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Abstract In this paper, we consider two different subjects:
the algebra of universal characters S[λ,μ](x, y) (a general-
ization of Schur functions) and the phase model of strongly
correlated bosons. We find that the two-site generalized phase
model can be realized in the algebra of universal characters,
and the entries in the monodromy matrix of the phase model
can be represented by the vertex operators �±

i (z)(i = 1, 2)

which generate universal characters. Meanwhile, we find that
these vertex operators can also be used to obtain the A-model
topological string partition function on C

3.

1 Introduction

Symmetric functions were used to determine irreducible
characters of highest weight representations of the classi-
cal groups [1]. The universal character, as a generalization
of Schur function, describes the character of an irreducible
rational representation of GL(n) [2], which upgrades that
Schur function is the character of an irreducible polynomial
representation of GL(n). Symmetric functions also appear in
mathematical physics, especially in integrable models. The
group in the Kyoto school uses Schur functions in a remark-
able way to understand the KP and KdV hierarchies [3].
Tsuda defined the UC hierarchy which is a generalization
of KP hierarchy and obtained that the tau functions of UC
hierarchy can be realized in terms of the universal charac-
ters. He also proved that the UC hierarchy has relations with
Painlevé equations [4] by similar reductions. In this paper,
we consider two different subjects: the algebra of universal
characters and the phase model of strongly correlated bosons.

One purpose of this paper is to give the representation
of the two-site generalized phase model on the algebra of
universal characters S[λ,μ](x, y). The phase model, which is
the so-called crystal limit of the quantum group [5], is an
integrable model and can be solved in the formulism of the
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quantum inverse scattering method [6]. Our results will show
that the limit of the quantum inverse scattering method has
an interpretation in terms of the algebra of universal charac-
ters. The crucial elements in our discussion are vertex oper-
ators �±

i (z), (i = 1, 2). The Fermions can be defined from
these vertex operators. In the special case μ = ∅, the univer-
sal character S[λ,μ](x, y) will be reduced to the Schur func-
tion Sλ(x), and the correspondence between vertex operators
and fermions in this special case is a part of the well-known
Boson-Fermion correspondence.

The relation between the algebra of Schur functions and
the phase model is known from [7,8]. There is the follow-
ing isometry between states in the phase model and Schur
functions

M⊗

i=0

|ni 〉i �→ Sλ(x), λ = 1n1 2n2 . . . .

The actions of the entries in monodromy matrix T (u) on
Schur function are obtained from the truncated expansions
of the vertex operators

�̃+(z) = eξ(x,z), �̃−(z) = eξ(∂̃x,z−1)

where ξ(x, z) = ∑∞
n=1 xnz

n and

∂̃x =
(

∂x1 ,
1

2
∂x2 ,

1

3
∂x3, . . .

)
, ∂xi = ∂

∂xi
.

In this paper, we generalize vertex operators to the type

�−
1 (z) = eξ(x−∂̃y,z), �+

1 (z) = eξ(∂̃x,z−1),

�−
2 (z) = eξ(y−∂̃x,z), �+

2 (z) = eξ(∂̃y,z−1),

these vertex operators can generate universal characters and
fermions can be defined from them. We define the map from
the state in the two-site generalized phase model to the uni-
versal character by

M1⊗

i=0

|ni 〉(1)
i

⊗ M2⊗

i=0

|mi 〉(2)
i �→ S[λ,μ](x, y)
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with

λ = 1n1 2n2 . . . , μ = 1m1 2m2 . . . .

The actions of creation operators B1(u) and B2(u), which are
entries in the monodromy matrix T (u) of the phase model, on
universal characters are determined by the truncated expan-
sions of �−

1 (z) and �−
2 (z) respectively, and the annihilation

operators C1(u) and C2(u) (multiplied by a coefficient) are
adjoint to the operators B1(u) and B2(u), and determined by
the truncated expansions of �+

1 (z) and �+
2 (z) respectively.

Another purpose of this paper is to discuss the relations
between the vertex operators �−

i (z), �+
i (z) (i = 1, 2) and

the MacMahon functions. It is known that the A-model topo-
logical string partition function Ztop

C3 on C
3 can be written as

a Fermionic correlator involving the vertex operators �̃+(z)
and �̃−(z) with a particular specialization of the values of
z = q±1/2, q±3/2, q±5/2 · · · . In this paper, we will give that
Ztop
C3 can also be obtained from the vertex operators �−

i (z)

and �+
i (z) (i = 1, 2) with the same specialization of the

values of z.
The paper is organized as follows. In Sect. 2, we recall the

definition of universal character and its vertex operator real-
ization, then we give the actions of the vertex operators on
S[λ,μ](x, y) which is helpful for our discussion. In Sect. 3, we
recall the phase model. In Sect. 4, we define the representa-
tion of the two-site generalized phase model on the algebra of
universal characters, and we find that the actions of the entries
in monodromy matrix on universal characters are obtained
from the truncated expansions of the vertex operators dis-
cussed in Sect. 2. In Sect. 5, we give that the MacMahon
function can be obtained from these vertex operators.

2 Universal characters and vertex operators

In this section, we review the definition of universal character
and its vertex operator realization as in papers [2,4], then
we review the definition of the UC hierarchy as in paper
[4]. We also give a new proposition in this section which is
helpful for the discussion in Sect. 4. Let x = (x1, x2, . . .) and
y = (y1, y2, . . .). The operators hn(x) are determined by the
generating function:

∞∑

n=0

hn(x)zn = eξ(x,z), ξ(x, z) =
∞∑

n=1

xnz
n (1)

and set hn(x) = 0 for n < 0. The operators hn(x) can be
explicitly written as

hn(x) =
∑

k1+2k2+···nkn=n

xk1
1 xk2

2 · · · xknn
k1!k2! · · · kn ! .

Note that hn(x) is the complete homogeneous symmetric
function of t1, t2, . . . if we replace i xi with the power sum
pi = ∑∞

j=1 t
i
j .

For a pair of Young diagrams λ = (λ1, λ2, . . . , λl) and
μ = (μ1, μ2, . . . , μl ′), the universal character S[λ,μ] =
S[λ,μ](x, y) is a polynomial of variables x and y in C[x, y]
defined by the twisted Jacobi–Trudi formula [2]:

S[λ,μ](x, y)

= det

(
hμl′−i+1+i− j (y), 1≤ i≤ l ′
hλi−l′−i+ j (x), l ′ + 1≤ i≤ l+l ′

)

1≤i, j≤l+l ′
.

(2)

Define the degree of each variables xn, yn, n = 1, 2, . . . by

deg xn = n, deg yn = −n

then S[λ,μ](x, y) is a homogeneous polynomial of degree
|λ| − |μ|, where |λ| = λ1 + λ2 + · · · + λl is called the
weight of λ. Note that Sλ(x) is a special case of the universal
character: Sλ(x) = det(hλi−i+ j (x)) = S[λ,∅](x, y).

Introduce the following vertex operators

�−
1 (z) = eξ(x−∂̃y,z), �+

1 (z) = eξ(∂̃x,z−1), (3)

�−
2 (z) = eξ(y−∂̃x,z), �+

2 (z) = eξ(∂̃y,z−1). (4)

Define

X±(z) =
∑

n∈Z
X±
n z

n = e±ξ(x−∂̃y,z)e∓ξ(∂̃x,z−1), (5)

Y±(z−1) =
∑

n∈Z
Y±
n z−n = e±ξ(y−∂̃x,z−1)e∓ξ(∂̃y,z). (6)

The operators X±
i satisfy the following Fermionic relations:

X±
i X±

j + X±
j−1X

±
i+1 = 0,

X+
i X−

j + X−
j+1X

+
i−1 = δi+ j,0.

The same relations hold also for Y±
i , and X±

i and Y±
i are

commutative. The operators X+
i andY+

i are raising operators
for the universal characters such that

S[λ,μ](x, y) = X+
λ1

· · · X+
λl
Y+

μ1
· · · X+

μl′ · 1 (7)

where the Young diagrams λ = (λ1, λ2, . . . , λl) and μ =
(μ1, μ2, . . . , μl ′).

For an unknown function τ = τ(x, y), the bilinear rela-
tions [4]

∑

i+ j=−1

X−
i τ ⊗ X+

j τ =
∑

i+ j=−1

Y−
i τ ⊗ Y+

j τ = 0 (8)

is called the UC hierarchy.
It turns out that τ(x, y) equals

τ(x, y) = τ1(x − ∂̃y)τ2(y − ∂̃x) · 1

123



Eur. Phys. J. C (2019) 79 :953 Page 3 of 9 953

where τ1(x) and τ2(x) are tau functions of KP hierarchy. In
special case, the universal character S[λ,μ](x, y) is also the
solution of UC hierarchy, and

S[λ,μ](x, y) = Sλ(x − ∂̃y)Sμ(y − ∂̃x) · 1. (9)

From this, we get the conclusion which is helpful for the
following discussion.

Proposition 2.1 The vertex operators in (3) and (4) act on
the universal characters S[λ,μ](x, y) in the following way,

�−
1 (z)S[λ,μ](x, y) =

∞∑

n=0

zn S[λ·(n),μ](x, y)

=
∑

ν�λ

z|ν|−|λ|S[ν,μ](x, y), (10)

�−
2 (z)S[λ,μ](x, y) =

∞∑

n=0

zn S[λ,μ·(n)](x, y)

=
∑

ν�μ

z|ν|−|μ|S[λ,ν](x, y), (11)

where the multiplication of two Young diagram λ and (n)

satisfies the Pieri formula [9,10], and λ � μ means that
the Young diagrams λ and μ are interlaced, in the sense of
λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · . The operators �+

1 (z) and �+
2 (z)

are adjoint to �−
1 (z) and �−

2 (z) respectively, that is,

�+
1 (z)S[λ,μ](x, y) =

∞∑

n=0

zn S[λ/(n),μ](x, y)

=
∑

λ�ν

z|λ|−|ν|S[ν,μ](x, y), (12)

�+
2 (z)S[λ,μ](x, y) =

∞∑

n=0

zn S[λ,μ/(n)](x, y)

=
∑

μ�ν

z|μ|−|ν|S[λ,ν](x, y), (13)

where λ/μ denotes a skew diagram.

3 Phase model

In this section, we review the definition of phase model as
in papers [7,8] and no new result is given. We begin with a
bosonic system based on the following algebra [7,8]

[N , φ] = −φ, [N , φ†] = φ†, [φ, φ†] = π, (14)

where π = |0〉〈0| is the vacuum projection. The operator φ

is one-sided isometry

φφ† = 1, φ†φ = 1 − π.

This algebra can be represented in the Fock space F consist-
ing of n-particle states |n〉, the operators φ, φ† and N acting
as the phase operators and the number of particles operator,
respectively,

φ†|n〉 = |n + 1〉, φ|n〉 = |n − 1〉,
φ|0〉 = 0, N |n〉 = n|n〉,
where |0〉 is the vacuum state, the special case n = 0 of the
n particle state.

Let the tensor product

F =
M⊗

i=0

Fi , (15)

be M + 1 copies of the Fock space. Denote by φi , φ
†
i , Ni the

operators that act as φ, φ†, N in (14), respectively, in the i th
space and identically in the other spaces.

The phase model is a model of a periodic chain with the
hamiltonian [11–13]

H = −1

2

M∑

i=0

(
φ

†
i φi+1 + φiφ

†
i+1 − 2Ni

)
. (16)

Define the operator of the total number of particles by

N̂ =
M∑

i=0

Ni .

Then the N -particle vectors in this space are of the form

M⊗

i=0

|ni 〉i , where |ni 〉i = (φ
†
i )

ni |0〉i , N =
M∑

i=0

ni , (17)

the numbers ni are called the occupation numbers of the state
(17).

From [6], we know that the phase model is integrable.
Introduce the L-matrix

Li (u) =
(
u−1 φ

†
i

φi u

)
, i = 0, . . . , M,

where u is a scalar parameter, here we treat u as uI with I
being the identity operator in F . For every i = 0, . . . , M ,
the L-matrix satisfies the bilinear equation

R(u, v)
(
Li (u) ⊗ Li (v)

) = (
Li (v) ⊗ Li (u)

)
R(u, v), (18)

where R-matrix R(u, v) is a 4 × 4 matrix given by

R(u, v) =

⎛

⎜⎜⎝

f (v, u) 0 0 0
0 g(v, u) 1 0
0 0 g(v, u) 0
0 0 0 f (v, u)

⎞

⎟⎟⎠ ,

(19)
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with

f (v, u) = u2

u2 − v2 , g(v, u) = uv

u2 − v2 .

Define the monodromy matrix by

T (u) = LM (u)LM−1(u) · · · L0(u),

which gives the solution of the phase model. It also satisfies
the bilinear equation

R(u, v)
(
T (u) ⊗ T (v)

) = (
T (v) ⊗ T (u)

)
R(u, v). (20)

Let

T (u) =
(
A(u) B(u)

C(u) D(u)

)
, (21)

we have

N̂ B(u) = B(u)(N̂ + 1), N̂C(u) = C(u)(N̂ − 1). (22)

Therefore, we call B(u) the creation operator and C(u) the
annihilation operator. The operators A(u) and D(u) do not
change the total number of particles.

Denote by |0〉 j the vacuum vector in F j and by |0〉 =
⊗M

i=0|0〉i . Let

|�(u1, . . . , uN )〉 =
N∏

i=1

B(u j )|0〉, (23)

which is a N particle state.
According to [7,8], there is the following isometry

between the states (17) and the Schur functions

M⊗

i=0

|ni 〉i �→ Sλ(x), λ = 1n1 2n2 . . . , (24)

and the operator B(u) acts on Schur functions as the oper-
ator of multiplication by uMHM (u2), where HM (t) =∑M

k=0 t
khk is the truncated generating function of the com-

plete homogeneous symmetric functions hk . Then the state
|�(u1, . . . , uN )〉 has the following expansion

|�(u1, . . . , uN )〉 =
∑

λ

Sλ(u
2
1, . . . , u

2
N )

M⊗

i=0

|ni 〉i ,

λ = 1n1 2n2 . . . . (25)

In the following, we will generalize this work [7,8] to
realize the two-site generalized phase model in the algebra of
universal characters, and the entries in the monodromy matrix
can be obtained from the vertex operators which generate the
universal characters.

4 Two-site generalized phase model and universal
characters

In this section, we will give the representation of the two-site
generalized phase model on the algebra of universal char-
acters. All the results in this section are new. Now fix two
positive integers M1, M2 and consider the tensor products

F (1) =
M1⊗

i=0

F (1)
i F (2) =

M2⊗

i=0

F (2)
i , (26)

whichF (1) andF (2) are M1+1 and M2+1 copies of the Fock
space respectively. Denote by φ

(1)
i , φ

(1)†
i , N (1)

i the operators

that act as φ, φ†, N in (14), respectively, in the i th spaceF (1)
i

and identically in the other spaces of F (1) and in all spaces of
F (2), and denote by φ

(2)
i , φ

(2)†
i , N (2)

i the operators that act as

φ, φ†, N , respectively, in the i th space F (2)
i and identically

in the other spaces of F (2) and in all spaces of F (1). Let

F = F (1)
⊗

F (2) (27)

so that F is M1 + M2 + 2 copies of the Fock space. Denote
by |0〉(i)j the vacuum vector in F (i)

j with i = 1, 2.

Define the operators

N̂1 =
M1∑

i=0

N (1)
i , N̂2 =

M2∑

i=0

N (2)
i , and N̂ = N̂1 + N̂2.

The (N1, N2)-particle vectors in space F are of the form

M1⊗

i=0

|ni 〉(1)
i

⊗ M2⊗

i=0

|mi 〉(2)
i , with N1 =

M1∑

i=0

ni ,

N2 =
M2∑

i=0

mi , (28)

where

|ni 〉(1)
i = (φ

(1)†
i )(ni )|0〉(1)

j , |mi 〉(2)
i = (φ

(2)†
i )(mi )|0〉(2)

j .

Define the map j : F → C[x, y] by

j (

M1⊗

i=0

|ni 〉(1)
i

⊗ M2⊗

i=0

|mi 〉(2)
i ) = S[λ,μ](x, y) (29)

with

λ = 1n12n2 . . . , μ = 1m1 2m2 . . . . (30)

In fact, this association is not quite unique: partitions λ, μ

themselves do not know about numbers n0 and m0 of parti-
cles. Nonetheless, if we fix the total numbers of particles N1

and N2, we can deduce n0 = N1 − l(λ) and m0 = N2 − l(μ),
where l(λ) is the length of partition λ, that is, the number of

123
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rows in λ. Note that the correspondence (7) in [8] is a special
case of the map j defined above.

The L-matrices are

L(1)
i (u) =

(
u−1 φ

(1)†
i

φ
(1)
i u

)
, i = 0, . . . , M1,

L(2)
i (u) =

(
u−1 φ

(2)†
i

φ
(2)
i u

)
, i = 0, . . . , M2,

and the monodromy matrix is

T (u) = L(2)
M2

(u) · · · L(2)
0 (u)L(1)

M1
(u) · · · L(1)

0 (u).

Each L-matrix, as well as the monodromy matrix, satisfies
the bilinear equation again

R(u, v)
(
L( j)
i (u) ⊗ L( j)

i (v)
) = (

L( j)
i (v) ⊗ L( j)

i (u)
)
R(u, v),

j = 1, 2,

R(u, v)
(
T (u) ⊗ T (v)

) = (
T (v) ⊗ T (u)

)
R(u, v), (31)

with the same R-matrix in (19).
Let

Ti (u) = L(i)
Mi

(u)L(i)
Mi−1(u) · · · L(1)

0 (u) (32)

=
(
Ai (u) Bi (u)

Ci (u) Di (u)

)
, i = 1, 2. (33)

The operators B1(u) and B2(u) are called the creation oper-
ators and C1(u) and C2(u) the annihilation operators, in the
sense that they increase and decrease the total numbers of
particles

N̂i Bi (u) = Bi (u)(N̂i + 1), N̂iCi (u) = Ci (u)(N̂i − 1)

for i = 1, 2. (34)

The operators Ai (u) and Di (u) (i = 1, 2) do not change the
total number of particles.

We call i th Fock spaceF ( j)
i ( j = 1, 2) the i-energy space.

Note that the correspondence (29) does not take into account
the numbers n0, m0 of zero-energy particles, Therefore (29)
gives a representation of the positive-energy space

F̂ =
M1⊗

i=1

F (1)
i

⊗ M2⊗

i=1

F (2)
i ,

in the algebra of symmetric functions C[x, y], in fact in
its subspace CM1,M2 [x, y] generated by universal characters
S[λ,μ] where the Young diagrams λ have at most M1 columns
and μ at most M2 columns. From the definition of the twisted
Jacobi–Trudi formula, we can define this subspace by sup-
posing

hM1+1(x) = hM1+2(x) = · · · = 0,

hM2+1(y) = hM2+2(y) = · · · = 0.

By the definition of N̂1, N̂2, the space F has a decompo-
sition into (N1, N2)-particle subspaces FN1,N2 , i.e.,

F =
⊕

N1,N2≥0

FN1,N2 =
⊕

N1,N2≥0

FN1
1 ⊗ FN2

2 . (35)

Under the map (29), the subspace FN1,N2 corresponds to
C

N1,N2
M1,M2

[x, y] which is spanned by universal characters S[λ,μ]
whose diagrams λ lie in the N1 × M1 box and μ lie in the
N2 × M2 box. That Young diagram λ lies in the N × M box
means λ has at most N rows and at most M columns.

Define the projection P : F → F̂ by forgetting the zero
energy states, and define the operator Bi (u) := PBi (u)P
for i = 1, 2. Then Bi (u) are operators acting on the space
F̂ ∼= CM1,M2 [x, y]. Since Bi (u) are creation operators, then

B1(u) sendsCN1,N2
M1,M2

[x, y] toCN1+1,N2
M1,M2

[x, y] andB2(u) sends

C
N1,N2
M1,M2

[x, y] to C
N1,N2+1
M1,M2

[x, y]. In the following, we dis-

cuss the actions of Bi (u) on CM1,M2 [x, y]. Define B̃i (u) by
Bi (u) = u−Mi B̃i (u) for i = 1, 2. Then we can derive the
following proposition.

Proposition 4.1 In the space CM1,M2 [x, y],
B̃1(u) = HM1(x − ∂̃y, u

2), (36)

B̃2(u) = HM2(y − ∂̃x, u
2), (37)

where Hn(x, t) = ∑n
k=0 t

khk(x), and hk(x) is defined in
(1), which in fact is the complete homogeneous symmetric
function.

To prove this proposition, we need the following lemma.

Lemma 4.2 For any Schur functions Sλ and complete sym-
metric function hk, we have

hk(y − ∂̃x)Sλ(x − ∂̃y) = Sλ(x − ∂̃y)hk(y − ∂̃x). (38)

Proof This holds since yn − 1
n ∂xn and xm − 1

m ∂ym are com-
mutative. ��

The proof of Proposition 4.1.

Proof We know that

S[λ,μ](x, y) = Sλ(x − ∂̃y)Sμ(y − ∂̃x) · 1,

and in [7,8]

B̃(u)

M⊗

i=0

|ni 〉i =
M∑

k=0

u2khk Sλ, λ = 1n1 2n2 . . . .

123
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Here the mapping sign j is omitted at the left of the equation
and we will do the same in the following. Hence,

B̃1(u)

M1⊗

i=0

|ni 〉(1)
i

⊗ M2⊗

i=0

|mi 〉(2)
i

=
(
B̃1(u)

M1⊗

i=0

|ni 〉(1)
i

)
⊗ M2⊗

i=0

|mi 〉(2)
i

=
M1∑

k=0

u2khk(x − ∂̃y)Sλ(x − ∂̃y)Sμ(y − ∂̃x) · 1,

and

B̃2(u)

M1⊗

i=0

|ni 〉(1)
i

⊗ M2⊗

i=0

|mi 〉(2)
i

=
M1⊗

i=0

|ni 〉(1)
i

⊗
(
B̃2(u)

M2⊗

i=0

|mi 〉(2)
i

)

= Sλ(x − ∂̃y)

(
M2∑

k=0

u2khk(y − ∂̃x)Sμ(y − ∂̃x)

)
· 1

=
M2∑

k=0

u2khk(y − ∂̃x)Sλ(x − ∂̃y)Sμ(y − ∂̃x) · 1.

��
Note that the truncated generating function Hn(x, t) =∑n
k=0 t

khk(x) can also be regarded as the full generating
function H(x, t) = ∑∞

k=0 t
khk(x) under the specialization:

Hn(x, t) = H(x, t)|hn+1(x)=hn+2(x)=...=0. Then we get the
following corollary.

Corollary 4.3 In the M1, M2 → ∞ limit, the actions of
the creation operators B̃1(u) and B̃2(u) on the space F̂
correspond to the multiplications of H(x − ∂̃y, u2) and
H(y − ∂̃x, u2) on the space C[x, y] respectively.

Define

|�̃N (u1, . . . , uN )〉 :=
N∏

j=1

B2(u j )B1(u j )|0〉 (39)

then we obtain the following proposition.

Proposition 4.4 The expansion of the (N , N )-particle vec-
tor (39) in terms of basis vector (28) is given by the formula

|�̃N (u1, . . . , uN )〉
= (u1 · · · uN )−M1−M2

∑

λ,μ

Sλ(u
2
1, . . . , u

2
N )Sμ(u2

1, . . . , u
2
N )

M1⊗

i=0

|ni 〉(1)
i

⊗ M2⊗

i=0

|mi 〉(2)
i

= (u1 · · · uN )−M1−M2
∑

λ,μ

Sλ(u
2
1, . . . , u

2
N )Sμ(u2

1, . . . , u
2
N )

S[λ,μ](x, y)

where the sum is over Young diagrams λwith at most N rows
and at most M1 columns, Young diagrams μ with at most N
rows and at most M2 columns.

Proof The operators B1(u) and B2(u) are commutative.

N∏

j=1

B1(u j ) = (u1 · · · uN )−M1
∑

λ

Sλ(u2
1, . . . , u2

N )Sλ(x − ∂̃y)

(40)
N∏

j=1

B2(u j ) = (u1 · · · uN )−M2
∑

μ

Sμ(u2
1, . . . , u2

N )Sμ(y − ∂̃x)

(41)

then we have

|�̃N (u1, . . . , uN )〉
= (u1 · · · uN )−M1−M2

∑

λ,μ

Sλ(u
2
1, . . . , u

2
N )Sμ(u2

1, . . . , u
2
N )

Sλ(x − ∂̃y)Sμ(y − ∂̃x) · 1

= (u1 · · · uN )−M1−M2
∑

λ,μ

Sλ(u
2
1, . . . , u

2
N )Sμ(u2

1, . . . , u
2
N )

S[λ,μ](x, y). (42)

By the restrictions on λ and μ, we obtain the conclusion. ��
Recall that

T (u) =
(
A(u) B(u)

C(u) D(u)

)

= T2(u)T1(u) =
(
A2(u) B2(u)

C2(u) D2(u)

)(
A1(u) B1(u)

C1(u) D1(u)

)

then

B(u) = A2(u)B1(u) + B2(u)D1(u).

The matrix entries of Ti (u), i = 1, 2 are related by the
following formulas:

Bi (u) = uAi (u)φ
(i)†
0 , Ci (u) = u−1φ

(i)
0 A†

i (u
−1),

Di (u) = φ
(i)
0 A†

i (u
−1)φ

(i)†
0 .

Let Ai (u) = PAi (u)P, Ci (u) = PCi (u)P, Di (u) =
PDi (u)P , where P is the projection F → F̂ , then we have

Lemma 4.5 The operators Ai (u), Bi (u), Ci (u), Di (u),

(i = 1, 2) are related by the following formulas

Ai (u) = u−1Bi (u), Ci (u) = B†
i (u

−1), Di (u) = uB†
i (u

−1).

Since B1(u) = u−M1 HM1(x − ∂̃y, u2), we obtain the fol-
lowing lemma.

Lemma 4.6 Let C̃1(u) = u−M1C1(u), we have

C̃1(u) = H⊥
M1

(x − ∂̃y, u
−2) = H⊥

M1
(x, u−2)

123
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where H⊥
M1

(x, t) = ∑M1
k=0 t

kh⊥,M1
k (x), and h⊥,M1

k (x) is the
adjoint to the operator of multiplication by hk(x).

Define B(u) = PB(u)P , we have

B(u) = B2(u)(u−1B1(u) + uB†
1(u

−1))

= u−M2 HM2(y − ∂̃x, u
2)(u−M1−1HM1(x − ∂̃y, u

2)

+ uM1+1H⊥
M1

(x − ∂̃y, u
−2)).

We write HM1(x − ∂̃y, u2) by H1(u2) for short. From the
bilinear equation (20), we have

uM1+1
1 u−M1−1

2 H⊥
1 (u−2

1 )H1(u
2
2)

= uM1+1
1 u−M1−1

2
u2

1

u2
1 − u2

2

H1(u
2
2)H

⊥
1 (u−2

1 )

− u−M1−1
1 uM1+1

2
u2

1

u2
1 − u2

2

H1(u
2
1)H

⊥
1 (u−2

2 ).

Recall that

|�N (u1, . . . , uN )〉 =
N∏

j=1

B(u j )|0〉.

Then by calculation, we get

Proposition 4.7 The operators u−1
1 B1(u1)+u1B†

1(u
−1
1 ) and

u−1
2 B1(u2)+u2B†

1(u
−1
2 ) are commutative, which tells us that

the coefficients, in the expansion |�N (u1, . . . , uN )〉 in terms
of basis vector (28), are symmetric functions of variables
u2

1, . . . , u
2
N .

Since

N∏

j=1

B(u j )|0〉

=
N∏

j=1

B2(u j )
(
u−1
j B1(u j ) + u jB†

1(u
−1
j )

)
|0〉

=
N∏

j=1

B2(u j )

N∏

j=1

(
u−1
j B1(u j ) + u jB†

1(u
−1
j )

)
|0〉

and

N∏

j=1

B2(u j )=(u1 · · · uN )−M2
∑

μ

Sμ(u2
1, . . . , u

2
N )Sμ(y − ∂̃x)

where μ is a Young diagram with at most N rows and at
most M2 columns. Hence, in the following, we consider the
expansion of

∏N
j=1(u

−1
j B1(u j ) + u jB†

1(u
−1
j ))|0〉.

Proposition 4.8 Let k1, k2 · · · , ki be in the set {1, 2, . . . , N }
and satisfy k1 < k2 < · · · < ki . We denote uk1uk2 · · · uki by
u{k} for short. Then we have

N∏

j=1

(
u−1
j B1(u j ) + u jB†

1(u
−1
j )

)
|0〉

= (u1 · · · uN )M1+1
N∑

i=0

∑

k1,...,ki

(u{k})−2M1−2

×
∏

j �=ki

u2
j

u2
j − u2

ki

H1(u
2
k1

) · · · H1(u
2
ki ) · 1

where

H1(u
2
k1

) · · · H1(u
2
ki ) · 1 =

∑

λ

Sλ(u
2
k1

, . . . , u2
ki )Sλ(x

−∂̃y) · 1.

Proof One can prove it by inductions. ��
From the discussion above, we get the expansion of

|�N (u1, . . . , uN )〉.
Proposition 4.9 The N-particle vector |�N (u1, . . . , uN )〉
can be written as

|�N (u1, . . . , uN )〉 = (u1 · · · uN )−M2+M1+1

×
N∑

i=0

∑

k1,...,ki

(u{k})−2M1−2
∏

j �=ki

u2
j

u2
j − u2

ki

×
∑

λ,μ

Sλ(u2
k1

, . . . , u2
ki

)

× Sμ(u2
1, . . . , u2

N )S[λ,μ](x, y)

where λ is a Young diagram with at most i rows and M1

columns, and μ a Young diagram with at most N rows and
M2 columns.

In a special case, we have S[λ,∅](x, y) = Sλ(x). Let M2 =
∅,

|�N (u1, . . . , uN )〉 =
N∏

j=1

B1(u j )|0〉

= (u1 · · · uN )−M1

N∏

j=1

B̃1(u j )|0〉

=
∑

λ

Sλ(u
2
1, . . . , u

2
N )Sλ(x)

which is the same as in [7,8].

5 Vertex operators and topological strings on C
3

The A-model topological string partition function on C
3 is

given by the MacMahon function

Ztop
C3 = M(q) =

∞∏

n=1

1

(1 − qn)n
=

∞∑

n=0

P(n)qn . (43)

123
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It is related to the topological vertex and P(n) counts the
number of plane partition whose total boxes number equals
n. It is known that the generating function of plane partitions
can be written as a fermionic correlator involving the standard
vertex operators

�̃+(z) = eξ(x,z), �̃−(z) = eξ(∂̃x,z−1) (44)

with a particular specialization of the values of z =
q±1/2, q±3/2, q±5/2, . . ..

In the following, we will give that Ztop
C3 can also be

obtained from vertex operators �±
i (t), i = 1, 2. We first

give the relations between vertex operators �±
i (t), i = 1, 2

and operators B̃i (u) and C̃i (u).

Proposition 5.1 In the M1, M2 → ∞ limit, operators B̃i (u)

and C̃i (u) have the following vertex operator representations

B̃1(u) = eξ(x−∂̃y,u2) = �+
1 (u2), (45)

C̃1(u) = eξ(∂̃x,u−2) = �−
1 (u2), (46)

B̃2(u) = eξ(y−∂̃x,u2) = �+
2 (u2), (47)

C̃2(u) = eξ(∂̃y,u−2) = �−
2 (u2), (48)

where the vertex operators �±
i (t), i = 1, 2 are defined in (3)

and (4).

To obtain the form of Ztop
C3 written by a fermionic correla-

tor involving vertex operators �±
i (t), i = 1, 2, we need the

following lemma.

Lemma 5.2 The following relation holds

〈0|
∞∏

m=1

�−
2 (qm−1/2)�−

1 (qm−1/2)|0〉 =
∏

n≥1

(1 − qn)n . (49)

Proof Since

�−
1 (w) = eξ(x,w)e−ξ(∂̃y,w),

�−
2 (z) = eξ(y,z)e−ξ(∂̃x,z),

and

e−ξ(∂̃x,z)eξ(x,w) = (1 − zw)eξ(x,w)e−ξ(∂̃x,z)

then we get

�−
2 (z)�−

1 (w) = (1 − zw) : �−
2 (z)�−

1 (w) :
where the normal order is defined as usual. Using this formula
step by step, we get the conclusion. ��

Then we obtain the following result.

Proposition 5.3 The A-model topological string partition
function on C

3 (the MacMahon function) equals

Z top
C3 = 〈0|

∞∏

m=1

�+
2 (q−m+1/2)�+

1 (q−m+1/2)

×
∞∏

m=1

�−
2 (qm−1/2)�−

1 (qm−1/2)|0〉. (50)

Proof Since

�+
i (z)�−

i (w) = 1

1 − w/z
�−
i (w)�+

i (z), i = 1, 2,

�+
i (z)�−

j (w) = �
j
i (w)�+

i (z), i, j = 1, 2, i �= j.

Then the right hand side of (50) equals

1

(1 − qn)n
1

(1 − qn)n
〈0|

∞∏

m=1

�−
2 (qm−1/2)�−

1 (qm−1/2)|0〉.

By the Lemma 5.2, we get the conclusion. ��
Acknowledgements The authors gratefully acknowledge the support
of Professors Ke Wu, Zi-Feng Yang, Shi-Kun Wang. Chuanzhong Li is
supported by the National Natural Science Foundation of China under
Grant no. 11571192 and K. C. Wong Magna Fund in Ningbo University.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This paper is devoted
to connecting the mathematical object “Universal character” with a
theoretical physical phase model. The study focus on the mathematical
construction and computation. That is why there is no data.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

References

1. H. Weyl, The Classical Groups; Their Invariants and Representa-
tions (Princeton University Press, Princeton, 1946)

2. K. Koike, On the decomposition of tensor products of the represen-
tations of the classical groups: by means of the universal characters.
Adv. Math. 74, 57–86 (1989)

3. T. Miwa, M. Jimbo, E. Date, Solitons: Differential Equations, Sym-
metries and Infinite Dimensional Algebras (Cambridge University
Press, Cambridge, 2000)

4. T. Tsuda, Universal characters and an extension of the KP hierarchy.
Commun. Math. Phys. 248, 501–526 (2004)

5. M. Kashivara, Crystalizing the q-analogue of universal enveloping
algebras. Commun. Math. Phys. 133, 249 (1990)

6. V. Korepin, N.M. Bogoliubov, A. Izergin, Quantum Inverse Scat-
tering Method and Correlation Functions (Cambridge University
Press, Cambridge, 1993)

7. P. Sułkowski, Deformed boson-fermion correspondence, Q-
bosons, and topological strings on the conifold. JHEP 0810, 104
(2008). arXiv:0808.2327 [hep-th]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0808.2327


Eur. Phys. J. C (2019) 79 :953 Page 9 of 9 953

8. N. Tsilevich, Quantum inverse scattering method for the q-boson
model and symmetric functions. Funct. Anal. Appl. 40(3), 207–217
(2006). arXiv:math-ph/0510073

9. I.G. Macdonald, Symmetric Functions and Hall Polynomials.
Oxford Mathematical Monographs (Clarendon Press, Oxford,
1979)

10. W. Fulton, J. Harris, Representation Theory, A First Course
(Springer, New York, 1991)

11. N.M. Bogoliubov, R. Bullough, J. Timonen, Critical behavior for
correlated strongly coupled boson systems in 1+1 dimensions.
Phys. Rev. Lett. 25, 3933–3926 (1994)

12. N.M. Bogoliubov, A. Izergin, N. Kitanine, Correlation functions
for a strongly correlated boson system. Nucl. Phys. B 516, 501–528
(1998). arXiv:solv-int/9710002

13. N.M. Bogoliubov, Boxed Plane Partitions as an Exactly Solvable
Boson Model. arXiv:cond-mat/0503748

123

http://arxiv.org/abs/math-ph/0510073
http://arxiv.org/abs/solv-int/9710002
http://arxiv.org/abs/cond-mat/0503748

	Universal character, phase model and topological strings on mathbbC3-.4
	Abstract 
	1 Introduction
	2 Universal characters and vertex operators
	3 Phase model
	4 Two-site generalized phase model and universal characters
	5 Vertex operators and topological strings on mathbbC3
	Acknowledgements
	References




