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Abstract We investigate the effect of the cosmological con-
stant on the angular size of a black hole shadow. It is known
that the accelerated expansion which is created by the cos-
mological constant changes the angular size of the black hole
shadow for static observers. However, the shadow size must
be calculated for the appropriate cosmological observes. We
calculate the angular size of the shadow measured by cosmo-
logical comoving observers by projecting the shadow angle
to this observer rest frame. We show that the shadow size
tends to zero as the observer approaches the cosmological
horizon. We estimate the angular size of the shadow for a
typical supermassive black hole, e.g M87. It is found that the
angular size of the shadow for cosmological observers and
static observers is approximately the same at these scales
of mass and distance. We present a catalog of supermassive
black holes and calculate the effect of the cosmological con-
stant on their shadow size and find that the effect could be
3 precent for distant sources.

1 Introduction

Recent observations of black holes shadow at a wavelength
of 1.3 mm spectrum succeeded in observing the first image of
the black hole in the center of the galaxy M87 [1,2]. Although
the first image of the black hole does not distinguish the black
hole geometry precisely, the future improvement of measure-
ments will lead to a much higher resolution. This will allow
us to study different aspects of cosmological black holes [3—
8]. To this end, one needs to calculate the influence of dif-
ferent parameters on the shape of cosmological (astrophys-
ical) black holes shadow, e.g accretion plasma effects [9],
semi-classical quantum effects [10], dark matter [11] and the
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cosmological expansion [12]. Motivated by the accelerated
expansion of the universe, we seek to investigate the effect
of the cosmological constant on the shadow shape.

Dark energy, one of the most important problems in cos-
mology, is assumed to drive the current cosmic acceler-
ated expansion. The cosmological constant, A, is among
the favored candidates responsible for this acceleration. The
cosmological constant has imprints on various phenomena
in structure formation and astrophysics. These effects can
appear as the integrated Sachs-Wolfe effect in the Cosmic
Microwave Background and large scale structure observ-
ables. Moreover, the cosmological constant can change the
luminosity distance in the gravitational wave observations.
Recently, the role of the cosmological constant in gravita-
tional lensing has been the subject of focused studies [ 13-22].
It seems there is no general agreement on the final results. The
black hole shadow arises as a result of gravitational lensing in
strong gravity regime. Thus, one can investigate the influence
of the cosmological constant on the shadow of black holes.
The first attempt to derive the shadow size as measured by
the comoving observers was performed by Perlick et al. [23]
using the Kottler metric. Authors in [12] presented an approx-
imate method based on the angular size-redshift relation for
the general case of any multicomponent universe. Although
the cosmological constant correction on the shadow shape of
black holes has been studied in [24—27], choosing the appro-
priate (cosmological) observers is another issue that one has
to consider.

To study the effect of the cosmological constant in the lens-
ing of a cosmological structure or shadow of a black hole,
one has to model a cosmological structure like a black hole in
the expanding background. There have been many attempts
to model a cosmological black hole (CBH). The authors in
[3-8,30,31] have studied the effect of the expanding back-
ground. Since a cosmological structure like a galaxy, a cluster
of galaxies or a supermassive black hole in the center of a
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quasar have dynamical evolution due to their dynamics or
cosmological expansion, one has to use a dynamical cosmo-
logical model to study its lensing [32,33]. It’s been shown
[30,31] that the background expansion for CBHs leads to
the formation of voids. These voids are formed between the
black hole and the expanding background and prevent the
black hole’s matter flux from increasing. After this phase of
the black hole evolution, the black hole can be approximated
as a point mass [29]. As a result, the final stage of evolution
can be approximated by a point mass located in a dark energy
dominated background.

There is a well-known solution of the Einstein equation
for a point mass black hole in the presence of the cosmo-
logical constant known as Schwarzschild-de Sitter/Kottler
spacetime. This solution is written in static coordinates. To
find the geodesic observers we have to apply an appropri-
ate coordinate transformation to present the Schwarzschild-
de Sitter/Kottler spacetime in the cosmological synchronous
gauge [28,29].

This paper is organized as follows. In Sect. 2 we introduce
a point mass cosmological black hole. In Sect. 3, we calcu-
late the angular size of the shadow in the Schwarzschild-de
Sitter spacetime as measured by a cosmological comoving
observer and calculate the different limits. The conclusion
and discussion are given in Sect. 4.

2 Point mass black holes metrics

Itis known that the Schwarzschild-de Sitter is a standard met-
ric for the CBH, but Schwarzschild-de Sitter has been written
in the static coordinates. To study the point mass metric in an
expanding background, one needs to find the Schwarzschild-
de Sitter metric in the cosmological coordinates. Since the
standard cosmological metrics are written in the synchronous
coordinate, one has to transform the Schwarzschild-de Sitter
to the synchronous coordinate [28,29]. The Schwarzschild-
de Sitter metric in the static coordinates is given by

ds? = —®di* + " 'dR? + R dQ2, (M
where
A, 2M
d=1-_R* ", 2
3 R

In the weak field limit, one can interpret %Rz as the cosmo-
logical constant potential and compare it with the gravita-
tional potential of the black hole, M /R for the gravitational
interactions. Using coordinate transformations

V1=

dt =dt — ———dR,
P

dR
O/ -

3
dr = —dt +
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metric (1) will be written as

oM A
ds® = —d7* + <7 + ng) dr? + R*dQ°. )

We need to find R as a function of (7, 7). Using the coordinate
transformation (3) yields

/ dR

t4r= [ ———
A 2M
VIR + %

2 AR? + V6MA + A2R3
= In . 5)
V3A K
Solving Eq. (5) for R, we get
2
ef‘/g(rﬂ) (em““)x2 — 6AM) :
R= , (6)

2k A)3

where « is a constant. When M = 0, one can define a new
radial coordinate as

R= <%)§ Vi, %)

In this coordinate we obtain the de Sitter metric in the syn-
chronous coordinates as

ds> = —d7* +a(0)* (dR® + R*d?), @®)

A . .
where a(t) = e\/?r. The four-velocity of the comoving
observer, dr = 0, who measures the proper time 7 can be
written using transformation (3) in the static coordinates as

Ut — (é 3.0, 0> , ©)

Four-acceleration of this observer is zero. Hence, it is called
the comoving cosmological observer. In contrast to the met-
ric introduced in [23], the metric (4) is the appropriate met-
ric in which r=constant world lines are attached to the
geodesic (comoving) observers. The position of each comov-
ing observer r = constant in static coordinates is given by
Eq. (6). In the next section, we calculate the angular shadow
size seen by the cosmological comoving observers.

3 Shadow for cosmological comoving observer

Before calculating the angular size of the shadow for the
cosmological observers, let us present the result for the static
observers from [23]. The shadow is locally seen by a static
observer at a spacetime point (tp, Ro, 00 = 7/2, po = 0)
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outside the black hole horizon and inside the cosmologi-
cal horizon.! The Lagrangian for geodesics in the equatorial
plane gives

52
Lx, %) = % <_ O (R)i> + % + qu‘>2> . (10)

The Euler-Lagrange equations for ¢ and ¢ coordinates give
two constants of motion,

E = ®{R)i, L =R*¢ (11)

where E and L represent the energy and angular momentum
of the geodesic. For null geodesics we have

2 R2 22

— ®(R){ — + R = 0. 12

R+ 5 ®) + R°¢ 12)
One can solve (Ié/q'))2 = (dR/d¢)?* by using Eq. (11) to get
the null geodesics orbits as

<d—R>2—R4(E—2+§—L+2—M) (13)
dp) L2 3 R R3)’

If we apply the conditions d R /d¢ = Oandd’R/d¢$> = 0,
we find that there is a circular null geodesic orbit at radius
R = 3M where the constants of motion for this circular null
geodesic satisfy
E_2 __1 _ A (14)
L2 27M? 3

The boundary of the shadow is determined by the initial
directions of last light rays that asymptotically spiral towards
the outermost photon sphere (see Fig. 1). Using Eq. (14), we

dR
find that % for this light ray is given by

dR\® _ a1 1 2m as)
dp) 27M? R?  R3 )’

As shown in Fig. 1 the angular radius of the shadow is 2.
Since the comoving observer measures the shadow angle in
his rest frame which is orthogonal to his four-velocity vector
U™, we have to build the projection onto his rest frame as

huy = g +ULU,. (16)

We consider a null geodesic in the & = 7 plan. The
observed shadow angle is given by the inner product of the
observer position vector denoted by 6" and the tangent to

! For the central observer which is located in center of a spherical coor-
dinate, the current value of cosmological constant with astrophysical
black holes mass gives two horizons for the Schwarzschild-de Sitter
metric. One horizon is known as the black hole horizon and the other is
known as the cosmological horizon. Each observer in de Sitter space-
time has its own cosmological horizon. The cosmological observer (who
see the black hole ray in the center) is located between two horizons of
the central observer in the static coordinates. Note that, no light from a
source outside the cosmological horizon can get to the central observer
which is located in center of the cosmological horizon.

the photon trajectory denoted by d. In these coordinates,

8* = (0, Ry, 0,0)andd"* = k" = # (’2—’31:, A,Q, 1) where

A= Z—(’; on the null geodesics. As Ishak and Rindler have
shown [14,15], one can calculate the bending angle using the
invariant formula for the cosine of the angles between two
directions d and §. This gives

A
VAT + ®RY
where dot denotes the inner product. For the static observers
of the Schwartzchild-de Sitter spacetime, one can show

cosyr = (17)

(-3 -4

_R2__ Ap2
vz~ 3R

sin® v = (18)

[23]. As stated, each observer measures the angles in his rest
frame. To calculate the shadow angular size relative to the
cosmological comoving observer, we have to project these
two vectors to his rest frame which is perpendicular to the
UM as

djy = h"d,, & =h""s,. (19)

It’s been shown that the projection effects are important
in measuring cosmological observables [34,35]. The angle
measured with respect to this observer is given by

dy.sy  d"é,+(d.U)(.U)

ldyllsul — d.U/5%5, + (8.U)%

Expanding this equation and using g, = & and gyp = R”,
we get

cos Yy = (20)

LA

"8, = —, 21
7 R @1
E LAJV1—-9®
dU=——+ ——5—, 22
s T T Ro (22)
RJ1 -0
U= ——, (23)
o
and
A <_£ + A«/l—d)) (R«/l—dD)
R® L RZ® <1>
cos Yy = (24)
(_L + A«/17<I>> R R2(1-9)
Lo R2® $ o2

dR
where for photons starting on the photon sphere (%) =

2 /_1
—R \/ 27M?
calculated at the observer position, Rp. The Eq. (24) relates
the angle measured by the static observers to the comoving

observers. Finally,

- % + ZR—A_QI. Note that the observed angle is
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Fig. 1 Black hole shadow
relative to the cosmological
comoving observer. § is the
observer’s position vector and d
represent the vector tangent to
the photon path. U is the
comoving observer velocity. The
static observer measures

Black hole event
horizon

cos Yy
ORVAT+ RZGcosyy + RVT— @ (—EE + AYT= )
R(~EF + AvT=9)

(25)

The black hole horizon and cosmological horizon in
Schwarzschild-de Sitter spacetimes are located where ® (R) =
0. The observer at the black hole horizon, where we have
® = 0, sees Yy = m. For an observer on the black hole
photon sphere R = 3M, we have y = 7 /2. As a result we
find that

2
cos Yy = 3 +3M2A.

If the observer is located on the cosmological horizon, we
have ® = 0.
Using the Egs. (14) and (15) one can get

(26)

27)

. 2 ce
On the horizon, we have A = + %. The positive sign is not
acceptable because using the current value of cosmological
constant where AM? < 1, the value, cos Yy, in (24) get
R’E

|cos | > 1. Hence, A = —

In this case, we find that ¢y = 0. Our result differs from
the result in [23] because they used a different observer.

To illustrate the cosmological constant effect on the
shadow angle we have plotted the shadow angle as a func-
tion of distance for two different values of the cosmological
constant in Fig. 2. We have used M = 1 in the calcula-
tions. One can see that the bigger value for the cosmological
constant decreases the shadow angle size. This result agrees

@ Springer

Photon sphere
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Fig. 2 The observed shadow angle (1) for the comoving observer as
a function of distance. The blue curve is for A = 0.05 and the red curve
for A = 0.01. The shadow angle decreases faster for the larger value of
the cosmological constant. On the horizon, we have ¥y = 0. We have
set M =1

with the resultin [12]. It is because the cosmological constant
increases the angular diameter distance.

In order to estimate the cosmological constant effect on the
shadow angle, let us calculate the shadow angle for the black
hole in M87. If we evaluate the Eq. (24) for the black hole
MS87 with mass, 6.5 x IOQMQ, and distance, R = 16.4Mpc,
we get

cos Yy ~ (1 + 0(10—7)) cos . (28)

Given that the current resolution for present-day VLBI tech-
nology allows only to resolve angles of a few dozen microarc-
seconds, we don’t need to consider the projection effects to
interpret the shadow observations. This is true as long as our
distance to the black hole is less than R A? « 1072, which
gives a small value of the cosmological constant potential.
There are various black hole candidates observed so far.
We know their estimated mass and distance. We calculate
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Table 1 Supermassive black holes with known mass and distance. In this table, we compare the effect of the cosmological constant on their shadow
size in microarcseconds. The fractional difference could be of order 3 precent

Name Mass (Mg = 1) Distance Shadow size without A Shadow size with A %

ULAS J1120+0641 2 x 10° 4.0 Gpc 0.0484855 0.32288 0.33
ULAS J1342+0928 8 x 108 4.00 Gpc 0.193942 0.129155 0.33
Q0906+6930 2 x 10° 3.77 Gpe 0.0514435 0.0365801 0.28
S50014+81 4 x10'0 3.7 Gpc 1.04833 0.758733 0.27
APM 08279+5255 2.3 % 10'0 3.69 Gpc 0.6195 0.4591 0.25

TON 618 6.6 x 10'0 3.18 Gpc 2.0126 1.62044 0.19
Phoenix Cluster BH 2 x10'0 1.74 Gpc 1.11461 1.05429 0.05

OJ 287 primary 1.8 x 100 1.073 Gpc 1.63129 1.59848 0.02
Abell 1201 BCG 1.3 x 10'0 838.5 Mpc 1.50432 1.48584 0.012
H1821+643 3 x10'0 1.0 Gpc 2.90913 2.85809 0.01
3C273 8.86 x 108 749 Mpc 0.113931 0.112814 0.0098
Hercules A (3C 348) 4 % 10° 643.9 Mpc 0.603241 0.598887 0.0072

IC 1101 (4—10) x 10'0 320.4 Mpc 24.2427 24.1995 0.0017
Cygnus A 1 x10° 232 Mpc 0.417978 0.417587 0.00093
Holmberg 15A 4.0 x 10'0 216 Mpc 17.9576 17.943 0.00081
RX J124236.9-111935 1x 108 200 Mpc 0.0484855 0.0484517 0.00069
NGC 6166 3 x10'0 142 Mpc 20.4868 20.4796 0.00035
NGC 6166 1x10° 142 Mpc 0.682894 0.682655 0.00035
Markarian 501 9 x 10° 140 Mpc 6.23385 6.23172 0.00034
NGC 3842 9.7 x 10° 99.6 Mpc 9.44396 9.44233 0.00016
NGC 4889 2.1 x10'0 94.43 Mpc 21.6637 21.6604 0.00015
NGC 1270 1.2 x 10'0 78 Mpc 14.9186 14.917 0.0001
NGC 1271 3.0 x 10° 76.3 Mpc 3.8278 3.82742 0.0001
NGC 5548 6.71 x 107 75.01 Mpc 0.086627 0.086618 0.000097
NGC 1277 1.2 x 10° 73 Mpc 1.59404 1.5939 0.000092
NGC 1275 3.4 x 108 68.2 Mpc 0.484855 0.484816 0.00008
NGC 1281 1x10'0 60 Mpc 16.1618 16.1608 0.000062
NGC 1600 1.7 x 10'0 45.6 Mpc 36.1515 36.1501 0.00003
NGC 3783 2.98 x 107 41.60 Mpc 0.0709544 0.0709523 0.000029
NGC 4261 4 % 108 29.4 Mpc 1.31933 1.31931 0.000015
NGC 3227 4.22 x 107 24 Mpc 0.150844 0.150842 0.000012
NGC 1399 5% 108 20.23 Mpc 2.42427 2.42426 0.0000069
NGC 7469 12.2 x 10° 20.1 Mpc 0.0581826 0.0581822 0.0000069
Messier 58 7 % 107 19.1 Mpc 0.357261 0.357259 0.0000062
NGC 4151 primary 4 % 107 19 Mpc 0.204149 0.204148 0.0000062
Messier 85 1x 108 18.5 Mpc 0.524167 0.524164 0.0000059
Messier 60 4.5 x 10° 17.38 Mpc 25.1076 25.2074 0.000005
Messier 49 5.6 x 108 17.14 Mpc 3.19434 3.19432 0.000005
Messier 84 1.5 x 10° 16.83 Mpc 8.64269 8.64265 0.0000049
M60-UCDI1 2 x 107 16.5 Mpc 0.117541 0.11754 0.0000047
Messier 61 5 x 100 16.10 Mpc 0.303034 0.303033 0.0000044
Messier 108 2.4 x 107 14.01 Mpc 0.166236 0.166235 0.0000034
Messier 59 2.7 x 108 15.35 Mpc 1.74548 1.74547 0.0000032
Messier 105 2 x 108 11.22 Mpc 1.76311 1.7631 0.0000021
NGC 3115 2 x 107 9.7 Mpc 19.994 19.994 0.0000016
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Table 1 continued

Name Mass (Mg = 1) Distance Shadow size without A Shadow size with A %
Sombrero Galaxy 1 x 10° 9.55 Mpc 10.154 10.154 0.0000015
Messier 96 48000000 9.6 Mpc 0.489959 0.489958 0.0000015
Messier 87 6.77 x 10° 16.4 Mpc 40.0301 40.0299 0.000001
Centaurus A 5.5 x 107 3-5 Mpc 1.33335 1.33335 0.00000027
Messier 82 (Cigar Galaxy) 3 x 107 3.5-3.8 Mpc 0.83118 0.83118 0.00000021
Andromeda Galaxy 2.3 x 108 778 kpc 28.6675 28.6675 0.00000001
Messier 32 5 % 10° 763 kpc 0.69365 0.69265 8.5E-09
Sagittarius A* 4.3 x 109 7860 pc 53.4584 53.4584 1E-12

their shadow angular size in microarcseconds and also esti-
mate the effect of cosmological constant for various can-
didates. In Table 1 we present a catalog of the supermas-
sive black holes with the known mass and distance. We give
their shadow angular size with and without the cosmological
constant. We sort the data in terms of the shadow size frac-
tional difference, % = ¥Ya—Va=0 The cosmological con-
stant effect is considerable on large cosmological distances.
The effect could be 3 precent for distant sources. Improving
the angular resolution in Event horizon telescope for distance
black holes, can be used to measure the cosmological con-
stant value (Hubble constant).

4 Conclusion and discussion

The existence of the cosmological constant changes the angu-
lar size of the black hole shadow for the comoving cos-
mological observers. Our work provides a possible tool to
calculate the effect of the cosmological constant on the
shadow size. Projecting the shadow angle to this observer
rest frame, we calculated the shadow size observed by the
comoving cosmological observers. In accordance with this
article analysis, comoving observers see the shadow angular

size Yy = arccos (,/% + 3M2A) on the black hole pho-

ton sphere at R = 3M. As the observer moves away from
the black hole horizon towards the cosmological horizon, the
shadow angle decreases to ¥y = 0 on the cosmological hori-
zon. Our result differs from the result in the reference [23]
because we used the synchronous form of the metric (4) in
which r = constant world lines are geodesics.

Using the mass and distance value for the supermassive
black hole M87, one gets cos Yy ~ (1 + (9(10_7)) cos .
The current resolution for the present-day VLBI technology
allows only to resolve the angles of a few dozen microarc-
seconds. As a result, we don’t need to consider the pro-
jection effects to interpret the shadow observations. This is
true as long as our distance to the black hole is less than

@ Springer

Ro A? < 1072 which gives a small value of the cosmo-
logical constant potential. In the last part, we gave a catalog
of the supermassive black holes with the known mass and
distance. We compared their shadow angular size with and
without the cosmological constant. The effect of the cosmo-
logical constant is observable on the shadow size on large
distances. We find the effect of cosmological constant could
be 3 precent for distant supper massive blackholes.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: There current
resolution for Event horizon telescope does not allow us to verify the
cosmological constant correction of the shadow size. Because its cor-
rection order of magnitude is less than the current error bar. As it is
shown in the table, there is a hope to see this correction in the next
generation of the event horizon telescope.]
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