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Abstract This paper examines the effects of a new form of
the extended generalized uncertainty principle in the Snyder–
de Sitter model on the thermodynamics of the Schwarzschild
and Reissner–Nordström black holes. Firstly, we present a
generalization of the minimal length uncertainty relation with
two deformation parameters. Then we obtain the corrected
mass–temperature relation, entropy and heat capacity for
Schwarzschild black hole. Also we investigate the effect of
the corrected uncertainty principle on the thermodynamics
of the charged black holes. Our discussion of the corrected
entropy involves a heuristic analysis of a particle which is
absorbed by the black hole. Finally, we compare the thermo-
dynamics of a charged black hole with the thermodynamics
of a Schwarzschild black hole and with the usual forms, that
is, without corrections to the uncertainty principle.
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1 Introduction

The consideration of the fundamental length scale at the order
of the Planck length leads to a nonzero minimal uncertainty
in the measurement of the position. In high energy physics,
the study of deformed quantum mechanics plays a crucial
role in removing infinities in standard field theories. In the

a e-mail: mdemonti@ualberta.ca

last decade, some approaches towards understanding physics
at this scale, based either on string theory or other quantum
gravity paradigm have been studied [1–7].

The modified commutation relations between position
and momenta, commonly known as Generalized Uncertainty
Principle (GUP) and other similar relationships, are related
to the prediction of a minimum measurable length [8–16].
This approach is motivated by the investigation of the quan-
tum behaviour of black holes as the most interesting objects
in physics. The study of black hole physics determined that
a valid theory of quantum gravity must include a minimum
length scale. Therefore the energy in any region of space
below the Planck length is greater than the energy required to
create a mini black hole in that region of space. Furthermore,
some authors have recently proposed the corrected uncer-
tainty principle which also implies the existence of a max-
imum measurable momentum [17]. Actually, because this
GUP is consistent with Doubly Special Relativity theories
(DSR) [18–22], this GUP implies the existence of a mini-
mum measurable length while the existence of a minimum
measurable momentum in turn requires the modification of
the Heisenberg uncertainty principle into an Extended Uncer-
tainty Principle (EUP) [23–30]. The more General Extended
Generalized Uncertainty Principle (EGUP) is obtained by
combining GUP and EUP, from a model of DSR on an (anti)-
de Sitter background. Actually, the connection between GUP
and EUP is revealed with EGUP [31–35]. In Ref. [32],
the deformed two-dimensional relativistic bosonic oscilla-
tor equation for charged spin 0 and spin 1 particles moving
in a uniform magnetic field with the Snyder–de Sitter model
has been studied.

The better-motivated derivations of the EGUP are given as
GUP and EUP that motivated by the quantum-gravity idea
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of the smallest possible position and by physics in anti-de
Sitter space respectively. Compared with the GUP and EUP,
the EGUP can be applied to a large scale spacetime, hence its
applicability range is wider. By defining the concise calcula-
tion method and understanding the physical meaning, it pro-
vides a reference for the determination of the thermodynam-
ical properties of the black holes. In recent years, the study of
the Schwarzschild black hole physics with GUP [36–40] has
revealed that the Hawking radiation of a black hole depends
on the properties of the black hole and the tunneling parti-
cle. In Ref. [30], an effective EUP-corrected Schwarzschild
metric is constructed, and the associated black hole charac-
teristics are considered. In Ref. [41] the thermodynamics of
Schwarzschild and Reissner–Nordström (RN) black holes in
the framework of GUP with correction terms up to fourth
order in momentum uncertainty have been investigated and
this has led to the existence of a remnant mass thereby pre-
venting the complete evaporation of the black hole. Also
it has been observed that analytical expressions for these
masses can be obtained for terms of the order of (�p)8 in the
momentum uncertainty.

In Ref. [42], the effect of space noncommutativity on the
thermodynamics of RN charged black hole is investigated.
Also, the Gauss–Bonnet theorem (GBT) is examined with
quantum corrections through EUP and the corresponding
deflection angle is obtained [43]. In Ref. [25], the influence
of the GUP and EUP on the thermodynamics of the FRW uni-
verse has been investigated. In this paper, we have studied
the thermodynamic properties of the Schwarzschild and RN
black holes in the framework of EGUP with two deformation
parameters.

This paper is organized as follows: in Sect. 2 , we present
the new form of EGUP in Snyder–de Sitter model that
we consider. In Sect. 3, we calculate the corrected mass–
temperature relation and heat capacity and entropy for the
Schwarzschild black hole. In Sect. 4 by considering the RN
charged black hole, we discuss the EGUP corrected ther-
modynamic properties. Finally, a conclusion is presented in
Sect. 5. Before proceeding any further, it should be noted that
in this manuscript, we set h̄ = 1.

2 The new extended uncertainty principle

In the non-relativistic Snyder–de Sitter model, we introduce
the deformed Heisenberg algebra in three-dimensional case
by the following commutation relation as [32]

[Xi , Pj ] = i
(
δi j + α1Xi X j + α2Pi Pj

+√
α1α2

(
Xi Pj + Pi X j

))
, i = 1, 2, 3, (2.1)

where α1, α2 are the small positive parameters of deforma-
tion. We define Lk as the component of the angular momen-

tum, which can be expressed as follows

Lk = εi jk Xi Pj , (2.2)

satisfying the usual algebra

[Xi , X j ] = iα2εi jk Lk, [Pi , Pj ] = iα1εi jk Lk

[Li , X j ] = iεi jk Xk, [Li , Pj ] = iεi jk Pk,

[Li , L j ] = iεi jk Lk . (2.3)

According to quantum mechanics, inserting the commutation
relations (2.3) into Eq. (2.1) for one-dimensional case leads
to

�X�P � 1

2

(
1 + χ + α1(�X)2 + α2(�P)2

−2
√

α1α2�X�P
)
, (2.4)

where χ = (√
α1 〈X〉 + √

α2 〈P〉)2 � 0. The relation (2.4)
implies the appearance of a nonzero minimal length in posi-
tion and momentum uncertainties [32]

�X �
√

α2 (1 + χ)

1 + 2
√

α1α2

�P �
√

α1 (1 + χ)

1 + 2
√

α1α2
. (2.5)

By defining c as the speed of light and κ as the Boltzmann
constant, we can consider the black hole thermodynamics for
any massless quantum particle near the black hole horizon
with mass M as follows [29]

T = c�P

κ
, (2.6)

and by inserting the obtained minimal momentum as Eq. (2.5)
into Eq. (2.6), the lower bound for the black hole temperature
has been found as

T � Tmin = c

κ

√
α1 (1 + χ)

1 + 2
√

α1α2
, (2.7)

3 Thermodynamics of Schwarzschild black hole

We utilize the Schwarzschild radius of the black hole as rS =
2GM
c2 [41] where G is the Newton’s universal gravitational

constant and we can consider the position uncertainty of a
particle as the order of the Schwarzschild radius of the black
hole near the horizon of the black hole

�X = λrS = 2λGM

c2 , (3.1)

where λ is a scale factor. By substituting Eqs. (2.6) and (3.1)
into Eq. (2.4) we find

2λκGMT

c3 = 1

2

(

1 + χ + α1

(
2λGM

c2

)2
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+α2

(
κT

c

)2

− 2
√

α1α2

(
2λκGMT

c3

))

. (3.2)

By solving above equation versus T and by introducing mP

as the Planck mass, we have obtained the following solution
for the black hole mass

M = 1

8G2λ2α1

{
4cκλGT

(
1+√

α1α2
)

−
√

−16G2λ2α1
(
c4 (1+χ) +c2κ2T 2α2

)+(4cκλGT )2(1+√
α1α2

)2
}
.

(3.3)

For small values of deformation parameters, the above equa-
tion can be written as

M = c4 (1 + χ) + α2c2κ2T 2

4cκλGT
(
1 + √

α1α2
) . (3.4)

With α1 = α2 = χ = 0 in the absence of correction due to
EGUP and considering the relationship of the Planck mass
as (mPc)2 = c3

G , we have

M = c4

4cκλGT
= (mPc)2

4κλT
. (3.5)

If we compare this expression with the semiclassical mass

M = (mPc)2

8πκT [42], we can obtain λ = 2π . By solving
Eq. (3.2) versus T and by introducing mP as the Planck
mass, we have obtained the following solution for the black
hole temperature

T = 1

2c2κ2α2

{
8cκπGM

(
1+√

α1α2
)

−
√

−4c2κ2α2
(
c4 (1+χ) +16G2M2π2α1

)+(8cκπGM)2(1+√
α1α2

)2
}
.

(3.6)

With small values of the deformation parameters, the above
equation can be written as

T = c4 (1 + χ) + 16α1π
2G2M2

8cκπGM
(
1 + √

α1α2
) . (3.7)

If we consider the absence of correction due to EGUP i.e.
α1 = α2 = χ = 0, the above relationship for temperature
can be rewritten as

T = c3

8κπGM
= (mPc)2

8κπM
. (3.8)

where the relationship of the Planck mass is defined as

(mPc)2 = c3

G . We can see that the result obtained for the
corrected temperature given in Eq. (3.6) in the condition

of the absence EGUP is comparable with the semiclassical

temperature obtained as T = (mPc)2

8πκM in Ref. [29].
In the usual case, the heat capacity for the black hole is

given by

C = c2 dM

dT
. (3.9)

Then, by considering the mass–temperature relation given in
Eq. (3.3), the heat capacity corresponding to the uncertainty
relation that arises from EGUP black hole can be obtained as

C =
c3κ

(
−2cκπGT

(
1 + 2

√
α1α2

)+ (1 + √
α1α2

)√−4c2π2G2
(
c2 (1 + χ) α1 − κ2T 2

(
1 + 2

√
α1α2

)))

4πGα1

√
−4c2π2G2

(
c2 (1 + χ) α1 − κ2T 2

(
1 + 2

√
α1α2

)) . (3.10)

For small values of deformation parameters, the above equa-
tion can be written as

C= − c3κ
(
c2 (1+χ)+κ2 (−2+T ) Tα2

)

4Gπ
(− (1+χ) α1+κ2T 2

(
2−α1α2+2

√
α1α2

)) ,

(3.11)

and it can be seen that the above relationship, for the value
of α1 = α2 = χ = 0 in the absence of corrections due to
EGUP can be rewritten as

C = − c5

8πκGT 2 . (3.12)

Therefore, the corrected heat capacity in the absence of
EGUP is consistent with the semiclassical heat capacity

C = − mp
2c4

8πκT 2 obtained in Refs. [29] and [41].
In order to calculate the entropy S in terms of the black

hole mass, a useful heuristic method for a particle which is
captured by the black hole has been presented in Ref. [21]. In
this method, the black hole is considered as a sink for particles
as well as the black hole’s size and temperature are denoted
by �X and �P parameters respectively. We should consider
the fact that the black hole mass is not allowed to be less than
a scale order Planck mass and the momentum uncertainty is
not allowed to be greater than the mass (�P � m). When the
particle disappears in the black hole horizon, its information
is lost to an observer outside the horizon and the loss of
information is one bit at least, i.e. (�S)min ∼ ln 2 [21]. Also
the smallest increase in the area of a black hole is given by

A ∼ Xm, (3.13)

where X and m denote the particle’s size and mass, respec-
tively. For a classical particle, (�A)min = 0 , whereas in
quantum mechanics, a particle is described by a wave packet.
By defining the width of a wave packet as the standard devi-
ation of X distribution, we can consider the position uncer-
tainty as the characteristic size of the particle (X ∼ �X).
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Therefore, the representation (3.13) rewrite as follows [21]

A � �X�P � ξ h̄′, (3.14)

where ξ and h̄′ denote the calibration factor and the effective
Planck constant respectively. In order to obtain the effec-
tive Planck constant, h̄′ in Eq. (3.14), we rewrite Eq. (2.4),
which corresponds to the uncertainty relation that arises from
EGUP, as

�X�P � 1

2(1 + √
α1α2)

×
(

1 + χ + α1(�X)2 + α2(�P)2
)

= h̄′

2
.

(3.15)

Therefore, by considering the minimal length in position and
momentum uncertainties obtained as Eq. (2.5), the effective
Planck constant can be calculated as

h̄′ = 1
(
1 + √

α1α2
)
(

1 + χ + 2α1α2 (1 + χ)

1 + 2
√

α1α2

)
. (3.16)

In terms of the black hole horizon area A = 4πr2
s =

16π(G
2M2

c4 ), the semiclassical entropy for the Schwarzschild

black hole is S = Aκ

4�2
P

where �P denote the Planck length.

In [41], the entropy for the Schwarzschild black hole for
(h̄ = c = G = κ = 1) is defined as S = A

4 . Also, from
consistency of thermodynamic information of the black hole
in absence of EGUP with the semi-classical case, we can
define ξ = 4 ln 2 [21]. Also by considering the Heisenberg
uncertainty principle, the minimum increase in the horizon
area is given by

d A

dS
= (�A)min

(�S)min
= 4h̄′. (3.17)

Therefore, the EGUP-corrected entropy of the black hole can
be derived as

S =
∫

dS

d A
d A �

∫
(�S)min

(�A)min
d A �

∫
d A

4h̄′ . (3.18)

From Eqs. (3.16) and (3.17), the corrected entropy can be
written in the form

S = 4πG2M2

c4

(
1 + √

α1α2
)
(

1+χ+2α1α2 (1 + χ)

1 + 2
√

α1α2

)−1

.

(3.19)

For values of α1 = α2 = χ = 0, in the absence of correction
due to EGUP, we have

S = 4πG2M2

c4 = πr2
s . (3.20)

We can see in the absence of correction due to EGUP, the
relationship obtained for entropy reduces to the semiclassi-
cal Bekenstein-Hawking entropy for the Schwarzschild black
hole as S = A

4 [41]. Also we can investigate the behavior of

the corrected black hole entropy versus different character-
istics of Schwarzschild black hole.

4 Thermodynamics of Reissner–Nordström black hole

In this section, we consider a RN spherical black hole with
mass M and charge Q described by the metric [44,45]

ds2 = f (r)dt2 − dr2

f (r)
− r2(dθ2 + sin2θdϕ2), (4.1)

where

f (r) = 1 − 2M

r
+ Q2

r2 . (4.2)

This metric admits two possible horizons:

r = M ±
√
M2 − Q2. (4.3)

Actually, when a black hole becomes charged, the event hori-
zon shrinks and another event horizon appears near the sin-
gularity and the above two values for r are corresponding to
the outer and inner horizons. Since, in the limit of Q = 0,
we should recover the Schwarzschild radius rs = 2GM/c2,
we consider the plus sign in Eq. (4.3) and the corresponding
radius will be radius of the outer horizon.

By defining the radius of the horizon of RN black hole as
rRN = Gr0

c2 [41] where r0 = M+√M2 − Q2, and since near
the horizon of the RN black hole, the position uncertainty of
a particle will be of the order of RN radius of the black hole,
then we find [21]

�X = γ rRN = γG(M +√M2 − Q2)

c2 , (4.4)

where γ is a scale factor. By substituting the value of �X
and �P from Eqs. (4.4) and (2.6), the relationship of EUP
(2.4) can be rewritten as

r0 � (mpc)2

2γ κT

[

1 + χ + α1

(
γGr0

c2

)2

+α2

(
κT

c

)2

− 2
√

α1α2

(
γGr0κT

c3

)]

. (4.5)

In the absence of correction due to EGUP, from this equation,

the black hole temperature can be written as T = (mpc)2

2γ κr0
and comparing this relation with the semiclassical Hawking

temperature TH = (mpc)2(Mr0−Q2
)

2πκr3
0

, the value of γ is seen to

be

γ = πr2
0

Mr0 − Q2 . (4.6)

This result is consistent with the obtained result in the absence
of correction due to GUP [41]. By the identity Mr0 − Q2 =
r0 (r0 − M), and inserting Eq. (4.6) into Eq. (4.5), we obtain
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the following mass–charge–temperature relation correspond-
ing to the RN black hole:

T = 1

κ2mp
4(M−r0)

2α2

{
κmp

2π (r0−M) r0
2 (1+√

α1α2
)

−
√

−κ2mp
4(M−r0)

2 (c2mp
4(M−r0)

2 (1+χ) α2−π2r0
4
(
1+2

√
α1α2

))}
.

(4.7)

From the identity Mr0 −Q2 = r0 (r0 − M), we get for small
values of deformation parameters :

T = (mpc)2 (r0 − M) (1 + χ)
(
1 + √

α1α2
)

2πκr0
2
(
1 + 2

√
α1α2

) . (4.8)

With α1 = α2 = χ = 0 in the absence of correction due to
EGUP, we have

T = (mpc)2 (r0 − M)

2πκr0
2 . (4.9)

This equation is consistent with the usual semiclassical
Hawking temperature in the absence of correction due to
GUP [41]. Now the heat capacity of the RN black hole can
be calculated as

C = c2 dM

dT
=
(

1

c2

dT

dM

)−1

=
(
c2κ2mp

4
(
M2 − Q2

)2
α2

)
⎧
⎪⎪⎨

⎪⎪⎩
− 2Mκmp

2π

√
M2−Q2

(
M+

√
M2−Q2

)2 (
1+√

α1α2
)+2Mμ

+1

2
κmp

2
(
M2 − Q2

)

⎡

⎢⎢
⎣4π

(
M +

√
M2 − Q2

)2

(
1+√

α1α2
)+

2Mπ
(
M+√M2−Q2

)2 (
1+√

α1α2
)

√
M2−Q2

−κmp
2

μ

(
−2Mc2mp4

(
M2 − Q2

)
(1 + χ) α2

+2Mπ2
(
M+

√
M2−Q2

)4 (
1+2

√
α1α2

))

+κmp
2

μ

(
M2 − Q2

) (
2c2Mmp4 (1 + χ) α2

−
4π2

(
M +√M2 − Q2

)4 (
1 + 2

√
α1α2

)

√
M2 − Q2

⎞

⎟
⎠

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

−1

,

(4.10)

where

μ =
(
(κmp

2)
2
π2r0

4 (1 + 2
√

α1α2
)
(r0 − M)2

−(κmp
4)

2
c2(r0 − M)4 (1 + χ) α2

) 1
2
. (4.11)

If we take into account Eq. (4.3), the heat capacity of the RN
black hole can be rewritten as

C =
(
c2κ2mp

4(r0 − M)4α2

)

×
{

− 2Mκmp
2π (r0 − M) r0

2 (1 + √
α1α2

)+ 2Mμ

+2κmp
2πr0

2 (1 + √
α1α2

)
(r0 − M)2

+κmp
2Mπr0

2 (1 + √
α1α2

)
(r0 − M)

+2(κmp
4)

2

μ
Mc2(r0 − M)4 (1 + χ) α2

− (κmp
2)

2

μ
Mπ2r0

4 (1 + 2
√

α1α2
)
(r0 − M)2

− (κmp
2)

2

μ
2π2r0

4 (1 + 2
√

α1α2
)
(r0 − M)3

}−1

.

(4.12)

For small values of deformation parameters and in the
absence of correction due to EGUP, the obtained heat capac-
ity for the charged black hole is consistent with results
obtained previously in the absence of correction due to GUP
[41].

In order to obtain the entropy S in terms of the mass of
the black hole M , we have used the method presented in the
previous section for a particle which is absorbed by the black
hole [16]. By considering the RN black hole as a sink for
absorbing particles and the black hole’s size and temperature
via �X and �P parameters, the smallest increase in the area
of a black hole is given by

A ∼ Xm � �X�P � ξ h̄′. (4.13)

By considering the effective Planck constant h̄′ introduced
in Eq. (3.16), the EGUP-corrected entropy of the static and
spherical charged black hole can be expressed as

S =
∫

dS

d A
d A �

∫
(�S)min

(�A)min
d A �

∫
d A

4h̄′

= πG2

c4

(
1 + √

α1α2
) (

M +
√
M2 − Q2

)2

×
(

1 + χ + 2α1α2 (1 + χ)

1 + 2
√

α1α2

)−1

. (4.14)

As expected, in the limit of Q = 0, the RN black hole entropy
is recovered to the calculated entropy of the Schwarzschild
black hole in Eq. (3.19). Also we can see in the absence of
correction due to EGUP for α1 = α2 = χ = 0 and by setting
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the specific constants c, κ and G as unity, Eq. (4.14) reduces
to the semi-classical entropy for the black hole S = A

4 [41].

5 Conclusions

In this paper, we have investigated thermodynamical prop-
erties of the Schwarzschild and RN black holes by taking in
account the EGUP. The lower bound for the EGUP black hole
temperature has been obtained by the minimal momentum
of EGUP. We have calculated the mass–temperature relation
for the Schwarzschild black hole with EGUP and the mass–
temperature–charge relation for EGUP RN black hole. We
have calculated the EGUP-corrected entropy in terms of mass
for the Schwarzschild black hole and in terms of mass and
charge for the RN black hole, respectively. We examined the
behaviour of the corrected entropy versus the black hole’s
mass. Also, we calculated the corrected heat capacity for
the Schwarzschild and charged black holes. Moreover, the
results obtained for the thermodynamical properties of two
black holes in this work have been compared with each other
and with previous standard forms already given in the liter-
ature.
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