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Abstract The effect of large quantum fluctuations on pri-
mordial black-hole formation for inflationary models with
a quasi-inflection point is investigated. By using techniques
of stochastic inflation in combination with replica field the-
ory and the Feynman–Jensen variational method, it is non-
perturbatively demonstrated that the abundance of primor-
dial black holes is amplified by several orders of magnitude
as compared to the classical computation.

Cosmological inflation [1–4] is a fundamental building block
of our current understanding of the Universe. In addition to
explaining the flatness and homogeneity of the Cosmos, infla-
tion predicts the generation of perturbations from quantum
fluctuations in the early Universe. The most common way
for a realization of inflation is via a single scalar field, the
so-called inflaton ϕ. Quantum fluctuations of the latter as
well as of the metric seed today’s structure in the Universe.
The predictions of inflation are in remarkable agreement with
measurements (cf. Refs. [5–7]).

Under certain circumstances, the quantum fluctuations of
the inflation field can be dominant over its classical evolution.
There are two important cases in which this happens. One
is typically at larger values of the inflaton potential V(ϕ),
yielding eternally expanding patches of the Universe [8–10]
(for a review see Ref. [11]). The other case occurs when the
inflaton potential possesses a (quasi-)inflection point or one
(or a multiple) plateau-like feature. This can be realized in
numerous scenarios, such as double inflation [12], radiative
plateau inflation [13], or in string theory (e.g. Refs. [14,15]).

Classically, using the slow-roll conditions,

| ..ϕ| � 3 H | .
ϕ|, (

.
ϕ)2 � 2 V(ϕ), (1)

where an overdot represents a derivative with regard to cos-
mic time t , H ≡ .

a/a is the Hubble parameter, and a is the
scale factor, the Universe inflates as
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N =
∫

dt H =
∫

dϕ
H
.
ϕ

⇒ δϕclassical =
.
ϕ

H
. (2)

with N being the number of e-folds. On the other hand, the
corresponding quantum fluctuations are

δϕquantum = H

2π
. (3)

In turn, noting that the primordial metric perturbation

ζ = H
.
ϕ

δϕ = δϕquantum

δϕclassical
(4)

implies that quantum effects can expected to be important,
whenever ζ becomes of order one. This is often the case in
primordial black hole (PBH) formation [16–19], which will
be discussed further below.

Flatness of the inflaton potential, i.e. dV(ϕ)/dϕ = 0, leads
to a growth of the primordial power spectrum of comoving
curvature perturbations

Pζ = H

2π ϕ′ , (5)

where ϕ′ ≡ dϕ/dN . The classical equation of motion,

ϕ′′ + 3ϕ′ + 1

H2

dV(ϕ)

dϕ
= 0, (6)

becomes

ϕ′′ + 3ϕ′ = 0, (7)

which, by virtue of Eq. (5), yields

Pζ ∼ e3N . (8)

We note that, during the a plateau or inflection-point phase,
the slow-roll conditions Eq. (1) are violated. Whilst these
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Fig. 1 Sketch of an inflaton potential with an inflection point

are tantamount to |ε1,2| � 1, with the slow-roll parameters

ε1 ≡ − .

H/H2 and ε2 ≡ .
ε1/(ε1H), here, the flatness of the

potential implies |ε2| � 6 (cf. Ref. [20]). Furthermore, as will
be discussed below, quantum effects will start to dominate.

In order to proceed and to demonstrate the strength of the
quantum effects, we begin by choosing an inflaton potential
with a quasi-inflection point as shown in Fig. 1. For definite-
ness, we will follow Ref. [21] and make the choice

V (ϕ̃) = V0

{
1 + ∑5

i=1 λi ϕ̃
i (ϕ̃ ≥ 0)

1 + ∑3
i=1 λi ϕ̃

i (ϕ̃ < 0)
, (9)

where ϕ̃ ≡ ϕ/MPl, with MPl being the Planck mass, and
we chose λ1 = −0.0353553, λ2 = −0.0115783, λ3 =
−0.00235702, λ4 = 728.239, λ5 = −11882.9, as well as
V0 = 1.55 × 10−10.

In turn, the power spectrum can be calculated using the
Mukhanov–Sasaki equation [22–24],

d2uk
dη2 +

(
k2 − 1

z

d2z

dη2

)
uk = 0, (10)

noting that Pζ = (2 π2)−1 k3 |uk/z|2. Above, η denotes
conformal time dη ≡ dt/a, z ≡ aH−1 dφ/dη = uk/ζ ,
and H = a−1 da/dη. The numerical (classical) solution to
Eq. (10) is displayed in Fig. 2 (blue, dashed curved).

Of course, as mentioned above, quantum effects cannot be
ignored during the inflection-point phase. In order to study
these situations, Starobinsky introduced a stochastic frame-
work [9]. Its key idea lies in splitting the inflaton ϕ into
long- and short-wavelength modes, and viewing the former
as classical objects evolving stochastically in an environment
provided by quantum fluctuations of shorter wavelengths.
Hence, it constitutes an example of how fundamental proper-
ties of quantum fields can be modelled using methods of sta-
tistical mechanics; one focusses on the “relevant” degrees of

freedom (the long-wavelength modes) and regards the short-
wavelength modes as “irrelevant” ones, where “short” and
“long” are subject to the Hubble horizon.

In turn, the right-hand side of Eq. (10) acquires a stochas-
tic source term h, which is a Gaussian-distributed random
variable with (see Ref. [9])

h = 0, h2 = 
, (11)

where 
 is a known function, depending on derivatives of the
mode function (see e.g., Ref. [25] for a detailed presentation).
The overbar in Eq. (11) and below denotes the average over
the noise due to quantum fluctuations of short wavelengths.

Before we proceed, in order to provide an overview, let
us briefly summarize the subsequent computational pro-
gram (cf. Ref. [26]): (1) Wick-rotate to Euclidean signa-
ture, (2.) use the replica trick [27], in order to (3) apply the
Feynman–Jensen variational principle [28]. This will allow
us to go beyond ordinary perturbation theory (cf. Ref. [29])
and to obtain the full power spectrum, and therefore the PBH
mass spectrum including stochastic modifications.

After Wick-rotating, we proceed with the replica trick (see
the Appendix for a proof),

ln
(Z[j]) = lim

m→0

1

m
ln

(Zm[j]), (12)

where Z[j] is the generating functional depending on an
external current j. The different replica copies are labelled
by the indices a, b; their number is equal to m. We define
the replicated action S(m) via

Zm[j] =
∫ m∏

a=1

D[φa] exp

(
−

m∑
b=1

S[
φb, j

])

≡
∫ m∏

a=1

D[φa] exp
(
−S(m)

[{φ}, j
])

.

(13)

Besides terms diagonal in replica space (∝ δab), it also con-
tains the non-diagonal part

S(m)
[{φ}, j

] ⊃ −1

2

m∑
a,b=1

∫
t,k

φa(t, k)
−1(t, k) φb(t,−k),

(14)

originating from the average over noise.
We apply the Feynman–Jensen variation principle, and

therefore define a Gaussian variational action

S(m)
var

[{φ}] ≡ 1

2

m∑
a,b=1

∫
t,k

φa(t, k) G−1
ab(t, k) φb(t,−k),

(15)
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Fig. 2 Dimensionless power spectra P (blue, dashed) and PQD (red,
dot-dashed) as a function of e-folds N . The upper curve includes
stochastic effects

with
∫
t ≡ ∫

dt and
∫
k ≡ ∫

d3k/(2π)3. The variational prop-
agator (Gab)a,b=1,...,m is a matrix in replica space, which is
to be determined. In order to do so, we make the ansatz

G−1
ab ≡ G−1

0 δab − σab. (16)

The self-energy matrix σ mimics the diagonal and the non-
diagonal parts in Eq. (13).

Maximizing the right-hand side of the Feynman–Jensen
inequality

ln(Z) ≥ ln(Zvar) +
〈
S(m)

var − S(m)
〉
var

, (17)

wherein the subscript “var” refers to the variational action
(14), allows us to extract the replica structure σ , and in
turn the full power spectrum. The latter is obtained via
(cf. Ref. [29])

PQD(k) = k3 lim
m→0

1

m
Tr

[
G0 1 + 
−1 G2

0 1ll
]
, (18)

where the matrices 1 and 1ll are in replica space, with 1ab =
δab, and 1llab = 1 for all a, b.

Figure 2 shows the results for the full power spectrum
PQD(k) with quantum-diffusion effects (red, dot-dashed
curve) in comparison to the power spectrum P(k) without
(blue, dashed curve). Both of these spectra are enhanced by
the inflection point. As can be seen, the resummed stochastic
effects yield an increase of power.

Having described a methodology to effectively incorpo-
rate the large quantum effects during the inflection-point
phase, we are now in a position to derive the probability
β(M) that an overdense region of mass M has a size exceed-
ing the Jeans length at maximum expansion, so that it can

Fig. 3 Fractions β (blue, dashed) and βQD (red, dot-dashed) of horizon
patches collapsing to PBH as functions of e-folds N . As in Fig. 2, the
upper curve depicts the results of incorporating quantum diffusion

collapse against the pressure and form a black hole. If the
horizon-scale fluctuations have a Gaussian distribution with
dispersion σ , i.e. root-mean square of the primordial power
spectrum P , one expects for the fraction β of horizon patches
collapsing to a black hole [19]

β ≈ Erfc

[
δc√
2 σ

]
. (19)

Here, Erfc is the complementary error function Erfc ≡
1 − Erf, and δc is the density-contrast threshold for PBH
formation. A simple analytic argument [19] suggests a value
of δc ≈ 1/3, but more precise arguments – both numerical
[30] and analytical [31] – suggest a somewhat larger value:
δc = 0.45. We will use this value in remainder of our work.
The result for β are given in Fig. 3, both with and without the
effect of quantum diffusion. Due to the exponential depen-
dence of β on the power spectrum [see Eq. (19)], already a
moderate increase of the latter by less than an O(1) factor,
yields an increase of the former by more than 30 orders of
magnitude!

Clearly, this has consequences for the formation of PBHs
as possible dark-matter candidates (see Ref. [32] for a
review). In particular, the extendedness of the mass func-
tion generally allows for a larger PBH dark-matter fraction
than monochromatic cases (see Refs. [30,33–36]). We should
note that there is room for where the region of enhancement
exactly lies. The closer towards the end of inflation it occurs,
the lighter the holes are; but also, at the same time, the lower
β has to be. This is because during radiation domination
its growth is approximately proportional to the scale factor.
Hence, in model building, special care needs to be taken in
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order for quantum diffusion not to over-produce PBHs, and
therefore rule out, the model.

In other scenarios and using different approaches, other
recent works [37–39] also reach the conclusion that quantum
diffusion leads to an increase of the power spectrum, and, in
turn, of β. However, firstly, the scenario investigated in this
work, can be viewed as a general prototype class of inflation-
ary models in which quantum diffusion becomes relevant.
Secondly, the utilized methods – the replica trick and the
Feynman–Jensen variational principle – are non-perturbative
in nature; the stochastic effects are effectively resummed into
a generalised self-energy contribution.

We should note that these technique are not limited
to linear noise potentials and could include arbitrary self-
interactions (cf. the original Ref. [29] for the context of spin
glasses, and Refs. [26,40–42] for its application to stochastic
inflation). Furthermore, it can easily be applied to multi-field
scenarios. Let us finally point out that the replica method
used in this work has a close connection to the functional
renormalisation group (cf. Refs. [43,44]).

Acknowledgements The authors thank the anonymous referee for
valuable remarks. They acknowledge support from DoE Grant DE-
SC0007859 at the University of Michigan, the Leinweber Center for
Theoretical Physics, the Vetenskapsrådet (Swedish Research Council)
through contract No. 638-2013-8993, and the Oskar Klein Centre for
Cosmoparticle Physics.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This work is
entirely theoretical.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

Appendix

Here, we give a proof of the replica trick:1

ln(Z) = lim
m→0

m

m
ln(Z)

= lim
m→0

1

m
ln

(
1 + m ln(Z)

)

= lim
m→0

1

m
ln

(
1 + m ln(Z)

)

= lim
m→0

1

m
ln

(
exp

[
m ln(Z)

])

1 The replica trick is much older than one might think. According to
Giogio Parisi (see Ref. [45]) it can be dated back to at least the fourteenth
century when the bishop of Lisieux applied a similar trick to define non-
integer powers! The first non-trivial application of the replica trick to
modern physics has been done by Edwards and Anderson in 1975 [46].

= lim
m→0

1

m
ln

(
exp

[
ln(Zm)

])

= lim
m→0

1

m
ln

(
Zm

)
(20)
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References

1. A.H. Guth, Phys. Rev. D 23, 347 (1981)
2. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)
3. A. Albrecht, P.J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)
4. A.D. Linde, Phys. Lett. B 108, 389 (1982)
5. Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown,

J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Bar-
reiro, N. Bartolo, et al., arXiv e-prints (2018), arXiv:1807.06209

6. P. Ade et al., (BICEP2, Planck). Phys. Rev. Lett. 114, 101301
(2015a)

7. P. a. R. Ade et al. (Planck) (2015b), arXiv:1502.02114
8. A. Vilenkin, Phys. Rev. D 27, 2848 (1983)
9. A.A. Starobinsky, Lect. Notes Phys. 246, 107 (1986)

10. A.D. Linde, Phys. Lett. B 175, 395 (1986)
11. A.H. Guth, J. Phys. A 40, 6811 (2007)
12. K. Kannike, L. Marzola, M. Raidal, H. Veermae, JCAP 1709, 020

(2017)
13. G. Ballesteros, M. Taoso, Phys. Rev. D 97, 023501 (2018)
14. M. Cicoli, V.A. Diaz, F.G. Pedro, JCAP 1806, 034 (2018)
15. O. Özsoy, S. Parameswaran, G. Tasinato, I. Zavala, JCAP 1807,

005 (2018). arXiv:1803.07626
16. Ya B. Zel’dovich, I. Novikov, Sov. Astron. 10, 602 (1967)
17. S. Hawking, Mon. Not. R. Astron. Soc. 152, 75 (1971)
18. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975). [167(1975)]
19. B.J. Carr, Astrophys. J. 201, 1 (1975)
20. K. Dimopoulos, Phys. Lett. B775, 262 (2017). arXiv:1707.05644
21. Y. Gong, Y. Gong, JCAP 1807, 007 (2018). arXiv:1707.09578
22. V.F. Mukhanov, JETP Lett. 41, 493 (1985)
23. V.F. Mukhanov, Pisma Zh. Eksp. Teor. Fiz. 41, 402 (1985)
24. M. Sasaki, Prog. Theor. Phys. 76, 1036 (1986)
25. S.-J. Rey, Nucl. Phys. B 284, 706 (1987)
26. F. Kuhnel, D.J. Schwarz, Phys. Rev. Lett. 105, 211302 (2010)
27. M. Mezard, G. Parisi, M.A. Virasoro, D.J. Thouless, Phys. Today

41, 109 (1988)
28. R.P. Feynman, Phys. Rev. 97, 660 (1955)
29. M. Mézard, G. Parisi, Journal de Physique I 1, 809 (1991)
30. I. Musco, J.C. Miller, Class. Quant. Gravity 30, 145009 (2013)
31. T. Harada, C.-M. Yoo, K. Kohri, Phys. Rev. D 88, 084051 (2013),

[Erratum: Phys. Rev.D89,no.2,029903(2014)], arXiv:1309.4201
32. B. Carr, F. Kuhnel, M. Sandstad, Phys. Rev. D 94, 083504 (2016)
33. A. Dolgov, J. Silk, Phys. Rev. D 47, 4244 (1993)
34. J. Yokoyama, Phys. Rev. D 58, 107502 (1998).

arXiv:gr-qc/9804041
35. F. Kuhnel, C. Rampf, M. Sandstad, Eur. Phys. J. C 76, 93 (2016).

arXiv:1512.00488
36. B. Carr, S. Clesse, J. Garcia-Bellido, F. Kuhnel, (2019),

arXiv:1906.08217
37. C. Pattison, V. Vennin, H. Assadullahi, D. Wands, JCAP 1710, 046

(2017). arXiv:1707.00537
38. M. Biagetti, G. Franciolini, A. Kehagias, A. Riotto, JCAP 1807,

032 (2018). arXiv:1804.07124
39. J.M. Ezquiaga, J. García-Bellido, JCAP 1808, 018 (2018).

arXiv:1805.06731
40. F. Kuhnel, D.J. Schwarz, Phys. Rev. D 79, 044009 (2009)
41. F. Kuhnel, D.J. Schwarz, Phys. Rev. D 78, 103501 (2008)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1807.06209
http://arxiv.org/abs/1502.02114
http://arxiv.org/abs/1803.07626
http://arxiv.org/abs/1707.05644
http://arxiv.org/abs/1707.09578
http://arxiv.org/abs/1309.4201
http://arxiv.org/abs/gr-qc/9804041
http://arxiv.org/abs/1512.00488
http://arxiv.org/abs/1906.08217
http://arxiv.org/abs/1707.00537
http://arxiv.org/abs/1804.07124
http://arxiv.org/abs/1805.06731


Eur. Phys. J. C (2019) 79 :954 Page 5 of 5 954

42. F. Kuhnel, Ph.D. thesis, Bielefeld U. (2009)
43. T. Giamarchi, P. Le Doussal, Phys. Rev. B 52, 1242 (1995)
44. P.L. Doussal, K.J. Wiese, Phys. Rev. B 68, 174202 (2003)

45. P. M. Goldbart, N. Goldenfeld, D. Sherrington, Stealing the gold—
a celebration of the pioneering physics of Sam Edwards (2005)

46. S.F. Edwards, P.W. Anderson, J. Phys. F Met. Phys. 5, 965 (1975)

123


	On stochastic effects and primordial black-hole formation
	Abstract 
	Acknowledgements
	Appendix
	References




