
Eur. Phys. J. C (2019) 79:979
https://doi.org/10.1140/epjc/s10052-019-7501-1

Regular Article - Theoretical Physics

Lund jet images from generative and cycle-consistent adversarial
networks

Stefano Carrazza1,a, Frédéric A. Dreyer2

1 TIF Lab, Dipartimento di Fisica, Università degli Studi di Milano and INFN Milan, Via Celoria 16, 20133 Milan, Italy
2 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK

Received: 8 September 2019 / Accepted: 19 November 2019 / Published online: 27 November 2019
© The Author(s) 2019

Abstract We introduce a generative model to simulate radi-
ation patterns within a jet using the Lund jet plane. We
show that using an appropriate neural network architecture
with a stochastic generation of images, it is possible to con-
struct a generative model which retrieves the underlying two-
dimensional distribution to within a few percent. We compare
our model with several alternative state-of-the-art generative
techniques. Finally, we show how a mapping can be created
between different categories of jets, and use this method to
retroactively change simulation settings or the underlying
process on an existing sample. These results provide a frame-
work for significantly reducing simulation times through fast
inference of the neural network as well as for data augmen-
tation of physical measurements.

1 Introduction

One of the most common objects emerging from hadron col-
lisions at particle colliders such as the Large Hadron Collider
(LHC) are jets. These are loosely interpreted as collimated
bunches of energetic particles arising from the interactions
of quarks and gluons, the fundamental constituents of the
proton [1,2]. In practice, jets are usually defined through a
sequential recombination algorithm mapping final-state par-
ticle momenta to jet momenta, with a free parameter R defin-
ing the radius up to which separate particles are clustered into
a single jet [3–5].

Because of the high energies involved in the collisions at
the LHC, heavy particles such as vector bosons or top quarks
are frequently produced with very large transverse momenta.
In this boosted regime, the decay products of these objects
can become so collimated that they are reconstructed as a
single jet. An active field of research is therefore dedicated
to the theoretical understanding of radiation patterns within

a e-mail: stefano.carrazza@cern.ch

jets, notably to distinguish their physical origins and remove
radiation unassociated with the hard process [6–26]. Further-
more, measurements of jet properties provide a unique oppor-
tunity for accurate comparisons between theoretical predic-
tions and data, and can be used to tune simulation tools [27]
or extract physical constants [28].

In recent years, there has also been considerable interest in
applications of generative adversarial networks (GAN) [29]
and variational autoencoders (VAE) [30] to particle physics,
where such generative models can be used to significantly
reduce the computing resources required to simulate realistic
LHC data [31–40]. In this paper, we introduce a generative
model to create new samples of the substructure of a jet from
existing data. We use the Lund jet plane [22], shown in Fig. 1,
as a visual representation of the clustering history of a jet.
This provides an efficient encoding of a jets radiation patterns
and can be directly measured experimentally [41]. The Lund
jet image is used to train a Least Square GAN (LSGAN) [42]
to reproduce simulated data within a few percent accuracy.
We compare a range of alternative generative methods, and
show good agreement between the original jets generated
with Pythia v8.223 [43] using fast detector simulation with
Delphes v3.4.1 particle flow [44] and samples provided by
the different models [45]. Finally, we show how a cycle-
consistent adversarial network (CycleGAN) [46] can be used
to create mappings between different categories of jets. We
apply this framework to retroactively change the parameters
of the parton shower on an event, adding non-perturbative
effects to an existing parton-level sample, and transforming
quark and gluon jets to a boosted W sample.

These methods provide a systematic tool for data augmen-
tation, as well as reductions of simulation time and storage
space by several orders of magnitude, e.g. through a fast
inference of the neural network with hardware architectures
such as GPUs and field-programmable gate arrays (FPGA)

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7501-1&domain=pdf
mailto:stefano.carrazza@cern.ch

979 Page 2 of 11 Eur. Phys. J. C (2019) 79 :979

Fig. 1 Average Lund jet plane density for QCD jets simulated with
Pythia v8.223 and Delphes v3.4.1

[47]. The code frameworks and data used in this work are
available as open-source and published material in [48–50].1

2 Generating jets

In this article we will construct a generative model, which
we call gLund, to create new samples of radiation patterns
of jets. We first introduce the basis used to describe a jet as
an image, then construct a generative model which can be
trained on these objects.

2.1 Encoding radiation patterns with Lund images

To describe the radiation patterns of a jet, we will use the
primary Lund plane representation [22], which can be pro-
jected onto a two-dimensional image that serves as input to
a neural network.

The Lund jet plane is constructed by reclustering a jet’s
constituents with the Cambridge-Aachen (C/A) algorithm [4,
51]. This algorithm sequentially recombines pairs of particles
that have the minimal Δ2

i j = (yi − y j)
2 + (φi − φ j)

2 value,
where yi and φi are the rapidity and azimuth of particle i .

This clustering sequence can be used to construct an n ×n
pixel image describing the radiation patterns of the initial
jet. We iterate in reverse through the clustering sequence,
labelling the momenta of the two branches of a declustering
as pa and pb, ordered in transverse momentum such that

1 The codes are available at https://github.com/JetsGame/gLund and
https://github.com/JetsGame/CycleJet.

pt,a > pt,b. This procedure follows the harder branch a and
at each step we activate the pixel on the image corresponding
to the coordinates (ln Δab, ln kt), where kt = pt,bΔab is the
transverse momentum of particle b relative to a.2

2.2 Input data

The data sample used in this article consists of 500k
jets, generated using the dijet process in Pythia v8.223.
Jets are clustered using the anti-kt algorithm [5,52] with
radius R = 1.0, and are required to pass a selection
cut, with transverse momentum pt > 500 GeV and
rapidity |y| < 2.5. Unless specified otherwise, results
use the Delphes v3.4.1 fast detector simulation, with the
delphes_card_CMS_NoFastJet.tcl card to simu-
late both detector effects and particle flow reconstruction.

The simulated jets are then converted to Lund images with
24×24 pixels each using the procedure described in Sect. 2.1.
A pixel is set to one if there is a corresponding (ln Δab, ln kt)

primary declustering sequence, otherwise it is left at zero.
The full samples used in this article can be accessed online

[50].

2.3 Probabilistic generation of jets

Generative adversarial networks [53] are one of the most
successful unsupervised learning methods. They are con-
structed using both a generator G and discriminator D, which
are competing against each other through a value function
V (G, D).

In practice, we found improved performance when using
a Least Square Generative Adversarial Network (LSGAN)
[42], a specific class of GAN which uses a least squares loss
function for the discriminator, and has objective functions
defined as

min
D

V (D) = 1

2
Ex∼pdata [(D(x) − b)2]

+1

2
Ez∼pz(z)[(D(G(z)) − a)2], (1)

min
G

V (G) = 1

2
Ez∼pz(z)[(D(G(z)) − c)2], (2)

where we defined pz(z) as a prior on input noise variables,
and a, b and c are the labels for the fake, real and presumed
fake data respectively. Thus D is trained in order to max-
imise the probability of correctly distinguishing the training
examples and the samples from G, following Eq. (1), while

2 For simplicity, we consider only whether a pixel is on or off, instead
of counting the number of hits as in [22]. While these two definitions are
equivalent only for large image resolutions, this limitation can easily
be overcome e.g. by considering a separate channel for each activation
level.

123

https://github.com/JetsGame/gLund
https://github.com/JetsGame/CycleJet

Eur. Phys. J. C (2019) 79 :979 Page 3 of 11 979

Fig. 2 Sample input images after averaging with navg =
1, 5, 10 and 20

the latter is trained to minimise Eq. (2). The generator’s dis-
tribution pg optimises Eq. (2) when pg = pdata, so that the
generator learns how to generate new samples from z. The
main advantage of the LSGAN over the original GAN frame-
work is a more stable training process, due to an absence of
vanishing gradients. In addition, we include a minibatch dis-
crimination layer [54] to avoid collapse of the generator.

The LSGAN is trained on the full sample of QCD Lund
jet images. In order to overcome the limitation of GANs due
to the sparse and discrete nature of Lund images, we will use
a probabilistic interpretation of the Lund images to train the
model. To this end, we will first re-sample our initial data
set into batches of navg and create a new set of 500k images,
each consisting of the average of navg initial input images, as
shown in Fig. 2. These images can be reinterpreted as physi-
cal events through a random sampling, where the pixel value
is interpreted as the probability that the pixel is activated. The
navg value is a parameter of the model, with a large value lead-
ing to increased variance in the generated images compared
to the reference sample, while for too low values the model
performs poorly due to the sparsity and discreteness of the
data. A further data preprocessing step before training the
LSGAN consists in rescaling the pixel intensities to be in the
[−1, 1] range, and masking entries outside of the kinematic
limit of the Lund plane. The images are then whitened using
zero-phase components analysis (ZCA) whitening [55].

2.4 gLund model results

The optimal choice of hyperparameters, both for the LSGAN
model architecture and for the image preprocessing, is deter-
mined using the distributed asynchronous hyperparameter
optimisation library hyperopt [56].

The performance of each setup is evaluated by a loss
function which compares the reference preprocessed Lund
images to the artificial images generated by the LSGAN
model. We define the loss function as

Lh = I + 5 · S (3)

where I is the norm of the difference between the average of
the images of the two samples and S is the absolute differ-
ence in structural similarity [57] values between 5000 ran-
dom pairs of reference samples, and reference and generated
samples.

We perform 1000 iterations and select the one for which
the loss Lh is minimal. In Fig. 3 we show some of the results
obtained with the hyperopt library through the Tree-
structured Parzen Estimator (TPE) algorithm. The LSGAN
is constructed from a generator and discriminator. The gen-
erator consists in three dense layers with 512, 1024 and
2048 units respectively using LeakyReLU [58] activation
functions and batch normalisation layers, as well as a final
layer matching the output dimension and using a hyper-
bolic tangent activation function. The discriminator is con-
structed from two dense layers with 768 and 384 units using
a LeakyReLU activation function, followed by another 24-
dimensional dense layer connected to a minibatch discrim-
ination layer, with a final fully connected layer with one-
dimensional output. The best parameters for this model are
listed in Table 1. The loss of the generator and discriminator
networks of the LSGAN is shown in Fig. 4 as a function of
training epochs.

In Fig. 5, the first two images illustrate an example of
input image before and after preprocessing while the last two
images represent the raw output from the LSGAN model and
the corresponding sampled Lund image.

A selection of preprocessed input images and images gen-
erated with the LSGAN model are shown in Fig. 6. The final
averaged results for the Lund jet plane density are shown
in Fig. 7 for the reference sample (left), the data set gen-
erated by the gLund model (centre) and the ratio between
these two samples (right). We observe a good agreement
between the reference and the artificial sample generated
by the gLund model. The model is able to reproduce the
underlying distribution to within a 3-5% accuracy in the bulk
region of the Lund image. Larger discrepancies are visible
at the boundaries of the Lund image and are due the vanish-
ing pixel intensities. In practice this model provides a new
approach to reduce Monte Carlo simulation time for jet sub-
structure applications as well as a framework for data aug-
mentation.

2.5 Comparisons with alternative methods

Let us now quantify the quality of the model described in
Sect. 2.3 more concretely. As alternatives, we consider a
variational autoencoder (VAE) [30,59,60] and a Wasserstein
GAN [45,61].

A VAE is a latent variable model, with a probabilistic
encoder qφ(z|x), and a probabilistic decoder pθ (x |z) to map a

123

979 Page 4 of 11 Eur. Phys. J. C (2019) 79 :979

Fig. 3 Hyperparameter scan results obtained with the hyperopt library. The first row shows the scan over image and optimiser related parameters
while the second row plots correspond to the final architecture scan

Table 1 Final parameters for the gLund model

Parameters Value

Architecture LSGAN

D units 384

G units 512

αD 0.129

αG 0.477

Aux ratio 12

Kernel dimension 1

Number of kernels 2

Minibatch discriminator Yes

Epochs 5000

Batch size 32

Latent dimension 500

ZCA Yes

navg 32

Learning rate 6.5 · 10−5

Decay β1 8 · 10−9

Optimiser Adagrad

representation from a prior distribution pθ (z). The algorithm
learns the marginal likelihood of the data in this generative
process, which corresponds to maximising

 0.1

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000

Lo
ss

Epochs

Discriminator loss
Generator loss

Fig. 4 Loss of the LSGAN discriminator and generator throughout the
training stage

L(θ, φ) = Eqφ(z|x)[log pθ (x |z)] − βDKL(qφ(z|x)||p(z)),

(4)

where β is an adjustable hyperparameter controlling the dis-
entanglement of the latent representation z. In our implemen-
tation, we will set β = 1, which corresponds to the original
VAE framework.

During the training of the VAE, we use KL cost annealing
[62] to avoid a collapse of the VAE output to the prior dis-
tribution. This is a problem caused by the large value of the
KL divergence term in the early stages of training, which is
mitigated by adding a variable weight wKL to the KL term in
the cost function, expressed as

wKL(nstep) = min(1, 0.25 · 1.05nstep). (5)

123

Eur. Phys. J. C (2019) 79 :979 Page 5 of 11 979

Fig. 5 Left two figures: sample input images before and after preprocessing. Right two: sample generated by the LSGAN and the corresponding
Lund image

Fig. 6 A random selection of preprocessed input images (left), and
of images generated with the LSGAN model (right). Axes and colour
schemes are identical to Fig. 5

Finally, we will also consider a Wasserstein GAN with
gradient penalty (WGAN-GP). WGANs [45] use the Wasser-
stein distance to construct the value function, but can suffer
from undesirable behaviour due to the critic weight clipping.
This can be mitigated through gradient penalty, where the
norm of the gradient of the critic is penalised with respect to
its input [61].

We determine the best hyperparameters for both of these
models through a hyperopt parameter sweep, which is
summarised in Appendix A. To train these models using Lund
images, we then use the same preprocessing steps described
in Sect. 2.3.

(a) Reference (b) Generated (c) Ratio generated/reference

Fig. 7 Average Lund jet plane density for a the reference sample and b a data set generated by the gLund model. c The ratio between these two
densities

123

979 Page 6 of 11 Eur. Phys. J. C (2019) 79 :979

Fig. 8 Slice of the Lund plane along Δab with 7.4 GeV < kt <

25.8 GeV

To compare our three models, we consider two slices of
fixed kt or Δab size, cutting along the Lund jet plane hori-
zontally or vertically respectively.

In Fig. 8, we show the kt slice, with the reference sample in
red. The lower panel gives the ratio of the different models to
the reference Pythia 8 curve, showing very good performance
for the LSGAN and WGAN-GP models, which are able to
reproduce the data within a few percent. The VAE model
also qualitatively reproduces the main features of the under-
lying distribution, however we were unable to improve the
accuracy of the generated sample to more than 20% without
avoiding the issue of posterior collapse. The same observa-
tions can be made in Fig. 9, which shows the Lund plane
density as a function of kt , for a fixed slice in Δab.

In Fig. 10a we show the distribution of the number of
activated pixels per image for the reference sample gener-
ated with Pythia 8 and the artificial images produced by the
LSGAN, WGAN-GP and VAE models. All models except
the VAE model provide a good description of the reference
distribution.

We also use the Lund image to reconstruct the soft-drop
multiplicity [63]. To this end, for a simpler correspondence
between this observable and the Lund image, we retrained
the generative models using ln(zΔ) as y-axis. The soft-drop
multiplicity can then be extracted from the final image, and is
shown in Fig. 10b for each model using zcut = 0.007 and β =
−1. The dashed lines indicate the true reference distribution,
as evaluated directly on the declustering sequence, and which
differs slightly from the reconstructed curve due to the finite
pixel and image size.

Finally, in Fig. 10c, we show the reconstructed mass
of the groomed jet using the modified Mass Drop Tag-

Fig. 9 Slice of the Lund plane along kt with 0.13 < Δab < 0.31

ger [17] with zcut = 0.1, where we approximate the mass
as

ρ = m2

R2 p2
t

� max
i

[
z(i)(Δ(i))2

]
, (6)

The dotted line shows the true mass distribution, evaluated
with the left-hand side of Eq. (6) on the groomed jet. As in
previous comparisons, we observe a very good agreement
of the LSGAN and WGAN-GP models with the reference
sample.

We note that while the WGAN-GP model is able to accu-
rately reproduce the distribution of the training data, as dis-
cussed in Appendix A, the individual images themselves can
differ quite notably from their real counterpart. For this rea-
son, our preferred model in this paper is the LSGAN-based
one.

3 Reinterpreting events using domain mappings

In this section, we will introduce a novel application of
domain mappings to reinterpret existing event samples. To
this end, we implement a cycle-consistent adversarial net-
work (CycleGAN) [46], which is an unsupervised learning
approach to create translations between images from a source
domain to a target domain.

Using as input Lund images generated through different
processes or generator settings, one can use this technique to
create mappings between different types of jet. As examples,
we will consider a mapping from parton-level to detector-
level images, and a mapping from QCD images generated

123

Eur. Phys. J. C (2019) 79 :979 Page 7 of 11 979

(a) (b) (c)

Fig. 10 Distribution of a the number of activated pixels per image, b the reconstructed soft-drop multiplicity for zcut = 0.007, β = −1 and
θcut = 0, and c the jet mass after applying the modified Mass Drop Tagger with zcut = 0.1

Fig. 11 Top: transition from parton-level to delphes-level and back
using CycleJet. Bottom: corresponding sampled event

through Pythia 8’s dijet process, to hadronically decaying W
jets obtained from W W scattering.

The cycle obtained for a CycleGAN trained on parton
and detector-level images is shown in Fig. 11, where an ini-
tial parton-level Lund image is transformed to a detector-
level one, before being reverted again. The sampled image is
shown in the bottom row.

3.1 CycleGANs and domain mappings

A CycleGAN learns mapping functions between two domains
X and Y , using as input training samples from both domains.
It creates an unpaired image-to-image translation by learn-
ing both a mapping G : X → Y and an inverse mapping
F : Y → X which observes a forward cycle consistency
x ∈ X → G(x) → F(G(x)) ≈ x as well as a backward
cycle consistency y ∈ Y → F(y) → G(F(y)) ≈ y. This
behaviour is achieved through the implementation of a cycle
consistency loss

Lcyc(G, F) = Ex∼pdata(x)[‖F(G(x)) − x‖1]
+Ey∼pdata(y)[‖G(F(y)) − y‖1], (7)

Additionally, the full objective includes also adversarial
losses to both mapping functions. For the mapping function
G : X → Y and its corresponding discriminator DY , the
objective is expressed as

LGAN(G, DY , X, Y) = Ey∼pdata(y)[log DY (y)]
+Ex∼pdata(x)[log(1 − DY (G(x)))],

(8)

such that G is incentivized to generate images G(x) that
resemble images from Y , while the discriminator DY

attempts to distinguish between translated and original sam-
ples.

Thus, CycleGAN aims to find arguments solving

G∗, F∗ = arg min
G,F

max
DX ,DY

L(G, F, DX , DY), (9)

where L is the full objective, given by

L(G, F, DX , DY) = LGAN(G, DY , X, Y)

+LGAN(F, DX , Y, X)

+λLcyc(G, F). (10)

Here λ is parameter controlling the importance of the cycle
consistency loss. We implemented a CycleGAN framework,
labelled CycleJet, that can be used to create mappings
between two domains of Lund images.3 By training a net-
work on parton and detector-level images, this method can
thus be used to retroactively add non-perturbative and detec-
tor effects to existing parton-level samples. Similarly, one can
train a model using images generated through two different
underlying processes, allowing for a mapping e.g. from QCD
jets to W or top initiated jets.

3 CycleJet can also be used for similar practical purposes as DCTR
[64], albeit it is of course limited to the Lund image representation.

123

979 Page 8 of 11 Eur. Phys. J. C (2019) 79 :979

3.2 CycleJet model results

Following the pipeline presented in Sect. 2.4 we per-
form 1000 iterations of the hyperparameter scan using the
hyperopt library and the loss function

Lh = ||RA − PB→A|| + ||RB − PA→B || (11)

where A and B indexes refer to the desired input and out-
put samples respectively so RA and RB are the average ref-
erence images before the CycleGAN transformation while
PB→A and PA→B correspond to the average image after the
transformation. Furthermore, for this model we noticed bet-
ter results when preprocessing the pixel intensities with the
standardisation procedure of removing the mean and scaling
to unit variance, instead of a simpler rescaling in the [−1, 1]
range as done in Sect. 2.

The CycleJet model consists in two generators and two
discriminators. The generators consist in a down-sampling
module with three two-dimensional convolutional layers
with 32, 64 and 128 filters respectively, and LeakyReLU acti-
vation function and instance normalisation [65], followed by
an up-sampling with two two-dimensional convolutional lay-
ers with 64 and 32 filter. The last layer is a two-dimensional
convolution with one filter and hyperbolic tangent activation
function. The discriminators take three two-dimensional con-
volutional layers with 32, 64 and 128 filters and LeakyReLU
activation. The first convolutional layer has additionally an
instance normalisation layer and the final layer is a two-
dimensional convolutional layer with one filter. The best
parameters for the CycleJet model are shown in Table 2.

In the first row of Fig. 12 we show results for an initial aver-
age parton-level sample before (left) and after (right) apply-
ing the parton-to-detector mapping encoded by the CycleJet
model, while in the second row of the same figure we per-
form the inverse operation by taking as input the average of

Table 2 Final parameters for the CycleJet model

Parameters Value

D filters 32

G filters 32

λ cycle 10

λ identity factor 0.2

Epochs 3

Batch size 128

ZCA Yes

navg 20

Learning rate 6.7 · 10−3

Decay β1 0.7

Optimiser Adam

Fig. 12 Top: average of the parton-level sample before (left) and after
(right) applying the parton-to-detector mapping. Bottom: average of
the delphes-level sample before (left) and after (right) applying the
detector-to-parton mapping

the dephes-level sample before (left) and after (right) apply-
ing the CycleJet detector-to-parton mapping. This example
shows clearly the possibility to add non perturbative and
detector effects to a parton level simulation within good accu-
racy. Similarly to the previous example, in Fig. 13 we present
the mapping between QCD-to-W jets and vice-versa. Also
in this case, the overall quality of the mapping is reasonable
and provides and interesting successful test case for process
remapping.

For both examples we observe a good level agreement
for the respective mappings, highlighting the possibility to
use such an approach to save CPU time for applying full
detector simulations and non perturbative effects to parton
level events. It is also possible to train the CycleJet model on
Monte Carlo data and apply the corresponding mapping to
real data.

4 Conclusions

We have conducted a careful study of generative models
applied to jet substructure.

First, we trained a LSGAN model to generate new arti-
ficial samples of detector level Lund jet images. With this,
we observed agreement to within a few percent accuracy
in the bulk of the phase space with respect to the reference
data. This new approach provides an efficient method for fast
simulation of jet radiation patterns without requiring the long

123

Eur. Phys. J. C (2019) 79 :979 Page 9 of 11 979

Fig. 13 Top: average of the QCD sample before (left) and after (right)
applying the QCD-to-W mapping. Bottom: average of the W sample
before (left) and after (right) applying the W -to-QCD mapping

runtime of full Monte Carlo event generators. Another advan-
tage consists in the possibility of this method to be applied
to real collider data to generate accurate physical samples,
as well as making it possible to avoid the necessity for large
storage space by generating realistic samples on-the-fly.

Secondly, a CycleGAN model was constructed to map dif-
ferent jet configurations, allowing for the conversion of exist-
ing events. This procedure can be used to change Monte Carlo
parameters such as the underlying process or the shower
parameters. As examples we show how to convert an exist-
ing sample of QCD jets into W jets and vice-versa, or how
to add non perturbative and detector effects to a parton level
simulation. As for the LSGAN, this method can be used to
save CPU time by including full detector simulations and non
perturbative effects to parton level events. Additionally, one
could use CycleJet to transform real data using mappings
trained on Monte Carlo samples or apply them to samples
generated through gLund.

To achieve the results presented in this paper we have
implemented a rather convolved preprocessing step which
notably involved combining and resampling multiple images.
This procedure was necessary to achieve accurate distribu-
tions but comes with the drawback of loosing information on
correlations between emissions at wide angular and trans-
verse momentum separation. Therefore, it is difficult to eval-
uate or improve the formal logarithmic accuracy of the gener-
ated samples. This limitation could be circumvented with an
end-to-end GAN architecture more suited to sparse images.

We leave a more detailed study of this for future work. The
full code and the pretrained models presented in this paper
are available in [48,49].

Acknowledgements We thank Sydney Otten for discussions on β-
VAEs. We also acknowledge the NVIDIA Corporation for the dona-
tion of a Titan Xp GPU used for this research. F.D. is supported by
the Science and Technology Facilities Council (STFC) under Grant
ST/P000770/1. S.C. is supported by the European Research Council
under the European Union’s Horizon 2020 research and innovation Pro-
gramme (Grant agreement number 740006).

Data Availability Statement This manuscript has associated data in a
data repository. [Authors’ comment: The samples used for the training
of models and figures in this article can be accessed online [50].]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix A: VAE and WGAN-GP models

In this appendix we present the final parameters as well as
generated event samples for the VAE and WGAN-GP models
used in Sect. 2.5. These models are obtained after applying
the hyperopt procedure described in Sect. 2.4.

The VAE encoder consists of a dense layer with 384 units
with ReLU activation function connected to a latent space
with 1000 dimensions. The decoder consists of a dense layer
with 384 units with ReLU activation followed by an output
layer which matches the shape of the images and has a hyper-
bolic tangent activation function. The reconstruction loss
function used during training is taken to be the mean squared
error. The best parameters for the VAE model obtained after

Table 3 Final parameters for the VAE model

Parameters Value

Intermediate dimension 384

KL annealing rate 0.25

KL annealing factor 1.05

Minibatch discriminator No

Epochs 50

Batch size 32

Latent dimension 1000

ZCA Yes

navg 32

Learning rate 4.2 · 10−4

Decay β1 0.9

Optimiser Adam

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

979 Page 10 of 11 Eur. Phys. J. C (2019) 79 :979

Fig. 14 A random selection of preprocessed input images (left), and of
images generated with the VAE model (right). Axis and colour schemes
are the same of Fig. 5

Table 4 Final parameters for the WGAN-GP model

Parameters Value

D units 16

G units 4

α 0.3

Dropout 0.15

D momentum 0.7

G momentum 0.7

Minibatch discriminator No

Epochs 300

Batch size 32

Latent dimension 800

ZCA Yes

navg 32

Learning rate 9.6 · 10−5

Decay β1 2 · 10−8

ρ 0.9

Optimiser RMSprop

thehyperopt procedure are shown in Table 3. In Fig. 14 we
show a random selection of preprocessed images generated
through the VAE. From a qualitative point of view the images
appear realistic on an event-by-event comparison however as
highlighted in Sect. 2.5, the VAE model does not reproduce
the underlying distribution accurately.

Finally, the WGAN-GP consists in a generator and dis-
criminator. The generator architecture contains a dense layer
with 1152 units with ReLU activation function followed by
three sequential two-dimensional convolutional layers with a
kernel size of 4 and respectively 32, 16 and 1 filters. Between
these layers we apply batch normalisation and ReLU activa-
tion function while the final layer has a hyperbolic tangent
activation function. On the other hand, the discriminator is
composed by 4 two-dimensional convolutional layers with
a kernel size of 3 and respectively 16, 32, 64, 128 and 128
filters. We apply batch normalisation for the last three lay-
ers and all of them LeakyReLU activation function with a

Fig. 15 A random selection of preprocessed input images (left), and of
images generated with the WGAN-GP model (right). Axis and colour
schemes are the same of Fig. 5

dropout layer. In Table 4 we provide the best parameters of the
WGAN-GP model, always obtained through the hyperopt
scan procedure. In Fig. 15 we show a random selection of
preprocessed images generated through the WGAN-GP. Due
to the convolutional filters of this model the preprocessing
differs slightly from the description in Sect. 2.3 as we do
not remove pixels outside the kinematic range resulting in
images with non zero background pixels. While distributions
presented in Sect. 2.5 are in good agreement with data, it is
clear that for this WGAN-GP model the individual images
look different from the input data.

References

1. G.F. Sterman, S. Weinberg, Phys. Rev. Lett. 39, 1436 (1977)
2. G.P. Salam, Eur. Phys. J. C 67, 637 (2010). arXiv:0906.1833
3. S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993).

arXiv:hep-ph/9305266
4. Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, JHEP 08,

001 (1997). arXiv:hep-ph/9707323
5. M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063 (2008).

arXiv:0802.1189
6. J. Thaler, L.T. Wang, JHEP 07, 092 (2008). arXiv:0806.0023
7. D.E. Kaplan, K. Rehermann, M.D. Schwartz, B. Tweedie, Phys.

Rev. Lett. 101, 142001 (2008). arXiv:0806.0848
8. S.D. Ellis, C.K. Vermilion, J.R. Walsh, Phys. Rev. D 80, 051501

(2009). arXiv:0903.5081
9. S.D. Ellis, C.K. Vermilion, J.R. Walsh, Phys. Rev. D 81, 094023

(2010). arXiv:0912.0033
10. T. Plehn, G.P. Salam, M. Spannowsky, Phys. Rev. Lett. 104, 111801

(2010). arXiv:0910.5472
11. J. Thaler, K. Van Tilburg, JHEP 03, 015 (2011). arXiv:1011.2268
12. A.J. Larkoski, G.P. Salam, J. Thaler, JHEP 06, 108 (2013).

arXiv:1305.0007
13. Y.T. Chien, Phys. Rev. D 90, 054008 (2014). arXiv:1304.5240
14. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 75, 59 (2015).

arXiv:1407.0408
15. A.J. Larkoski, I. Moult, D. Neill, JHEP 12, 009 (2014).

arXiv:1409.6298
16. I. Moult, L. Necib, J. Thaler, JHEP 12, 153 (2016).

arXiv:1609.07483
17. M. Dasgupta, A. Fregoso, S. Marzani, G.P. Salam, JHEP 09, 029

(2013). arXiv:1307.0007

123

http://arxiv.org/abs/0906.1833
http://arxiv.org/abs/hep-ph/9305266
http://arxiv.org/abs/hep-ph/9707323
http://arxiv.org/abs/0802.1189
http://arxiv.org/abs/0806.0023
http://arxiv.org/abs/0806.0848
http://arxiv.org/abs/0903.5081
http://arxiv.org/abs/0912.0033
http://arxiv.org/abs/0910.5472
http://arxiv.org/abs/1011.2268
http://arxiv.org/abs/1305.0007
http://arxiv.org/abs/1304.5240
http://arxiv.org/abs/1407.0408
http://arxiv.org/abs/1409.6298
http://arxiv.org/abs/1609.07483
http://arxiv.org/abs/1307.0007

Eur. Phys. J. C (2019) 79 :979 Page 11 of 11 979

18. A.J. Larkoski, S. Marzani, G. Soyez, J. Thaler, JHEP 05, 146
(2014). arXiv:1402.2657

19. P.T. Komiske, E.M. Metodiev, B. Nachman, M.D. Schwartz, JHEP
12, 051 (2017). arXiv:1707.08600

20. P.T. Komiske, E.M. Metodiev, J. Thaler, JHEP 04, 013 (2018).
arXiv:1712.07124

21. F.A. Dreyer, L. Necib, G. Soyez, J. Thaler, JHEP 06, 093 (2018).
arXiv:1804.03657

22. F.A. Dreyer, G.P. Salam, G. Soyez, JHEP 12, 064 (2018).
arXiv:1807.04758

23. A. Butter et al., SciPost Phys. 7, 014 (2019). arXiv:1902.09914
24. S. Carrazza, F.A. Dreyer (2019), arXiv:1903.09644
25. P. Berta, L. Masetti, D.W. Miller, M. Spousta (2019),

arXiv:1905.03470
26. E.A. Moreno, O. Cerri, J.M. Duarte, H.B. Newman, T.Q. Nguyen,

A. Periwal, M. Pierini, A. Serikova, M. Spiropulu, J.R. Vlimant
(2019), arXiv:1908.05318

27. N. Fischer, S. Gieseke, S. Plätzer, P. Skands, Eur. Phys. J. C 74,
2831 (2014). arXiv:1402.3186

28. Les Houches 2017: Physics at TeV Colliders Standard Model Work-
ing Group Report (2018), arXiv:1803.07977

29. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversar-
ial nets. In: Advances in neural information processing systems
(2014), pp. 2672–2680

30. D.P. Kingma, M. Welling, Auto-Encoding Variational Bayes, in
2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14–16, 2014, Conference Track
Proceedings (2014). arXiv:1312.6114

31. L. de Oliveira, M. Paganini, B. Nachman, Comput. Softw. Big Sci.
1, 4 (2017). arXiv:1701.05927

32. M. Paganini, L. de Oliveira, B. Nachman, Phys. Rev. Lett. 120,
042003 (2018). arXiv:1705.02355

33. M. Paganini, L. de Oliveira, B. Nachman, Phys. Rev. D 97, 014021
(2018). arXiv:1712.10321

34. S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks,
C. van Leeuwen, D. Podareanu, R. Ruiz de Austri, R. Verheyen
(2019). arXiv:1901.00875

35. P. Musella, F. Pandolfi, Comput. Softw. Big Sci. 2, 8 (2018).
arXiv:1805.00850

36. K. Datta, D. Kar, D. Roy (2018). arXiv:1806.00433
37. O. Cerri, T.Q. Nguyen, M. Pierini, M. Spiropulu, J.R. Vlimant,

JHEP 05, 036 (2019). arXiv:1811.10276
38. R. Di Sipio, M. Faucci Giannelli, S. Ketabchi Haghighat, S. Palazzo

(2019). arXiv:1903.02433
39. A. Butter, T. Plehn, R. Winterhalder (2019). arXiv:1907.03764
40. (2019), arXiv:1909.04451
41. T.A. collaboration (ATLAS) (2019)
42. X. Mao, Q. Li, H. Xie, R.Y.K. Lau, Z. Wang, CoRR

arXiv:1611.04076 (2016)
43. T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten,

S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, Comput. Phys.
Commun. 191, 159 (2015). arXiv:1410.3012

44. J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître,
A. Mertens, M. Selvaggi, (DELPHES 3), JHEP 02, 057 (2014).
arXiv:1307.6346

45. M. Arjovsky, S. Chintala, L. Bottou, Wasserstein Generative Adver-
sarial Networks, in Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-
11 August 2017 (2017), pp. 214–223, http://proceedings.mlr.press/
v70/arjovsky17a.html

46. J.Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networkss, in
Computer Vision (ICCV), 2017 IEEE International Conference on
(2017)

47. J. Duarte et al., JINST 13, P07027 (2018). arXiv:1804.06913
48. F. Dreyer, S. Carrazza, Jetsgame/glund v1.0.0 (2019), https://doi.

org/10.5281/zenodo.3384920
49. F. Dreyer, S. Carrazza, Jetsgame/cyclejet v1.0.0 (2019). https://doi.

org/10.5281/zenodo.3384918
50. S. Carrazza, F.A. Dreyer, JetsGame/data v1.0.0 (2019), this repos-

itory is git-lfs. https://doi.org/10.5281/zenodo.2602514
51. M. Wobisch, T. Wengler, Hadronization corrections to jet cross-

sections in deep inelastic scattering, in Monte Carlo generators
for HERA physics. Proceedings, Workshop, Hamburg, Germany,
1998–1999, pp. 270–279 (1998). arXiv:hep-ph/9907280

52. M. Cacciari, G.P. Salam, G. Soyez, Eur. Phys. J. C 72, 1896 (2012).
arXiv:1111.6097

53. I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, Y. Bengio, in Proceedings of the
27th International Conference on Neural Information Process-
ing Systems - Volume 2 (MIT Press, Cambridge, MA, USA,
2014), NIPS’14, pp. 2672–2680. http://dl.acm.org/citation.cfm?
id=2969033.2969125

54. T. Salimans, I.J. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
X. Chen, CoRR. arXiv:1606.03498 (2016)

55. A.J. Bell, T.J. Sejnowski, Vision Research 37, 3327 (1997)
56. J. Bergstra, D. Yamins, D.D. Cox, Making a Science of Model

Search: Hyperparameter Optimization in Hundreds of Dimensions
for Vision Architectures, in Proceedings of the 30th International
Conference on International Conference on Machine Learning -
Volume 28 (JMLR.org, 2013), ICML’13, pp. I–115–I–123

57. Zhou Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, IEEE
Transactions on Image Processing 13, 600 (2004)

58. A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve
neural network acoustic models, in in ICML Workshop on Deep
Learning for Audio, Speech and Language Processing (2013)

59. I. Higgins, L. Matthey, X. Glorot, A. Pal, B. Uria, C. Blundell,
S. Mohamed, A. Lerchner, CoRR arXiv:1606.05579 (2016)

60. C.P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Des-
jardins, A. Lerchner, CoRR arXiv:1804.03599 (2018)

61. I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville,
CoRR arXiv:1704.00028 (2017)

62. S.R. Bowman, L. Vilnis, O. Vinyals, A.M. Dai, R. Józefowicz,
S. Bengio, CoRR arXiv:1511.06349 (2015)

63. C. Frye, A.J. Larkoski, J. Thaler, K. Zhou, JHEP 09, 083 (2017).
arXiv:1704.06266

64. A. Andreassen, B. Nachman (2019), arXiv:1907.08209
65. D. Ulyanov, A. Vedaldi, V.S. Lempitsky, CoRR arXiv:1607.08022

(2016)

123

http://arxiv.org/abs/1402.2657
http://arxiv.org/abs/1707.08600
http://arxiv.org/abs/1712.07124
http://arxiv.org/abs/1804.03657
http://arxiv.org/abs/1807.04758
http://arxiv.org/abs/1902.09914
http://arxiv.org/abs/1903.09644
http://arxiv.org/abs/1905.03470
http://arxiv.org/abs/1908.05318
http://arxiv.org/abs/1402.3186
http://arxiv.org/abs/1803.07977
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1701.05927
http://arxiv.org/abs/1705.02355
http://arxiv.org/abs/1712.10321
http://arxiv.org/abs/1901.00875
http://arxiv.org/abs/1805.00850
http://arxiv.org/abs/1806.00433
http://arxiv.org/abs/1811.10276
http://arxiv.org/abs/1903.02433
http://arxiv.org/abs/1907.03764
http://arxiv.org/abs/1909.04451
http://arxiv.org/abs/1611.04076
http://arxiv.org/abs/1410.3012
http://arxiv.org/abs/1307.6346
http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
http://arxiv.org/abs/1804.06913
https://doi.org/10.5281/zenodo.3384920
https://doi.org/10.5281/zenodo.3384920
https://doi.org/10.5281/zenodo.3384918
https://doi.org/10.5281/zenodo.3384918
https://doi.org/10.5281/zenodo.2602514
http://arxiv.org/abs/hep-ph/9907280
http://arxiv.org/abs/1111.6097
http://dl.acm.org/citation.cfm?id=2969033.2969125
http://dl.acm.org/citation.cfm?id=2969033.2969125
http://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.05579
http://arxiv.org/abs/1804.03599
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1704.06266
http://arxiv.org/abs/1907.08209
http://arxiv.org/abs/1607.08022

	Lund jet images from generative and cycle-consistent adversarial networks
	Abstract
	1 Introduction
	2 Generating jets
	2.1 Encoding radiation patterns with Lund images
	2.2 Input data
	2.3 Probabilistic generation of jets
	2.4 gLund model results
	2.5 Comparisons with alternative methods

	3 Reinterpreting events using domain mappings
	3.1 CycleGANs and domain mappings
	3.2 CycleJet model results

	4 Conclusions
	Acknowledgements
	Appendix A: VAE and WGAN-GP models
	References

