barrier has negative kinetic energies, and its momentum

experiences a change of sign with respect to the group veloc-
ity.

The existence of such peculiar properties justifies further
theoretical investigations through a formalism based on fun-
damental principles, namely, from a Lagrangian point of view
and following the Dirac-Bergmann prescription to imple-
ment the canonical quantization. A complete quantum anal-
ysis for a spinning, charged and massless particle in (2 + 1)

dimensions is still missing, although many results may be
found in the literature.

For effectively massless fermions such as in graphene,
there is no energy gap, thus the Klein tunnelling, occurs as
soon as the energy E is lower than the potential for direct
incident electrons. For oblique incident ones the component
of the momentum parallel to the potential barrier emulates,
in some respects, an effective non zero mass, and thus a non
zero gap separating the negative and positive kinetic energy
states reappears, as our calculations will confirm (see Fig. 1a
below).

We must stress that, motivated by the dynamics of elec-
trons in materials such as graphene, we deal here with a spin
1/2 massless particle obeying a Dirac equation, which may be
obtained by a quantization procedure from a supersymmetric
classical theory involving Grassmann variables whose quan-
tum operator version is represented by Dirac matrices. This
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must be contrasted with the so-called anyon theories [38–
40]2 – also in 3D space-time – where the classical theory
has only ordinary variables and the quantum wave equation
is not of the Dirac form. There, spin can take arbitrary val-
ues. Moreover, at least in the references [38–40], the mass is
different from zero.

The aim of the present paper is to discuss the quan-
tum dynamics of a relativistic massless charged fermions in
(2+1) dimensional space-time, in the context of Dirac wave
mechanics. We shall follow a strictly quantum-mechanical
approach [1,2,4–6,12,17,18,37,41–43], and not the full
quantum field theoretic one [7–11,44–46] which would take
into account processes such as pair production and the pos-
sibility of e−e− bound states [46].

We begin in Sect. 2 with the full canonical quantization
of the theory, whose classical aspects have been studied in
a previous work [13]. Therefore, we start with the analysis
of the constraints for the spinning charged particle, taken as
massive. We follow then the Dirac-Bergmann prescription
for the quantization in the massless case.

In Sect. 3 we start the study of the quantum massless parti-
cle coupled with an external electrostatic potential. A techni-
cal analysis of the boundary conditions is described in order
to make basic points more transparent and we present the
results for various types of potentials, square or more gen-
eral ones. When necessary, comparisons with the literature
[2–5,14,41–43] – which mainly deals with square poten-
tials – will be made. In each case we calculate the reflection
and transmission probabilities, and we compare the quantum
mean trajectory of the particle with its classical counterpart,
as a check of the correspondence principle. We observe the
quantum effect Zitterbewegung, i.e., a jittery motion of the
mean trajectory due to the superposition of the right and left
moving waves – when both are present. Two appendices are
dedicated to the definition of conventions and to the classical
equations of motion in a special case of interest.

Computations in concrete cases are done with the help of
the software Mathematica [47]. Interested readers may down-
load (and use) the computer program from the arXiv site at the
link https://arxiv.org/src/1910.03059v2/anc/Trajectories.nb
and save it as a file: Trajectories.nb.

2 Canonical analysis and quantization

2.1 Action and classical equations of motion

The classical motion of a relativistic spinning particle of
mass3 m and electric charge q in the presence of an external
electromagnetic field Aμ(x) reads, in covariant form:

2 We thank Dr. Subir Gosh for appointing these references to us.
3 We will be most interested in the massless particle, but in this section
we consider the massive case for the sake of generalization.

S =
∫
C
dλ L(X (λ), Ẋ(λ)), (2.1)

where C is a path in dimension 3 spacetime4 parametrized
by λ. X represents the generalized coordinates xμ, e, ψμ, χ ,
ψ5, the last three ones being odd (anticommuting) Grassmann
numbers which describe the classical spin degree of freedom.
Dot above the variables denotes derivatives with respect to
λ. The Lagrangian is given by [13,48–50]

L(X, Ẋ) = −1

2

(
ẋμ

e

(
ẋμ − iχψμ

) − iψμψ̇μ

)

−1

2

(
em2 + i

(
ψ5ψ̇5 + mχψ5

))

−
(
q Aμ(x)ẋμ + iq

2
eψμFμν(x)ψ

ν

)
, (2.2)

Aμ being the electromagnetic 3-potential and Fμν = ∂μAν −
∂ν Aμ the electromagnetic tensor field. The odd Grassmann
variable ψ5 may be ommitted in the massless case m = 0.

The action is invariant, up to boundary terms, under two
gauge symmetries. The first one is its invariance under the
λ–reparametrizations:

δR
ε x

μ = εẋμ, δR
ε ψμ = εψ̇μ, δR

ε ψ5 = εψ̇5,

δR
ε e = ε̇e + εė, δR

ε χ = ε̇χ + εχ̇, (2.3)

where ε(λ) is an infinitesimal parameter. The second gauge
invariance is a supersymmetry:

δS
αx

μ = iαψμ, δS
αψμ = α

1

e

(
ẋμ − i

2
χψμ

)
,

δS
αψ5 = mα + i

me
αψ5

(
ψ̇5 − mχ

2

)
,

δS
αe = iαχ, δS

αχ = 2α̇, (2.4)

where α(λ) is an odd infinitesimal parameter. The electro-
magnetic potential and field accordingly transform as

δR
ε Aμ = ε Ȧμ, δR

ε Fμν = ε Ḟμν

δS
αAμ = iα∂ρ Aμψρ, δS

αFμν = iα∂ρFμνψ
ρ

A superalgebra structure is evidenced by the commutation
rules[
δR
ε1

, δR
ε2

]
= δR

ε2 ε̇1−ε1ε̇2
,

[
δR
ε , δS

α

]
= δS−εα̇,[

δS
α1

, δS
α2

]
= δR

ε̃ + δS
α̃,

where ε̃ = 2iα2α1/e and α̃ = −iα2α1χ/e. Note that the
structure “constant” in the last commutator depends on the
variable χ .

The equations of motion obtained by the variation of the
action (2.1) read

4 The spacetime index μ takes the values 0, 1, 2, the metric is ημν =
diag(1,−1,−1). We use natural units with c = h̄ = 1 (c would be the
Fermi velocity in applications such as graphene physics).
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d

dλ

(
ẋμ

e
− i

χψμ

2e

)

−q

(
Fμν ẋ

ν + i

2
eψρ∂μFρσ ψσ

)
= 0,

1

2

(
ẋμ ẋμ

e2 − i
χ ẋμψμ

e2 + iqψμFμνψ
ν

)
− m2

2
= 0,

i

(
ψ̇μ − ẋμχ

2e
− qeFμνψ

ν

)
= 0,

−i
(
ψ̇5 − m

2
χ

)
= 0,

i

2

(
ẋμψμ

e
− mψ5

)
= 0. (2.5)

Note that we could choose χ = 0 as a gauge fixing condition,
which leaves a residual supersymmetry (2.4) with a constant
parameter α, which in turn could be fixed, in the massive
case, by the condition ψ5 = 0. This can easily be checked
by examining the supersymmetry transformations (2.4) and
observing that the fourth of the Eq. (2.5) implies ψ̇5 = 0 if
χ = 0.

We display in Appendix B the field equations for the mass-
less charged spinning particle in the presence of an electro-
static field depending only on the y coordinate, which is the
case of interest in the application part of the paper.

2.2 Canonical analysis

As a preparation for the quantization of the theory we perform
a canonical analysis following Dirac’s algorithm for systems
with constraints [51–54]. We keep a non-zero mass in the
present section.

2.2.1 Analysis of the constraints

The conjugate momenta are read out from the Lagrangian
(2.2):

pμ = ∂L

∂ ẋμ
= − ẋμ

e
− q Aμ + iχψμ

2e
,

pe = ∂L

∂ ėμ
= 0,

Pμ = ∂L

∂ψ̇μ
= − iψμ

2
, pχ = ∂L

∂χ̇
= 0,

p5 = ∂L

∂ψ̇μ
= iψ5

2
. (2.6)

Four of these equations relate momenta and generalized coor-
dinates, which means that we have four primary constraints:

φe = pe ≈ 0, φχ = pχ ≈ 0, φμ = Pμ + iψμ

2
≈ 0,

φ5 = p5 − iψ5

2
≈ 0, (2.7)

where the symbol ≈ means a “weak equality”, i.e., an equal-
ity which will be turned effective only after all the Poisson
bracket algebra manipulations are done.

The basic non-vanishing Poisson brackets between the
generalized coordinates and their conjugate momenta are
given by:

{xμ, pν} = δ
μ
ν , {e, pe} = 1,

{ψμ,Pν} = −δ
μ
ν , {χ, pχ } = −1, {ψ5, p5} = −1.

(2.8)

These brackets are “graduated”, i.e., they are symmetric if
both arguments are Grassmann odd, and antisymmetric oth-
erwise.

Through a Legendre transformation we obtain the canon-
ical Hamiltonian

HC = − e

2
φKG + iχ

2
φD (2.9)

where

φKG = �μ�μ−m2−iqψμFμνψ
ν, φD = ψμ�μ+mψ5,

(2.10)

with

�μ = pμ + q Aμ = − ẋμ

e
+ iχψμ

2e
.

Both terms of the canonical Hamiltonian turn out to be sec-
ondary constraints assuring the stability of the primary con-
straints φe and φχ :

φKG ≈ 0, φD ≈ 0. (2.11)

One first notices that the last two constraints in (2.7) have
Poisson brackets which do not weakly vanish:

{φμ, φν} = −iημν, {φ5, φ5} = i, {φμ, φ5} = 0, (2.12)

which means that they are second class. These Poisson brack-
ets form a non-singular 4 × 4 matrix CAB , with A = μ, 5
and B = ν, 5:

CAB =
(−iημν 0

0 i

)
. (2.13)

Elimination of the second class constraints φA is performed
by introducing the Dirac brackets

{U, V }D = {U, V }−
∑
A,B

{U, φA}
(
C−1

)AB {φB, V }, (2.14)
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for any phase space functions U and V . The Dirac brackets
of the second class constraints with any phase space function
being strongly vanishing, this allows one to solve them right
now:

Pμ = − i

2
ψμ, p5 = i

2
ψ5. (2.15)

Phase space is thus reduced, its coordinates being now
xμ, pμ, ψμ, e, pe, χ, pχ and ψ5. The fundamental non-
zero Dirac brackets for our system are then given by:

{xμ, pν}D = δ
μ
ν , {e, pe}D = 1,

{ψμ,ψν}D = −iημν, {χ, pχ }D = −1, {ψ5, ψ5}D = i.

(2.16)

Finally one checks that the Poisson brackets between the
constraints (2.11), the first two of (2.7) and the Hamiltonian
(2.9) are weakly zero, i.e., they are either zero or a linear
combination of constraints. This means that they are “first
class”. In particular they are left stable during their evolution
with respect to the “time” λ, generated by their brackets with
the Hamiltonian. Thus, no new constraint occurs: the present
set of constraints is complete.

2.2.2 Gauge invariances

Each first class constraint φA (A = KG, D, e, χ ) generates
an invariance under a gauge transformation which, infinites-
imally, takes the form

δAU = ε{U, φA}D, (2.17)

for any function U of the reduced phase space, with ε an
infinitesimal parameter. We see from (2.7), that φe and φχ

generate arbitrary translations of the coordinates e and χ ,
respectively. This implies that we can gauge fix each of them
to an arbitrary function. We can then read the coefficients e
and χ in the canonical Hamiltonian (2.9) as Lagrange mul-
tipliers for the constraints φKG and φD, and forget the con-
straints pe and pχ .

We are left with a reduced phase space of coordinates
xμ, pμ, ψμ and ψ5 and two gauge invariances generated by
φKG and φD, obeying the Dirac bracket algebra

{φD, φD}D = −iφKG, (2.18)

the other brackets being vanishing. They generate the gauge
transformations, according to (2.17):

δKG xμ = −2ε

e
ẋμ, δKG ψμ = −2εqFμ

νψ
ν, δKG ψ5 = 0

δD xμ = αψμ, δD ψμ = −iα ẋμ, δD ψ5 = iαm

(2.19)

2.3 Quantization

From now on we consider the massless case m = 0 and
therefore one can take ψ5 = 0.

To convert the classical theory to its quantum version,
we proceed according to the Dirac scheme [51], promoting
the classical expressions A to operators Â, and then impose
(anti-)commutation relations on these operators. These (anti-
)commutation relations may be viewed as the outcome of the
substitution of the Dirac bracket {A, B}D defined in the pre-
ceding section by the graded commutator (i h̄)−1[ Â, B̂]. In
particular, from (2.16), we find the basic (anti-)commutation
relations between the canonical variables:

[x̂ν, p̂μ] = i h̄δν
μ, [ψ̂μ, ψ̂ν] = h̄ημν, (2.20)

In a wave mechanics representation, the state is described by
a 2-components5 spinor �(x), and the basic operators are
defined as

x̂μ = xμ, p̂μ = −i∂μ, ψ̂μ = γ μ/
√

2,

where the γ μ are the 2-dimensional Dirac matrices, with
γ μγ ν + γ νγ μ = 2ημν .

With this prescription, the first class constraint φD defined
in (2.10) with m = 0, yields the Dirac wave equation:

φ̂D�(x) = γ μ
(−i∂μ + q Aμ

)
�(x) = 0. (2.21)

3 The quantum relativistic massless particle in an
electrostatic potential

3.1 General setting

We consider the Dirac equation (2.21) for a massless spin
1/2 particle of unit charge q = 1 in a static electric field6

E = −∇V , V (x) = A0(x) being the electric potential. It
reads
(

γ 0
(
i

∂

∂t
− V (x)

)
+ i γ i ∂

∂xi

)
�(t, x) = 0. (3.1)

The Dirac Hamiltonian operator is given by

HD = −iαi ∂

∂xi
+ V (x). (3.2)

The matrices γ μ and αi are given in Appendix A.

5 The present quantization procedure with 2-components spinors holds
for the massless case. In the massive case there would be 4 Dirac matri-
ces obeying a Clifford algebra, corresponding to the 4 odd variables
ψμ, ψ5; the dimension of the representation of this algebra would thus
been at least 4.
6 See Appendix A for our notations and conventions.
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Fig. 2 Generic potential with parameters {yL, y′
L, y′

R, yR} = {−10, −4, 3, 11} and {VL, V0, VR} = {−1, 5, 3} in arbitrary units. A 3D picture
is shown, too

The density and flux of probabilities are given by the com-
ponents of the 3-current

Jμ(x) = �̄(x)γ μ�(x),

ρ(t, x) = J 0(t, x) = �†(t, x)�(t, x),

J i (t, x) = �†(t, x)αi�(t, x), i = 1, 2. (3.3)

In order to compare the theory with the classical one we will
need to compute the mean position and velocity of the parti-
cle, which we will denote by xq = (xq, yq) and vq = (vxq , v

y
q ),

respectively. In a general state described by a (normalizable)
vector |�〉 (t), the mean velocity is given by

viq(t) = 1

||�||2
〈
�|αi |�

〉
(t), i = 1, 2, (3.4)

and the mean position by integrating each side of the latter
equation. This expression amounts to integrate the fluxes J i

and divide by the integral of the density ρ given in (3.3).
However, when dealing with (non-normalizable) station-

ary scattering states, we will use the following alternative.
We first define “local mean velocities”

viq(x) = J i (x)/ρ(x), (3.5)

and then find the mean position xiq(t) by integrating with
suitable boundary conditions the differential equations

ẋ iq(t) = viq(xq(t)), (3.6)

where a dot means time differentiation.
In this section, we restrict ourselves to the special case of

a potential depending only on the y-coordinate: V = V (y),
the electric fieldE(y) = (0, −V ′(y)) being parallel to the y-
axis. Moreover, the electric field is assumed to vanish outside
of an interval yL ≤ y ≤ yR. More precisely, the potential

obeys the conditions

V (y) =
{
VL, y ≤ yL,

VR, y ≥ yR,
(3.7)

where VL and VR are constant. An illustration is provided by
Fig. 2 below.

We take the two-component Dirac spinor to be stationary
and, due to the x-independence of the potential, to be an
eigenvector of the x-momentum component, with eigenvalue
kx :

�(t, x, y) =
(

�1(t, x, y)
�2(t, x, y)

)
= e−iωt+ikx x

(
f (y)
g(y)

)
, (3.8)

where ω is an eigenvalue of the Dirac Hamiltonian operator
(3.2). The functions f (y) and g(y) then obey the equations

i(V (y) − ω) f (y) − kx g(y) + g′(y) = 0,

i(V (y) − ω)g(y) + kx f (y) + f ′(y) = 0,
(3.9)

and the probability density and flux read

ρ(y) = f ∗(y) f (y) + g∗(y)g(y)
J x (y) = i

(
f ∗(y)g(y) − g∗(y) f (y)

)
,

J y(y) = f ∗(y)g(y) + g∗(y) f (y), (3.10)

where ∗ means complex conjugation. In the present case, the
local velocity (3.5) entering in the differential equation (3.6)
depends only on the coordinate yq(t).

3.1.1 Asymptotic states

Outside of the interval yL < y < yR, the wave function obeys
the Dirac equations (3.9) with a constant electrostatic poten-
tial, denoted by V in the present subsection. Its solutions are
progressive waves ( f V± , gV±), where the suffix ± means right
or left mode, respectively. Up to an overall factor:
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f V± (y) = e±iky y, gV±(y) = ±ky − ikx
ω − V

e±iky y, (3.11)

with ky = √
(ω − V )2 − k2

x , if (ω − V )2 > k2
x (see Fig.

1(a)). If (ω − V )2 < k2
x , the waves are real exponentials,

hence do not propagate:

f V± (y) = e±κy, gV±(y) = −i
kx ± κ

ω − V
e±κy, (3.12)

with κ = √
k2
x − (ω − V )2.

In the propagating case (3.11) the (unnormalized) proba-
bility density and fluxes (3.10) are explicitly given by

ρ± = 2, J x± = 2kx
ω − V

, J y
± = ± 2ky

ω − V
, (3.13)

which leads to the mean velocities (see (3.5))

vx± = kx
ω − V

, v
y
± = ± ky

ω − V
, with (vx±)2+(v

y
±)2 = 1.

(3.14)

Note that, thinking in the context of condensed matter, for
ω < V , i.e., for a negative kinetic energy, the propagation
may be considered as of a particle in the (non-full) valence
band (VB), whereas it is of a particle of positive kinetic
energy in the (non-empty) conduction band (CB) if ω > V .
In the former case, the direction of the flux, equal to that of
the mean velocity, is opposed to that of the phase velocity, the
latter being proportional to k. This means that a right (left)
mode as defined above corresponds in fact to a left (right)
moving particle.

Similar considerations can be made in the case of the prop-
agation of holes.

3.1.2 Scattering boundary conditions

The free particle solutions (3.11) and (3.12), with ky and κ

substituted by

kyL,R =
√

(ω − VL,R)2 − k2
x , κL,R =

√
k2
x − (ω − VL,R)2,

(3.15)

will be used in the following for the prescription of the
asymptotic behaviour of the solutions of the Dirac equations
(3.9) in the cases of potentials obeying the condition (3.7).
Interested in scattering states, we choose boundary condi-
tions such that we have a pure right moving particle state in
the right asymptotic region y ≥ yR. In the case of a CB state,
these conditions will be taken as

f (ȳ) = f VR+ (ȳ), g(ȳ) = gVR+ (ȳ), (3.16)

for the wave functions f , g solutions of the interacting Dirac
equation, where ȳ ≥ yR is some normalization point chosen
in the right asymptotic region, f VR+ and gVR+ are the asymp-
totic wave functions defined in (3.11), with ky = kyR. For
a VB state, one has to substitute the index + by the index
−. These conditions correspond to a process consisting of an
incoming particle coming from the left region y ≤ yL: hence,
in the right region y ≥ yR, one admits only the solution with
flux pointing to the right – hence a positive wave vector com-
ponent ky for an outgoing CB particle and a negative one for
a VB particle. In the left region both directions (incoming
and reflecting) are allowed. Again we have to distinguish the
motions of a CB or of a VB particle. The proper distinction
between CB and VB particles is crucial for the correct solu-
tion of the Klein phenomenon [2–5,42,43,55], as mentioned
in the Introduction.

The above holds for kyR real. If, on the other hand, kyR is
imaginary, one has no propagating state in the right region.
Therefore the boundary condition must select from (3.12) the
exponentially decreasing solution to be put in the boundary
condition:

f (ȳ) = f VR− (ȳ), g(ȳ) = gVR− (ȳ), (3.17)

with κ = κR (see (3.15)).
The conditions (3.16) or (3.17) define uniquely the solu-

tion of the Dirac equation with interaction.

3.1.3 Reflection and transmission coefficients

The reflection and transmission probabilities R and T are
given, in the present case of an x-independent potential, by
the expressions

R = |J y
L−|

|J y
L+| , T = |J y

R+|
|J y

L+| , (3.18)

where J y
L+, J y

L− and J y
R+ are the y-components of the incom-

ing, reflecting and outgoing probability fluxes, respectively,
in the asymptotic region. Note that J y

R− = 0 in our scat-
tering setting. Remember that, if ω − VL < 0, respectively
ω−VR < 0, we have a VB particle propagating and the flux is
in the direction opposed to that of the wave vector, in the left,
respectively right, region. Due to the t and x independence
of the potential, the continuity equation for the density and
flux reads d Jy(y)/dy = 0, hence J y

L+ + J y
L− = J y

R+, which
ensures the probability conservation R + T = 1. Note that
in the gap VR − |kx | < ω < VR + |kx | there is full opacity:
R = 1, T = 0.

The fluxes are calculated according to (3.10) in terms
of the incoming, reflecting and outgoing wave functions
obtained from the Fourier coefficients of the wave function
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component7 f (y) in the corresponding asymptotic regions
(where the waves are free ones, the potential being constant):

aL± = kyL

2π

∫ yL

yL−2π/kyL

dy e∓ikyL y f (y),

aR± = kyR

2π

∫ yR+2π/kyR

yR

dy e∓ikyR y f (y). (3.19)

Let us calculate, as an example, the flux J y
L+ for the incoming

mode (in the region y ≤ yL), in the case of a CB particle, i.e.,
with ω > VL). The relevant spinor components are given by
(3.11), with “±” substituted by “+” and multiplied by the
Fourier coefficient aL+. This flux then is given by the last of
Eq. (3.13), but multiplied by |a+|2. Doing the same for the
other fluxes, we obtain the result (for incoming and outgoing
CB particle states

J y
L± = ±|aL±|2 2kyL

ω − VL
, J y

R± = ±|aR±|2 2kyR

ω − VR
,

(3.20)

observing that aR− = J y
R− = 0 due to the scattering bound-

ary conditions (3.16). For incoming or/and outgoingVBpar-
ticle states one has to substitute aL,R± by aL,R∓ in the right-
hand side of the first or/and second of Eq. (3.20). This result
allows then to compute the reflection and transmission coef-
ficients (3.18).

Observe that these calculations concern scattering states
characterized with both kyL and kyR (see (3.15)) being real
numbers. We discard the case of kyL being imaginary, since
this would mean the absence of an incoming mode. On the
other hand, if kyR turns out to be imaginary, the boundary
condition (3.16) selects the solution which is exponentially
decreasing in the region y ≥ yR. In this case, obviously,
T = 0 and R = 1.

Bound states characterized by kyL and kyR both being
imaginary – such the bound states of a particle inside a poten-
tial well – will not be considered in this paper.

3.1.4 Comparison with the classical motion

The relevant quantities which can thus be calculated are,
beyond the wave functions, the fluxes (3.10), the reflection
and transmission coefficients R and T , and the mean veloc-
ities (3.5) or, after integration, the mean trajectories. As a
check of the “correspondence principle”, we can compare
the quantum mean velocities and trajectories with the ones
obtained from the classical theory.

7 We could as well choose the other component, g(y), without changing
the result.

Classical velocities and trajectories are solutions of the
equations of motion (B.1) and (B.2) of Appendix B with the
appropriate boundary conditions

xcl(t̄) = xq(t̄) = x̄, ycl(t̄) = yq(t̄) = ȳ,

ẋcl(t̄) = ¯̇x = vxq (t̄), (3.21)

taken at some time t̄ . (x̄, ȳ) is some suitable normalization
point, with ȳ ≤ yL if a reflection mode is considered, or
ȳ ≥ yR in the case of a transmission mode. ¯̇x = vxq (t̄) is the
x component of the mean quantum velocity at time t̄ . The
indices “cl” and “q” refer to classical quantities and quantum
mean values, respectively.

3.2 Some examples

Results for some particular potentials are presented in this
Section. These potentials are of the square type or, more
generally, piece-wise continuous functions V (y) of the form
(see Fig. 2)

V (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

VL, y ≤ yL,
V0 − VL

y′
L − yL

(y − yL) + VL, yL ≤ y ≤ y′
L

V0, y′
L ≤ y ≤ y′

R
VR − V0

yR − y′
R

(y − yR) + VR, y′
R ≤ y ≤ yR

VR, yR ≤ y

(3.22)

The electric field is oriented in the y-direction, with its

value given by E = −V0 − VL

y′
L − yL

in the interval (yL, y′
L), by

E = −V0 − VR

y′
R − yR

in the interval (y′
R, yR) and by E = 0

outside.
The potential (3.22) will be substituted by a smoothed

one in the numerical applications, in order to avoid problems
caused by the singularities at yL, y′

L, y′
R and yR.

In each of the examples shown below, the Dirac equation
is solved using the scattering boundary conditions (3.16) or
(3.17) explained in Sect. 3.1.2: the incoming wave describes
a particle emitted from the left half plane y ≤ yL (the left
region with flat potential), producing a reflected wave to the
left and a transmitted wave to the right describing the trans-
mitted particle – or, depending on the energy and momentum
parameters, an exponentially decreasing wave corresponding
to full opacity of the potential step or barrier.

3.2.1 Square step potential

This is a slight generalization to 2 dimensions of the one-
dimensional potential step problem found in the standard
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literature [2,43,55], with the y-dependent potential

V (y) =
{

0, y < 0,

V > 0, y > 0,
(3.23)

The solution of the Dirac equation as an eigenvector of the
energy with value ω, and of the x-component of the linear
momentum with value kx (see (3.8)), and with the scattering
boundary condition defined in Sect. 3.1.2, is given, in the
case of a particle in both sides, i.e., with ω > V , by8

�(t, x, y) =

⎧⎪⎪⎨
⎪⎪⎩
e−iωt+ikx x

(
f L+(y) + A f L−(y)
gL+(y) + AgL−(y)

)
(y < 0),

e−iωt+ikx x
(
B f R− (y)
BgR−(y)

)
(y > 0),

(3.24)

where A and B are coefficients fixed by the continuity con-
dition

�(t, x, y)|y=−0 = �(t, x, y)|y=+0,

with the result9

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

kyL(ω − V − m) − kyR(ω − m) − ikx V

kyL(ω − V − m) + kyR(ω − m) + ikx V
, ω < 0,

−kyL(ω − V − m) + kyR(ω − m) − ikx V

kyL(ω − V − m) + kyR(ω − m) + ikx V
, 0 < ω < V,

kyL(ω − V − m) − kyR(ω − m) + ikx V

kyL(ω − V − m) + kyR(ω − m) − ikx V
, ω > V,

(3.25)

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2kyL(ω − m)

kyL(ω − V − m) + kyR(ω − m) + ikx V
, ω < 0,

2kyL(ω − m)

kyL(ω − V − m) − kyR(ω − m) − ikx V
, 0 < ω < V,

2kyL(ω − m)

kyL(ω − V − m) + kyR(ω − m) − ikx V
, ω > V,

(3.26)

where the y-components kyL and kyR of the wave vector are
given by (3.15) with VL = 0 and VR = V .

The reflection and transmission coefficient (3.18) take
then the form

8 Recall that the suffixes + and − refer to the sign of the phase velocity
as defined in Eq. (3.11).
9 In this and the next subsection, we consider a massive particle for the
sake of comparison with the literature [2–5].

R = |A|2 =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−kyL(ω − V − m) + kyR(ω − m)
)2 + k2

x V
2

(
kyL(ω − V − m) + kyR(ω − m)

)2 + k2
x V 2

, ω < −
√
k2
x + m2,

(
kyL(ω − V − m) + kyR(ω − m)

)2 + k2
x V

2

(−kyL(ω − V − m) + kyR(ω − m)
)2 + k2

x V 2
,

√
k2
x + m2 < ω < V −

√
k2
x + m2,

1, V −
√
k2
x + m2 < ω < V +

√
k2
x + m2,

(−kyL(ω − V − m) + kyR(ω − m)
)2 + k2

x V
2

(
kyL(ω − V − m) + kyR(ω − m)

)2 + k2
x V 2

, ω > V +
√
k2
x + m2,

(3.27)

and

T = |B|2 kyR(ω − V − m)

kyL(ω − m)
= 1 − R (3.28)

We note that in the cases where −√
k2
x + m2 < ω <√

k2
x + m2 or V − √

k2
x + m2 < ω < V + √

k2
x + m2, the

wave vector components kyL or kyR, respectively, are imagi-
nary, which corresponds to real exponential waves. The first
case is discarded since there is then no propagating incident
particle. In the second case, there is no transmitted propa-
gating particle, hence the reflection probability R is equal to
1.

One checks that R + T = 1 , as it should.
One recovers the standard literature result [2] for the 1-

dimensional system by taking kx = 0 in (3.27), (3.28), i.e.,
a vanishing x-component of the wave vector.

Let us note, at this point, that the result, taken at kx = 0,
does not coincide with the expression produced in part of the
literature [2–5]. The latter gives values for R and T outside
of the interval (0, 1), a fact called the “Klein paradox“. As it
is explained in [2] this apparent paradox appears if one for-
gets that VB particle propagation occurs in the Dirac theory
at values of the energy for which the non-relativistic quan-
tum theory would yield an exponential damping. This is what
happens, in the present example, for the incident, reflected or
transmitted object if ω < −√

k2
x + m2, and for the transmit-

ted one if
√
k2
x + m2 < ω < V − √

k2
x + m2. On the other

hand, there is exponential damping if V −√
k2
x + m2 < ω <

V + √
k2
x + m2.

Figure 3 shows the behaviour of the reflection probability
as a function of the energy ω for three sets of parameters’
values. One observes an increase of the forbidden region
and of the region of total reflection when either |kx | or m
increases.

3.2.2 Square barrier potential

This is again a slight generalization to 2 dimensions of the
problem of the one-dimensional potential barrier [2], with
the y-dependent potential

V (y) =
{

0, y < −a or y > a (a > 0),

V > 0, −a < y < a,
(3.29)
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Fig. 3 Square step potential (3.23) with V = 6: reflection probability R as a function of the frequency ω for (m, kx ) = (0, 0.5), (0, 1.0) and
(1.0, 1.0), respectively. The heavy horizontal segment shows the energy gap interval

The solution of the (massive) Dirac equation as well as the
calculation of the reflection and transmission probabilities
R and T follow the same lines as for the potential step in
the preceding subsection and will not be detailed here. The
results for R and T happen to coincide with the solution
found in [2] for the 1-dimensional problem,10 but with the
mass parameter m substituted by

√
k2
x + m2:

R = (1 − λ)2 sin2(2aky)

4λ + (1 − λ)2 sin2(2aky)
, T = 1 − R, (3.30)

with ky = √
(ω − V )2 − k2

x − m2 and

λ = (V − ω + √
k2
x + m2)(ω + √

k2
x + m2)

(V − ω − √
k2
x + m2)(ω − √

k2
x + m2)

,

for ω >
√
k2
x + m2 (propagation of a CB particle) or ω <

−√
k2
x + m2 (propagation of an VB particle). These prob-

abilities are not defined in the gap interval −√
k2
x + m2 <

ω <
√
k2
x + m2, where there is no propagation at all.

Figure 4 shows the behaviour of the reflection probability
R as a function of the energy ω for three sets of parameters’
values in the massless case. One observes a decrease of the
forbidden region when |kx | decreases. As can be seen from

10 This is not the case in the example of the step potential examined in
the preceding subsection, where R and T depend on both independent
variables kx and m.

(3.30), for a vanishing momentum x-component, i.e., for a
frontal incidence, there is total transparency: R = 0 for kx =
0. The oscillations in the allowed region correspond to the
so-called transmission resonance phenomenon [2].

3.2.3 Oblique step potential

We consider here the stepwise potential V (y), a smoothed
version of the one shown in Fig. 5. In this example and in
the next ones, the massless Dirac equation (3.1) as well as
the dynamical quantities of interest are solved and calculated
numerically using the software Mathematics [47].

Figure 6 shows the reflection probability R as a function
of the energy ω for various values of the x-component kx of
the momentum.

One observes features very similar to those of the square
step potential seen in Sect. 3.2.1. Besides the expected energy
gap, one recovers the “Klein phenomenon”: Complete opac-
ity for energies in the region VR −|kx | < ω < VR +|kx |, and
appreciable transparency in the region VL + |kx | < ω <

VR − |kx | where opacity would be complete in the non-
relativistic theory. Recall that VL and VR are the values of
the potential in the left and right region, respectively. Also,
as in the square step case, the transparency tends to increase
when the absolute value of |kx | decreases, being complete
for kx = 0, i.e., for an incident wave vector orthogonal to the
potential barrier.

123



1014 Page 12 of 18 Eur. Phys. J. C (2019) 79 :1014

Fig. 4 Square barrier potential (3.29): reflection probability R as a function of the frequency ω in the massless case for kx = 0.1, 0.3 and 1.0,
respectively. The heavy horizontal segment shows the energy gap interval. The potential parameters are V = 6 and a = 5

Fig. 5 Oblique step potential. The values of the parameters of (3.22)
are taken as y′

L = y′
R = yR = 10, VL = 0, V0 = VR = 6

Figure 7 shows the quantum mean trajectories compared
with the corresponding classical ones for one value of kx
and three values of the energy ω. We show in the left part
of the graphics both the incident and reflected particle quan-
tum paths, with arrows indicating the direction of the mean
velocity vector. In the right-hand part only the transmitted
particle path appears, by construction, due to the boundary
conditions corresponding to an incident particle coming from
the left.

The first case shown in Fig. 7 exemplifies the case of the
energy lying between the bottom and top values (VL, VR)

= (0, 6) of the potential, where the reflection is apprecia-

ble – it would be total in the classical case. The incoming
and reflection modes are those of a CB particle, whereas the
transmitted one is that of a VB particle. On the classical level,
there are corresponding trajectories both for the reflection of
a CB particle coming from the left or for a VB particle com-
ing from the right. Both are shown in the figure as dashed
lines. We see that the quantum mean trajectories follow the
classical paths whenever there are given by pure left or right
progressive waves, as it is the case outside of the interaction
domain (yL, yR) = (−10, 10). Inside this domain, one sees
a somewhat wild behaviour of the quantum trajectory – a
Zitterbewegung effect due to the superposition of right mov-
ing and left moving waves. However, when y approaches yR

from below, the trajectory becomes increasingly smooth and
coincident with the classical one or, in other words, becomes
a more and more pure right moving mode.

The other two cases shown in Fig. 7, with small reflec-
tion probabilities, are typical scattering states, the energy
being above the top value of the potential, ω > VR. There is
no reflected classical trajectory, but only one correspond-
ing to the transmitted particle. The Zitterbewgung of the
quantum mean trajectory is still visible in the intermedi-
ary region (yL, yR), but it clearly diminishes for higher and
higher energies above the top potential value VR, together
with an improvement of the coincidence of the quantum tra-
jectory with the classical one.

Fig. 6 Potential of Fig. 5: reflection probability R as a function of the frequency ω in the massless case for kx = 0.1, 0.3 and 0.5, respectively.
The heavy horizontal segment shows the energy gap interval
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Fig. 7 Potential of of Fig. 5: quantum mean trajectories (continuous lines) are shown together with the corresponding classical trajectories (dashed
lines), for (ω, kx ) = (4.0, 0.4), (6.6, 0.4) and (7.0, 0.4). The respective values of the reflection probability R are 0.812, 0.021 and 0.008

Fig. 8 Step potential as specified in the text, with a large scale param-
eter L = 900. Quantum mean trajectory for a CB particle coming from
the left and emerging after the potential barrier as a VB particle is shown.

The dashed line shows the classical trajectory of a particle of negative
kinetic energy coming from the right and repelled by the same electric
field. (ω, k) = (10.0, 0.2) and (10.0, 0.4)

3.2.4 Approximatively constant electric field

The interaction of the particle of charge q with a constant
electric field E in the y direction would be given by the
potential

V (x) = −qEy. (3.31)

Nevertheless, in order to take advantage of the calculation
apparatus used in the preceding subsection, we simulate the
situation with an oblique step potential whose domain of
non-triviality extends to large positive and negative values of
the y coordinate. More specifically, we choose the following
expressions for the potential parameters defined in Fig. 2:
{yL, y′

L, y′
R, yR} = {−L , L , L , L} and {VL, V0, VR} =

{−L , L , L}, where the scale L is “large”. This means that,
the charge of the particle being q = 1, we have a constant
electric field E = −1 in the interval −L < y < L , and
E = 0 outside of this interval. Thus in a region which is rea-
sonably small with respect to the scale L and located far from
the boarder {−L , L}, as in Fig. 8, where L has been given the
value 900, the behaviour of the particle must approximate the
behaviour it would have for a really constant field. Moreover,
in order to take into account the part of the trajectory where

Table 1 Values of the reflection coefficient R for ω = 10 and various
values of kx

kx 0.0 0.1 0.2 0.4 0.8

R 0.000 0.031 0.118 0.395 0.866

the quantum behaviour differs significantly from the classi-
cal one, we must take values for |ω/E | small with respect
to the scale L . The coincidence of the quantum mean trajec-
tory with the classical one is very good in the y > |ω/E |
region, whereas no such comparison is possible in the left
region because of the superposition of incoming and reflect-
ing modes – which is the cause of the observed Zitterbewe-
gung. The reflection probability R is shown in Table 1 for
various values of kx and one of ω. We have checked that the
results are in fact practically independent of the energy ω if
the order of magnitude of the latter is kept small with respect
to the scale L . [It would be rigorously independent of ω in the
case of a truly constant field as given by the potential (3.31)].
We also note thatR grows with kx . All of this is in qualitative
accord with the plateaux in ω observed in the three examples
shown in Fig. 6, as well as with the kx dependence of these
plateaux.
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Fig. 9 Oblique barrier potential. The values of the parameters of (3.22)
are taken as yL = −6, y′

L = y′
R = 0, yR = 6, VL = VR = 0, V0 = 6

3.2.5 Oblique barrier potential

We consider now a barrier potentialV (y), a smoothed version
of the one shown in Fig. 9. Figure 10 shows the reflection
probabilityR as a function of the energy ω for various values
of the x-component kx of the momentum. The transmission
resonance oscillations of the reflection coefficient R seen in
the case of the square potential barrier (see Fig. 4) appear
here, too. R oscillates between 0 (full transparency) to a
maximum value which depends on the energy ω and tends
to decrease together with the value of the momentum x−
component kx , going to 0 in the limit kx = 0.

Fig. 12 Reflection probability R in function of ω and kx for the poten-
tial barrier parameters yL = −10, y′

L = −4, y′
R = 4, yR = 10,

VL = VR = 0, V0 = 6 (see Eq. (3.22) and Fig. 2)

Figure 11 shows the quantum mean trajectories compared
with the corresponding classical ones for one value of kx
and three values of the energy ω. For the first case, with a
very small transmission probability, T = 0.087, we show
the classical trajectory of a incident particle from the left
and reflected by a negative electric field, as well as that of
an particle incoming from the right and reflected by a posi-
tive electric field. For the other two cases, where there is no
reflection at the classical level, we show the trajectory of the
classical particle going through.

Fig. 10 Potential of Fig. 5: reflection probability R as a function of the frequency ω in the massless case for kx = 0.1, 0.3 and 0.5, respectively.
The heavy horizontal segment shows the energy gap interval

Fig. 11 Potential of Fig. 9: quantum mean trajectories (continuous
lines) shown together with the corresponding classical trajectories
(dashed lines), for (ω, kx ) = (4.0, 0.5), (6.6, 0.5) and (7.0, 0.5). The

corresponding values of the reflection coefficient R are 0.913, 0.072
and 0.018, respectively
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Fig. 13 Oblique well potential. The values of the parameters of (3.22)
are taken as yL = −6, y′

L = y′
R = 0, yR = 6, VL = VR = 0, V0 = −6

We observe a very good coincidence of the classical and
mean quantum trajectories, with the exception, in the first
case, of a small part of the interaction region where quantum
effects are preponderant.

The classical trajectories in the first case exhibit the clas-
sical Klein phenomenon mentioned at the end of Appendix
B: although the particle cannot go through the barrier, it may
either come from the left and be repulsed to the left, having a
positive kinetic energy, or it may either come from the right
and be repulsed to the right having a negative kinetic energy.

Figure 12 shows the reflection probability R as a function
of both the energy ω and the momentum component kx , for
another choice of the potential parameters.

3.2.6 Oblique well potential

The case of the well potential depicted in Fig. 13 is sym-
metric to that of the barrier potential of Sect. 3.2.5 due to
the invariance of the theory under charge conjugation. This
means, for the chosen parametrizations of both potentials,
that a CB (or VB) particle of energy ω submitted to the bar-
rier potential and VB (or CB) particle of energy −ω submit-
ted to the well potential, both with the same value of the kx
component, will have a symmetric behaviour. In particular
they will have equal reflection and transmission probabilities

and follow symmetric mean quantum trajectories. The latter
is exemplified by the comparison of the first graph of Fig. 11
with the first graph of Fig. 14. The second and third graphs
of the latter figure show a particle flying over the well.

4 Conclusions

We have examined various examples of a relativistic quan-
tum massless spinning particle in two-dimensional space,
submitted to an electrostatic field oriented in one direction –
the y-coordinate direction. These examples are characterized
by y-dependent potentials of the form of a step, a barrier or a
well. In each case we have computed the stationary solutions
of the corresponding Dirac equation, together with the reflec-
tion and transmission coefficients. We have also computed in
most cases the quantum mean trajectories and compared them
with their classical counterparts, obtained by integration of
the classical equations of motion, with boundary conditions
adjusted to the quantum solution.

The explicit solutions found in the literature [2–5] concern
a particle submitted to a square potential. Those of them
which avoid the Klein “paradox” problem by properly taking
into account the characteristics of the object being a CB or VB
particle, i.e., a particle of positive or negative kinetic energy,
turn out to coincide with ours. Examining the momentum
and energy dependence of the reflection and transmission
coefficients of our solutions for more general potentials such
as smoothed oblique steps, barriers and wells, we found a
behaviour of these coefficients which is qualitatively similar
to that of the square potentials. In particular we reproduce
explicitly in each case the Klein phenomenon of transmission
at values of the energy for which the non-relativistic particle
wave function would be exponentially damped through the
barrier or behind the step.

Concerning the comparison of the quantum mean trajecto-
ries with the classical one, we found a very good agreement,
excepted in situations where a non-negligible Zitterbewe-

Fig. 14 Potential of Fig. 13: Quantum mean trajectories (continu-
ous lines) shown together with the corresponding classical trajectories
(dashed lines), for (ω, kx ) = (−4.0, 0.5), (0.6, 0.5) and (1.0, 0.5). The

corresponding values of the reflection coefficient R are 0.913, 0.385
and 0.006, respectively
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gung is present due to interference between right and left
moving modes.

One important commentary on the Klein phenomenon
which we observe in our calculations is still deserved, as,
e.g., in the case of the potential of Fig. 5. In a non-relativistic
theory, if the energy is below the top of the potential, there
is no possibility of the particle to move in the right region,
neither classically, nor quantically – excepted for an evanes-
cent wave function in this region in the quantum case. As
our calculations confirm, in the same setting, the transmis-
sion probability may be large in the relativistic case. It is of
course zero in the classical relativistic theory, but there are
solutions for the particle moving in the right region (see the
first graphic of Fig. 7), with an acceleration opposed to the
electric force due to a negative kinetic energy, which plays
the role of an inertial factor. This is what we could call a
“classical Klein phenomenon”.

Acknowledgements This work was partially funded by the Conselho
Nacional de Desenvolvimento Científico e Tecnológico—CNPq, Brazil
(I.M., B. N., Z.O. and O.P.), by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior—CAPES, Brazil (I.M. and B.N.), by the Fun-
dação de Amparo a Pesquisa do Estado de Minas Gerais - FAPEMIG,
Brazil (O.P.) and by the Grupo de Sistemas Complejos de la Carrera de
Física de la Universidad Mayor de San Andrés, UMSA, Bolivia (Z.O.),
for their support.

Data Availability Statement This manuscript has associated data in
a data repository. [Authors’ comment: Computations in concrete cases
are done with the help of the software Mathematica [47]. Interested
readers may download (and use) the computer program from the arXiv
site at the link https://arxiv.org/src/1910.03059v2/anc/Trajectories.nb
and save it as a file: Trajectories.nb.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made.The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder.To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendices

A Notations and conventions

Units are such that c = h̄ = 1,

Space-time coordinates: (xμ, μ = 0, 1, 2),

x = (xa, a = 1, 2),

Space-time metric: ημν = diag(1,−1,−1),

Dirac matrices: γ 0 = σz, γ x = iσx , γ 2 = iσy

os σ ′s are the Pauli matrices),
α - matrices: αi = γ 0γ i , a = 1, 2,

Conjugate spinor: ψ̄ = ψ†γ 0.

(A.1)

B Classical equations in the case of a y-dependent elec-
trostatic field

We consider here a massless particle of charge q = 1 in the
presence of an electrostatic field E = (0,−V ′(y)) derived
from the 3-potential A = (V (y), 0, 0)which depends only on
the space coordinate y. The equations are given by (2.5), with
m = ψ5 = 0 and the partial gauge fixing χ = 0. We restrict
ourselves on solutions with the spin variables ψμ = 0. With
the choice of the worldline parametrization11 λ = t (t = x0),
the second of Eq. (2.5) then yields the constraint

ẋ2 + ẏ2 = 1, (B.1)

i.e., the velocity is that of light. The first of Eq. (2.5) for
μ = 0 yields the conservation of total energy ω: ω̇ = 0,
where

ω = 1

e(t)
+ V (y(t)).

For μ = 1, 2, we get

(ω − V (y))ẋ − (ω − V (ȳ)) ¯̇x = 0,

(ω − V (y))ÿ + (1 − (ẏ)2)V ′(y) = 0.
(B.2)

The first of these equations has been obtained by integrating
the corresponding second order equation thanks to energy
conservation and to the x-independence of the potential, with

11 We use the notation x0 = t, x1 = x, x2 = y for the space-time
coordinates.

123

https://arxiv.org/src/1910.03059v2/anc/Trajectories.nb
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2019) 79 :1014 Page 17 of 18 1014

ȳ = y(t̄) and ¯̇x = ẋ(t̄) as initial values at some initial time
t̄ .

Solutions of the equations of motion (B.2) are uniquely
determined by giving 3 boundary conditions, which may be
the values of ȳ, ¯̇x and x̄ = x(t̄), assuming the validity of
(B.1) at t̄ .

It is worthwhile to note that, in the second equation (B.2),
the kinetic energy factor ωkin(y) = ω − V (y)), which can be
positive or negative depending on the position y, plays the
role of an inertia coefficient [13]. In particular, the sign of
the y-component of the acceleration will depend on the sign
of ωkin(y). We may be consider this as a “classical Klein
phenomenon”.
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