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Abstract We apply the first law of thermodynamics to the
apparent horizon of the universe with the power-law cor-
rected and non-extensive Tsallis entropies rather than the
Bekenstein–Hawking one. We examine the cosmological
properties in the two entropy models by using the CosmoMC
package. In particular, the first numerical study for the cos-
mological observables with the power-law corrected entropy
is performed. We also show that the neutrino mass sum has
a non-zero central value with a relaxed upper bound in the
Tsallis entropy model comparing with that in the �CDM
one.

1 Introduction

According to the current cosmological observations, our uni-
verse is experiencing a late time accelerating expansion.
Although the �CDM model can describe the accelerating
universe by introducing dark energy [1], it fails to solve the
cosmological constant problem, related to the “fine-tuning”
[2,3] and “coincidence” [4,5] puzzles. A lot of efforts have
been made to understand these issues. For example, one can
modify the gravitational theory to obtain viable cosmological
models with dynamical dark energy to explain the accelerat-
ing universe [6].

On the other hand, one can reconstruct the Friedmann
equations through the implications of thermodynamics. It has
been shown that the Einstein’s equations can be derived by
considering the Clausius’ relation of a local Rindler observer
[7]. In particular, this idea has been applied to cosmology,
while the Friedmann equations have been obtained by using
the first law of thermodynamics in the horizon of the universe
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[8]. It has been also demonstrated that the modified Fried-
mann equations can be acquired from the thermodynamical
approach by just replacing the entropy-area relation with a
proper one in a wide variety of gravitational theories [8–13].
Thus, as long as there is a new entropy area relation, ther-
modynamics gives us a new way to determine the modified
Friedmann equations without knowing the underlying grav-
itational theory. Furthermore, since the entropy area relation
obtained from the modified gravity theory can be useful to
extract the dark energy dynamics along with the modified
Friedmann equations, it is reasonable to believe that even if
we do not know the underlying theory of modified gravity,
some modifications of the entropy relation will still give us
additional information for modified Friedmann equations as
well as the dynamics of dark energy, which would be differ-
ent from �CDM. As a result, we expect that the modification
of the entropy is also relevant to the cosmological evolutions.

It is known that a power-law corrected term from the quan-
tum entanglement can be included in the black hole entropy
near its horizon [14]. Interestingly, one can apply it to cos-
mology by taking it as the entropy on the horizon of the
universe. On the other hand, the universe is regarded as a non-
extensive thermodynamical system, so the Boltmann–Gibbs
entropy should be generalized to a non-extensive quantity,
the Tsallis entropy, while the standard one can be treated as
a limit [15–17]. The Tsallis entropy has been widely dis-
cussed in the literature. In the entropic-cosmology scenario
[18], the Tsallis entropy model predicts a decelerating and
accelerating universe [19]. In addition, a number of works on
the Tsallis holographic dark energy have been proposed and
investigated [20–24]. In addition, the Tsallis entropy has also
been used in many different dark energy models, such as the
Barboza–Alcaniz and Chevalier–Polarski–Linder paramet-
ric dark energy and Wang–Meng and Dalal vacuum decay
models [25]. Moreover, it is shown that modified cosmology
from the first law of thermodynamics with varying-exponent
Tsallis entropy can provide a description of both inflation and

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7476-y&domain=pdf
mailto:geng@phys.nthu.edu.tw
mailto:ythsu@gapp.nthu.edu.tw
mailto:jhih-ronglu@gapp.nthu.edu.tw
mailto:yinlu@gapp.nthu.edu.tw


21 Page 2 of 8 Eur. Phys. J. C (2020) 80 :21

late-time acceleration with the same parameter choices [27].
In particular, the Tsallis entropy is proportional to a power of
the horizon area, i.e. ST ∝ Aδ , when the universe is assumed
to be a spherically symmetric system [28].

Although it is possible to modify Friedmann equations
by just considering fluid with an inhomogeneous equation
of state of the corresponding form [29], we still choose the
thermo-dynaimical approach as that in Ref. [30], in which
the authors considered the first law of thermodynamics of
the universe with fixed-exponent Tsallis entropy and showed
that the cosmological evolution mimics that of �CDM and
are in great agreement with Supernovae type Ia observational
data. In this paper, we examine the features of the modi-
fied Friedmann equations obtained by replacing the usual
Bekenstein–Hawking entropy-area relation, S = A/4G,
with the power-law correction and Tsallis entropies [14–
17,19–28,30], where G is the gravitational constant.

This paper is organized as follows. In Sect. 2, we con-
sider the power-law corrected and Tsallis entropy models
and derive the modified Friedmann equations and dynami-
cal equation of state parameters by applying the first law of
thermodynamics to the apparent horizon of the universe. In
Sect. 3, we present the cosmological evolutions of the two
models and compare them with those in �CDM. Finally, the
conclusions are given in Sect. 4. The paper is written in units
of c = h̄ = kB = 1.

2 The models

We use the flat Friedmann–Lemaître–Robertson–Walker
(FLRW) metric:

ds2 = −dt2 + a2(t)
(
dr2 + r2d�2

)
, (2.1)

where a(t) is the scale factor. The modified Friedmann equa-
tions can be constructed by considering the first law of ther-
modynamics in the apparent horizon of the universe and using
the new entropy area relation rather than the Bekenstein–
Hawking one. We concentrate on two models: power law
corrected entropy (PLCE) and Tsallis entropy cosmological
evolution (TECE) models.

2.1 Power law corrected entropy (PLCE) model

In the PLCE model, the entropy has the form [14]

Spl = A

4L2
p

(
1 − Kν A

1− ν
2

)
, (2.2)

where ν is a dimensionless constant parameter and Kν =
ν(4π)(ν−2)/2(4 − ν)−1rν−2

c with rc the crossover scale, A
corresponds to the area of the system, and L p represents the

Planck length. With the method described in Ref. [30], one
is able to extract the modified Friedmann equations:

H2 = 8πG

3
(ρm + ρr + ρDE ),

Ḣ = −4πG(ρm + ρr + ρDE + pm + pr + pDE ), (2.3)

where ρDE and pDE are the dark energy density and pressure,
given by

ρDE = 3

8πG

1

r2−ν
c

(
H ν − 1

) + �

8πG
, (2.4)

pDE = −ν

8πG

Ḣ

r2−ν
c

(
H ν − 1

) − 3

8πG

1

r2−ν
c

(
H ν − 1

)

− �

8πG
, (2.5)

respectively. To discuss the evolution of dark energy, it is
convenient to define the equation of state parameter, wDE ≡
pDE/ρDE , which is found to be

wDE = −1 + −ν Ḣ H ν−2

3(H ν − 1) + �r2−ν
c

. (2.6)

2.2 Tsallis entropy cosmological evolution model

In the TECE model, we have [28]

ST = α̃

4G
Aδ, (2.7)

where A is the area of the system with dimension [L2], α̃ is a
positive constant with dimension [L2−2δ], and δ denotes the
non-additivity parameter. Similarly, by following the proce-
dure in Ref. [30], we obtain

H2 = 8πG

3
(ρm + ρr + ρDE ),

Ḣ = −4πG(ρm + ρr + ρDE + pm + pr + pDE ), (2.8)

with

ρDE = 3

8πG

[
�

3
+ H2

(
1 − α

δ

2 − δ
H2(1−δ)

)]
, (2.9)

pDE = − 1

8πG

[
� + 2Ḣ(1 − αδH2(1−δ))

+ 3H2
(

1 − α
δ

2 − δ
H2(1−δ)

)]
(2.10)

where α = (4π)δ−1α̃, and � is a constant related to the
present values of H0, ρm0 and ρr0, given by

� = 3αδ

2 − δ
H2(2−δ)

0 − 8πG(ρm0 + ρr0). (2.11)
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Fig. 1 Evolutions of the equation-of-state parameter wDE in �CDM
and PLCE models

Thus, the equation of state parameter for the TECE model is
evaluated to be

wDE = pDE

ρDE
= −1 + 2Ḣ(αδH2Ḣ(1−δ) − 1)

3H2

(
1 − αδ

2−δ
H2(1−δ)

)
+ �

.

(2.12)

3 Cosmological evolutions

3.1 Power law corrected entropy model

Since ρDE and wDE are determined by the Hubble parameter
H(z), we use the Newton–Raphson method [31] to obtain the
cosmological evolutions of the PLCE model.

Because the PLCE model goes back to �CDM when ν =
0, we choose ν = ±0.02 to compare the differences between
the two models. We also take a larger value of ν = 0.2 to
check the sensitivity of ν. The results in Fig. 1 show that
wDE does not overlap or cross −1 in any non-zero value of
ν. In addition, it maintains its value in the early universe, and
only trends to −1 for z < 2.

In Fig. 2, we display the CMB power spectra in the �CDM
and PLCE models along with the data from Planck 2018.
Since the TT spectra of PLCE and �CDM are almost iden-
tical to the data from Planck 2018 for the high values of the
multipole l, we focus on the differences between the two
models and the data when l < 100 as depicted in Fig. 3.
The TT power spectrum in the PLCE model for ν > 0 is
larger than that of �CDM when l < 100 with the error in
the allowable range of the observational data.

For the TE mode, the spectra in PLCE for the different
parameters ν are always close to that in �CDM as well as the
observational data of Planck 2018, as shown in Fig. 4. How-
ever, when we carefully compare the differences between the
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Fig. 2 CMB power spectra of the TT mode in �CDM and PLCE mod-
els along with the Planck 2018 data

Fig. 3 The change 	DTT

 of the TT mode of CMB power spectra

between PLCE and �CDM, where the legend is the same as Fig. 1

Fig. 4 CMB TE power spectra in the �CDM and PLCE models along
with the Planck 2018 data

results in PLCE and �CDM in Fig. 5, we notice that those of
PLCE are closer to the Planck 2018 data, comparing to that
in �CDM.
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Fig. 5 The change 	DT E

 of the TT mode of CMB power spectra

between PLCE and �CDM, where the legend is the same as Fig. 4

Fig. 6 Evolutions of the equation-of-state parameter wDE in �CDM
and TECE models

3.2 Tsallis entropy cosmological evolution model

Equation (2.7) of TECE becomes the one in �CDM when
δ = α̃ = 1. In our study, we only focus on the effects when
δ �= 1 so we set α̃ = 1 and δ = 1 + ξ . In Fig. 6, we find that
the equation of state, wDE , behaves differently for different
values of ξ . In particular, it is larger (smaller) than −1 when ξ

is larger (smaller) than zero without crossing −1 in anytime.
In Figs. 7 and 8, we see that the TT Power spectra of

TECE and �CDM have a large difference in the large scale
structure. Note that there is a significant discrepancy between
�CDM and the data at l ∼ 20 − 27. However, the spectrum
of TECE for ξ = 0.002 and l ∼ 20 − 27 is below that in
�CDM, and closer to the observational data of Planck 2018.
The shifts of the TE mode between PLCE and �CDM are
shown in Figs. 9 and 10.

Fig. 7 Legend is the same as Fig. 2 but in the TECE model with a set
of ξ

Fig. 8 Legend is the same as Fig. 3 but in the TECE model with a set
of ξ

Fig. 9 Legend is the same as Fig. 4 but in the TECE model with a set
of ξ
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Fig. 10 Legend is the same as Fig. 5 but in the TECE model with a set
of ξ

3.3 Global fits

We use the modified CAMB and CosmoMC program [32]
to do the global cosmological fits for the PLCE and TECE
models from the observational data with the MCMC method.
The dataset includes those of the CMB temperature fluctua-
tion from Planck 2015 with TT, TE, EE, low-l polarization
and CMB lensing from SMICA [45–47], the weak lensing
(WL) data from CFHTLenS [48], and the BAO data from 6dF
Galaxy Survey [49] and BOSS [50]. In particular, we include
35 points for the H(z) measurements in our fits, which are
listed in Table 1. The χ2 fit is given by

χ2 = χ2
CMB + χ2

WL + χ2
BAO + χ2

H(z), (3.1)

with

χ2
c =

n∑
i=1

(Tc(zi ) − Oc(zi ))2

Ei
c

, (3.2)

Table 2 Priors for cosmological parameters in the PLCE and TECE
models

Parameter Prior

PLCE model parameter ν −0.025 ≤ ν ≤ 1.0

TECE model parameter ξ −0.01 ≤ ξ ≤ 0.02

Baryon density 0.5 ≤ 100�bh2 ≤ 10

CDM density 0.1 ≤ 100�ch2 ≤ 99

Optical depth 0.01 ≤ τ ≤ 0.8

Neutrino mass sum 0 ≤ �mν ≤ 2 eV
Sound horizon

Angular diameter distance 0.5 ≤ 100θMC ≤ 10

Scalar power spectrum amplitude 2 ≤ ln(1010As) ≤ 4

Spectral index 0.8 ≤ ns ≤ 1.2

where the subscript of “c” denotes the category of the data,
n represents the number of the dataset, Tc is the prediction
from CAMB, and Oc (Ec) corresponds to the observational
value (covariance). The priors of the various cosmological
parameters are given in Table 2.

In Fig. 11, we present our fitting results of PLCE (red)
and �CDM (blue). Although the PLCE model has been dis-
cussed in the literature, it is the first time to illustrate its
numerical cosmological effects. In particular, we find that ν

= (0.0240+0.0110
−0.0085) in 68% C.L., which shows that PLCE and

�CDM can be clearly distinguished. It is interesting to note
that the value of σ8 = 0.814+0.023

−0.026 (95% C.L.) in PLCE is

smaller than that of 0.815+0.023
−0.025 (95% C.L.) in �CDM. As

shown in Table 3, the best fitted χ2 value in PLCE is 3017.12,
which is also smaller than 3018.32 in �CDM. Although the
cosmological observables for the best χ2 fit in PLCE do
not significantly deviate from those in �CDM, it indicates
that the PLCE model is closer to the observational data than
�CDM.

Table 1 H(z) data points

z H(z) Ref. z H(z) Ref. z H(z) Ref.

1 0.07 69.0 ± 19.6 [33] 13 0.4 95.0 ± 17.0 [35] 25 0.9 117.0 ± 23.0 [35]

2 0.09 69.0 ± 12.0 [34] 14 0.4004 77.0 ± 10.2 [38] 26 1.037 154.0 ± 20.0 [36]

3 0.12 68.6 ± 26.2 [33] 15 0.4247 87.1 ± 11.2 [38] 27 1.3 168.0 ± 17.0 [35]

4 0.17 83.0 ± 8.0 [35] 16 0.4497 92.8 ± 12.9 [38] 28 1.363 160.0 ± 33.6 [41]

5 0.179 75.0 ± 4.0 [36] 17 0.4783 80.9 ± 9.0 [38] 29 1.43 177.0 ± 18.0 [35]

6 0.199 75.0 ± 5.0 [36] 18 0.48 97.0 ± 62.0 [39] 30 1.53 140.0 ± 14.0 [35]

7 0.2 72.9 ± 29.6 [33] 19 0.57 92.4 ± 4.5 [40] 31 1.75 202.0 ± 40.0 [35]

8 0.27 77.0 ± 14.0 [35] 20 0.5929 104.0 ± 13.0 [36] 32 1.965 186.5 ± 50.4 [41]

9 0.24 79.69 ± 2.65 [37] 21 0.6797 92.0 ± 8.0 [36] 33 2.3 224 ± 8 [42]

10 0.28 88.8 ± 36.6 [33] 22 0.7812 105.0 ± 12.0 [36] 34 2.34 222 ± 7 [43]

11 0.352 83.0 ± 14.0 [36] 23 0.8754 125.0 ± 17.0 [36] 35 2.36 226 ± 8 [44]

12 0.3802 83.0 ± 13.5 [38] 24 0.88 90.0 ± 40.0 [39]
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Fig. 11 One and two-dimensional distributions of �bh2, �ch2,
∑

mν , ν, H0, and σ8 in the PLCE and �CDM models, where the contour lines
represent 68% and 95% C.L., respectively

Table 3 Fitting results for the PLCE and �CDM models, where the limits are given at 68% and 95% C.L., respectively

Parameter PLCE (68% C.L.) PLCE (95% C.L.) �CDM (68% C.L.) �CDM (95% C.L.)

� b h 2 0.02237 ± 0.00014 0.02237 ± 0.00027 0.02235 ± 0.00014 0.02235+0.00028
−0.00027

� c h 2 0.1172+0.0012
−0.0011 0.1172+0.0022

−0.0023 0.1173 ± 0.0012 0.1173 ± 0.0023

100θ MC 1.04101 ± 0.00030 1.04101 ± 0.00059 1.04100 ± 0.00029 1.04100+0.00057
−0.00058

τ 0.079+0.017
−0.019 0.079+0.036

−0.034 0.078 ± 0.018 0.078+0.035
−0.034

� mν / eV < 0.0982 < 0.183 < 0.100 < 0.195

ν 0.0240+0.0110
−0.0085 0.024+0.022

−0.033 − −
ln(1010 A s) 3.086+0.031

−0.035 3.086+0.068
−0.063 3.083 ± 0.033 3.083+0.066

−0.064

H0 67.96 ± 0.56 68.0 ± 1.1 68.14 ± 0.55 68.1 ± 1.1

σ8 0.814+0.013
−0.011 0.814+0.023

−0.026 0.815+0.013
−0.011 0.815+0.023

−0.025

χ2
best− f i t 3017.12 3018.32

Similarly, we show our results for TECE (red) and �CDM
(blue) in Fig. 12. Explicitly, we get that ξ = (3.8±2.7)×10−4

in 68% C.L. In addition, the TECE model can relax the limit
of the total mass of the active neutrinos. In particular, we
have that �mν < 0.317 eV, comparing to �mν < 0.195 eV

in �CDM at 95% C.L. In addition, the value of H0 in TECE
equals to 68.42 ± 0.71 (68.4 ± 1.4), which is larger than
68.05+0.60

−0.54 (68.1+1.1
−1.2) in �CDM with 68% (95%) C.L.

As shown in Table 4, the best fitted χ2 value in the TECE
model is 3018.96, which is smaller than 3019.28 in �CDM
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Fig. 12 Legend is the same as Fig. 11 but for the TECE and �CDM models

Table 4 Fitting results for the TECE and �CDM models, where the limits are given at 68% and 95% C.L., respectively

Parameter TECE (68% C.L.) TECE (95% C.L.) �CDM (68% C.L.) �CDM (95% C.L.)

� b h
2 0.02226 ± 0.00016 0.02226+0.00033

−0.00032 0.02236 ± 0.00014 0.02236+0.00028
−0.00027

� c h 2 0.1174 ± 0.0013 0.1174 ± 0.0025 0.1173 ± 0.0012 0.1173 ± 0.0023

100θ MC 1.04125 ± 0.00036 1.04125+0.00073
−0.00069 1.04099 ± 0.00031 1.04099+0.00062

−0.00060

τ 0.090 ± 0.021 0.090 ± 0.042 0.079 ± 0.018 0.079+0.037
−0.035

� mν /eV < 0.186 < 0.317 < 0.107 < 0.195

ξ 0.00038 ± 0.00027 0.00038+0.00055
−0.00053 − −

ln(1010 A s) 3.103 ± 0.039 3.103 ± 0.076 3.085 ± 0.034 3.085+0.068
−0.065

H0 68.42 ± 0.71 68.4 ± 1.4 68.05+0.60
−0.54 68.1+1.1

−1.2

σ8 0.814+0.017
−0.014 0.814+0.028

−0.032 0.814+0.014
−0.012 0.814+0.024

−0.027

χ2
best− f i t 3018.96 3019.28

model. Although the difference between the value of χ2 in
TECE and �CDM is not significant, it still implies that the
TECE model can not be ignored. Clearly, more considera-
tions and discussions are needed in the future.

4 Conclusions

We have calculated the cosmological evolutions of ρDE and
wDE in the PLCE and TECE models. We have found that the
EoS of dark energy in PLCE (TECE) does not cross −1. We
have shown that the CMB TE power spectrum of the PLCE
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model with a positive ν is closer to the Planck 2018 data than
that in �CDM, while the CMB TT spectrum in the TECE
model has smaller values around l ∼ 20 − 27, which are
lower than that in �CDM, but close to the data of Planck
2018. By using the Newton method in the global fitting, we
have obtained the first numerical result in the PLCE model
with ν = 0.0240+0.0110

−0.0085 in 68% C.L., which can be distin-
guished well with �CDM. Our Fitting results indicate that
the PLCE model gives a smaller value of σ8 with a better
χ2 value than �CDM. In the TECE model, we have got-
ten that ξ = (3.8 ± 2.7)−4 and �mν < 0.186 eV in 68%
C.L., while H0 is closer to 70. The best fitted value of χ2 is
3018.96 in the TECE model, which is smaller than 3019.28
in �CDM. These results have demonstrated that the TECE
model deserves more attention and research in the future.
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