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Abstract A Friedmann like cosmological model in
Einstein–Cartan framework is studied when the torsion func-
tion is assumed to be proportional to a single φ(t) function
coming just from the spin vector contribution of ordinary
matter. By analysing four different types of torsion function
written in terms of one, two and three free parameters, we
found that a model with φ(t) = −αH(t)

(
ρm(t)/ρ0c

)n is
totally compatible with recent cosmological data, where α

and n are free parameters to be constrained from observa-
tions, ρm is the matter energy density and ρ0c the critical
density. The recent accelerated phase of expansion of the
universe is correctly reproduced by the contribution coming
from torsion function, with a deceleration parameter indicat-
ing a transition redshift of about 0.65.

1 Introduction

A more complete understanding of general relativity with
the presence of matter can be obtained when one consider
that the intrinsic angular momentum of fermionic particles
(spin) promotes torsion effects in space-time. This can be
achieved with the presence of asymmetric affine connection
in the construction of a manifold, introducing the torsion of
spacetime and therefore allowing emerge of new geomet-
ric degrees of freedom in the system. Thus, matter becomes
responsible for being a source of torsion, enriching stud-
ies in cosmological scenarios, with more general prescrip-
tions. An example is based on well-established studies of
the Einstein–Cartan–Kibble–Sciama (ECKS) gravitational
theory. This theory allows to describe in a more complete
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way the invariance of local gauge in relation to the group of
Poincarè [1–4], being very useful in studies of condensate of
particles with half-integer spin and averaged as a spin fluid
[5–7] besides scenarios with an effective ultraviolet cutoff
in quantum field theory for fermions [8]. Even though there
is no observational evidence to ponder the existence of tor-
sion in spacetime, some suggestions for experimental tests
involving spacetime studies with non-zero torsion for grav-
ity can be found in [9–11]. One of the major problems in
finding this evidence is associated with the fact that effects
of torsion become considerable mainly at high density and
energies. There are other cosmological scenarios that have
interesting consequences generated by torsion corrections. In
[12] the torsion effects generated by scalar fields contributes
to explain inflation. In addition, non-minimal couplings with
torsion effects have been studied to understand gravitational
waves [13,14].

However, Friedmann–Robertson–Walker (FRW) cosmo-
logical scenarios also can be addressed in presence of torsion.
In particular, the very tiny value of the cosmological constant
or dark energy needed to accelerate the universe could be
mimicked due to contribution of the torsion. Moreover, the
high symmetry of FRW spacetime preserves the symmetry
associated to Ricci curvature tensor, which implies that the
corresponding Einstein tensor and energy-momentum tensor
also preserve a symmetric form. Such construction is very
well motivated and discussed in [15], which we recommend
for further details. The whole effect of torsion due to spin of
matter may be associated to a single scalar function, depend-
ing only on time. Such approach was also adopted in [16–19].
A dynamical system approach with weak torsion field was
done recently in [20]. A review on Friedmann cosmological
models in Einstein-Cartan framework can be found in [21].
The kinematics of cosmological spacetimes with nonzero
torsion in the context of classical Einstein–Cartan gravity is
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given by [22] and the first derivation of FRW equations with
torsion was presented in [23].

The present paper aims to study torsion effects in FRW
background for late time expansion of the universe, particu-
larly the possibility to explain the recent accelerated phase of
expansion as a consequence of torsion effects. It is assumed
four different types of torsion function, parameterized by
one, two and three free parameters. Constraints with obser-
vational data allows to fix the free parameters and compare
the known parameters with the ones obtained from standard
cosmological model, namely, the ΛCDM model parameters
obtained from last Planck satellite observations [24].

The paper is organised as follows. Section 2 presents the
main equations of Friedmann cosmology with torsion, based
on [15]. In Sect. 3, the constraints from observational data are
obtained for four different torsion functions. Section 4 analy-
ses the torsion function and deceleration parameter evolution
for the best function obtained in previous section. Conclusion
is left to Sect. 5.

2 Friedmann cosmology with torsion

We follow the same notation from [15]. The standard Einstein
equation of gravitation maintain its original form in terms of
Ricci tensor, Ricci scalar and energy momentum tensor,

Rμν − 1

2
Rgμν = κTμν, (1)

with κ = 8πG, however in a space-time with torsion the
affine connection is endowed with an antisymmetric part,
namely Γ α

μν = Γ̃ α
μν + K α

μν , where Γ̃ α
μν defines the

symmetric Christoffel symbols and K α
μν defines the con-

torsion tensor,

K α
μν = Sα

μν + S α
μν + S α

νμ , (2)

written in terms of the torsion tensor Sα
μν , which is antisym-

metric in its covariant indices, Sα
μν = −Sα

νμ. In general
case the energy momentum tensor is coupled to Sα

μν by
means of the Cartan field equations,

Sαμν = −1

4
κ(2sμνα + gναsμ − gαμsν), (3)

where sαμν and sα = sμ
αμ are the tensor and vector spin

of matter, respectively. Physically, torsion provide a link
between the spacetime geometry and the intrinsic angular
momentum of the matter [22]. With the presence of torsion
terms into Eq. (1), it is known as the Einstein-Cartan equation
of gravitation.

In a homogeneous and isotropic Friedmann background,
the torsion tensor and the associated vector are [15]

Sαμν = φ(hαμuν − hανuμ) Sα = −3φuα, (4)

where φ = φ(t) is an unique time dependent function rep-
resenting torsion contribution due to homogeneity of space,
hμν is a projection tensor, symmetric and orthogonal to the
4-vector velocity uμ.

In terms of the torsion field φ(t), the Friedmann equations
are [15]:
(
ȧ

a

)2

= 8πG

3
ρ − k

a2 − 4φ2 − 4

(
ȧ

a

)
φ, (5)

ä

a
= −4πG

3
(ρ + 3p) − 2φ̇ − 2

(
ȧ

a

)
φ, (6)

where k is the curvature parameter, ρ and p are the energy
density and pressure of matter. Together the Friedmann equa-
tions, for a barotropic matter satisfying p = ωρ, the conti-
nuity equation reads [15]

ρ̇ + 3(1 + ω)Hρ + 2(1 + 3ω)φρ = 0 , (7)

with H = ȧ/a, whose solution with ω constant is

ρ = ρ0

(
a0

a

)3(1+ω)

e
−2(1+3ω)

∫ t
ti

φ(t)dt
(8)

where the subscript 0 denotes present values and ti some
initial time. We see that torsion alters the energy density evo-
lution of standard matter through the exponential term.

In order to better understand the influence of torsion func-
tion into recent accelerated phase of expansion of the uni-
verse, we look for the deceleration parameter, which can be
written as

q = 4πG

3H2 (ρ + 3p) + 2
φ̇

H2 + 2
φ

H
. (9)

For a constant and negative φ for instance, torsion tends
to accelerate the expansion. For a flat and empty space
(k = ρ = 0), Eq. (5) leads to φ(t) = −H(t)/2, which sug-
gest a H dependence to the torsion function. However, since
the physical source of torsion is the spin of matter, a torsion
function dependent on the matter density is also a much more
realistic choice. The above discussions and dimensional argu-
ments will guide us in the next section in order to build some
torsion functions and use them to compare with observational
constraints, constraining the free parameters.

3 Constraints from observational data

In order to study the possibility of dark matter and dark
energy being driven by torsion effects in cosmological evo-
lution, let us analyse the constraints imposed by observa-
tional data in four different models of torsion fields together
ordinary matter contribution. Cases I and II below are just
phenomenological assumptions for the torsion function, the
first a constant function and the second evolving with H(t).
Cases III and IV are more realistic once they are explicitly
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dependent on the matter energy density, the real sources of
spin in the universe.

The data used here were 51 H(z) data from Magaña et
al. [25] and 1048 SNe Ia data from Pantheon compilation
[26].

In all analyses here, we have written a χ2 function for
parameters, with the likelihood given by L ∝ e−χ2/2. The
χ2 function for H(z) data is given by

χ2
H =

51∑

i=1

[
Hobs,i − H(zi , s)

]2

σ 2
Hi ,obs

, (10)

where s is the parameter vector. For Pantheon, instead, we
included systematic errors, thus we had to deal with the full
covariance matrix. In this case, the χ2 is given by

χ2
SN = [mobs − m(z, s)]T C−1 [mobs − m(z, s)] (11)

where C , mobs and m are covariance matrix, observed appar-
ent magnitude vector and model apparent magnitude, respec-
tively. We have assumed flat priors for all parameters and
have sampled the posteriors with the so called Affine Invari-
ant Monte Carlo Markov Chain (MCMC) Ensemble Sampler
by [27], which was implemented in Python language with
the emcee software by [28]. In order to plot all the con-
straints on each model, we have used the freely available
software getdist,1 in its Python version.

3.1 Case I: φ(t) = φ0 = −αH0

For this simplest case of a constant torsion field, as already
discussed by [15], with α a dimensionless constant to be
determined,2 we write the Friedmann equation (5) as:

H2 = 8πG

3
ρm − k

a2 − 4αH0H − 4α2H2
0 , (12)

where ρm is the matter density parameter obtained as a solu-
tion of (7) with ω = 0, namely ρm = ρ0m

(
a0/a

)3e2αH0t ,
where ρ0m represents the present day matter energy density.
Analytic solution of (12) exists just for spatially flat (k = 0)

background, however a numeric treatment can be done in
general case and the parameters α, Ωm and H0 can be con-
strained with observational data.3

Figure 1 shows the 1σ (68.3% c.l.) and 2σ (95.4% c.l.)
contours for Ωm , α and H0 parameters obtained with H(z)
and SNe Ia observational data. Table 1 presents the mean
values of the parameters with 95% c.l. constraints. For this
model we see that Ωm is just marginally compatible at 2σ

1 getdist is part of the great MCMC sampler, COSMOMC [29].
2 The presence of H0 warrants the correct dimension for the torsion
term.
3 Here Ωm = ρ0m

ρ0c
as usual, and ρ0c = 3H2

0
8πG is the critical density.

with the last results for ΛCDM model from the Planck col-
laboration on the cosmological parameters4 [24], while H0

is compatible at 1σ .

3.2 Case II: φ(t) = −αH(t)

For this case, the analytic solution of (7) is

ρm = ρ0m

(
a

a0

)−3+2α

(13)

and the Friedmann equation (5) turns:

H2 = 8πG

3
ρm − k

a2 + 4αH2 − 4α2H2 , (14)

In terms of the density parameters, Eq. (14) is:

H

H0
=

√
Ωm(1 + z)3−2α + Ωk(1 + z)2

1 − 4α + 4α2 , (15)

where5 Ωk = 1 − Ωm − 4α + 4α2 and the redshift is intro-
duced by (1 + z) = a0/a.

Figure 2 shows the constraints for Ωm , α and H0 at 1σ

and 2σ contours for H(z) and SNe Ia observational data.
Table 2 presents the mean values of the parameters with 95%
c.l. constraints. For this model we see that both Ωm and H0

are very small, not compatible with the ΛCDM model even
at 2σ .

3.3 Case III: φ(t) = −αH(t)

(
ρm (t)
ρ0c

)n

This general case is much more interesting, since that the
torsion function is proportional to matter density ρm and it is
expected that torsion contribution comes from spin of ordi-
nary matter. Also, for this case it is easy to verify that a
solution of Eq. (7) for the energy density with ω = 0 is

ρm(a) = ρ0c
31/n

(
2α + 3C1(a/a0)3n

)1/n , (16)

whereC1 is a integration constant. In order to have ρm(a0) =
ρm0, we set C1 = − 2

3α + Ω−n
m .

The Friedmann Eq. (5) is:

H2=8πG

3
ρm− k

a2 +4αH2
(

ρm

ρ0c

)n

−4α2H2
(

ρm

ρ0c

)2n

,

(17)

In terms of the density parameters Eq. (17) is:

4 From [24], Ωm = 0.315±0.007 for matter density and H0 = (67.4±
0.5) km/s/Mpc.
5 Ωk ≡ − k

a2
0 H

2
0

is the curvature parameter.
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Fig. 1 SNe Ia+H(z)
constraints in Case I
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Table 1 Mean values of the free
parameters and 95% c.l.
constraints for Case I

Parameter 95% limits

Ωm 0.52+0.21
−0.20

α 0.38+0.12
−0.11

H0 69.6+3.1
−3.1

H

H0
= (3 − 2αΩn

m) + 2αΩn
m(1 + z)3n

(3 − 2αΩn
m) − 4αΩn

m(1 + z)3n

×
√√√√√

31/nΩm
[
2αΩn

m + (3−2αΩn
m)

(1+z)3n

]1/n + Ωk(1 + z)2 , (18)

where Ωk = (1 − 2αΩn
m)2 − Ωm .

Figure 3 shows the constraints for Ωm , n, α and H0 at 1σ

and 2σ contours for H(z) and SNe Ia observational data.
Table 3 presents the mean values of the parameters with
95% c.l.. We see that both Ωm and H0 are in very good
agreement to the ΛCDM model at 1σ , with a small positive
α value and a negative n value. With such parameters the
model is totally compatible with the recent cosmic acceler-

ation, with the dark energy component being represented by
torsion function φ(t).

3.4 Case IV: φ(t) = −αH0

(
H0
H(t)

)m(
ρm (t)
ρ0c

)n

For this general case there is no analytic solution for the
energy density ρm and one must resort to numerical methods.
Due to this model having many free parameters, we choose
to work with the spatially flat case (k = 0), which is favoured
by inflation and recent CMB observations.

The Friedmann Eq. (5) for a spatially flat Universe is:

H2 = 8πG

3
ρm + 4αHm+1

0 H−m+1
(

ρm

ρ0c

)n

−4α2Hm+2
0 H−2m

(
ρm

ρ0c

)2n

, (19)

Due to spatial flatness, there is a relation among the free
parameters of this model, which can be obtained from the
Friedmann equation, as:
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Fig. 2 SNe Ia + H(z)
constraints for Case II
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Table 2 Mean values of the free
parameters and 95% c.l.
constraints for Case II

Parameter 95% limits

Ωm 0.116+0.059
−0.057

α −0.160+0.084
−0.076

H0 59.2 ± 1.3

Ωm =
(

1 + 2φ0

H0

)2

= (1 − 2αΩn
m)2, (20)

where the last equality holds only for Case IV. As we can see
from this relation, due to nonlinearity, there is not a unique
solution for parametersα orn. So, for this analysis, we choose
to work with the free parameter ϕ0 ≡ φ0

H0
, we find the con-

straints over ϕ0 and then we use it to obtain Ωm by using
(20). We choose a flat prior ϕ0 ∈ [−1, 0], which yields a flat
prior Ωm ∈ [0, 1].

Figure 4 shows the constraints for Ωm , n, m, α and H0 at
1σ and 2σ contours for H(z) and SNe Ia observational data.
Table 4 presents the mean values of the parameters with 95%
c.l.. We see that Ωm and H0 are compatible with the ΛCDM

model values. Also, one can see that Ωm is poorly constrained
by this analysis, due to having too many free parameters.

Now we can compare the mean values for Ωm and H0

cosmological parameters obtained for the above four cases
with the ones from ΛCDM model, together with the statis-
tical parameters as χ2

min , AIC and BIC [30–32]. We choose
to compare the torsion models with both concordance mod-
els, namely spatially flat ΛCDM model, as well as with
the OΛCDM model, which allows for nonzero spatial cur-
vature, once that only Case IV is spatially flat. Table 5
present the parameters at 95% c.l. for the combined anal-
ysis H(z)+Pantheon.

As we can see on this table, AIC favours OΛCDM and
Case III over the concordance flat ΛCDM. But it is a known
fact [32] that AIC does not penalize enough the excess of
parameters, and BIC is in general most accepted, being an
approximation of the Bayesian Evidence. According to BIC,
the flat ΛCDM model and OΛCDM are favoured by this
analysis. Case III is the torsion model with the lowest BIC,
although significantly above ΛCDM.
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Fig. 3 Constraints from SNe Ia+H(z) for Case III

Table 3 Mean values of the free
parameters and 95% c.l.
constraints for Case III

Parameter 95% limits

Ωm 0.31+0.11
−0.12

α 0.14+0.14
−0.12

n −0.47+0.26
−0.36

H0 68.8+3.0
−3.1

4 Torsion evolution and transition redshift

In order to better reproduce the standard model constraints
and obtain a cosmic acceleration in agreement with the latest
observational data (see footnote 3), Case III above is the
better one, with both Ωm and H0 compatible within 1σ c.l.
and with lower χ2 and BIC parameters.

For this case it is interesting to analyse the evolution of tor-
sion function and the transition redshift. From (16) and (17),
we have obtained the mean φ(z) from the parameters MCMC
chains, jointly with its variance. The evolution of the torsion
function is shown in Fig. 5, for the mean φ(z) (blue line) and
for 1σ c.l. (orange and green lines). The behaviour of the tor-
sion function on the past is strongly dependent on the values
of parameters, specifically on the n parameter. At present, the
behaviour is similar in all cases, showing an increase on the
absolute value of torsion function just in recent times, which
coincides with the late time acceleration phase of expansion
of universe. In this sense, torsion function makes the role of a
dark energy acting during the whole history of the universe. In
the past the matter energy density dominates over the torsion
contribution and today is the torsion function that dominates,

123



Eur. Phys. J. C (2019) 79 :950 Page 7 of 9 950

66 68 70 72
H0

0

0.5

1

1.5

α

−12

0

m

−6

−4

−2

0

2

n

0.0 0.3 0.6 0.9
Ωm

66

68

70

72

H
0

0.0 0.5 1.0 1.5

α

−12 0

m

−6 −4 −2 0 2

n

Fig. 4 Constraints from SNe Ia+H(z) for Case IV

Table 4 Mean values of the free
parameters and 95% c.l.
constraints for Case IV

Parameter 95% limits

Ωm 0.62+0.39
−0.62

α 0.30+0.51
−0.31

m −3.6+6.9
−7.6

n −1.5+2.4
−2.7

H0 68.7 ± 2.2

driving the acceleration. A similar observation was made in
a recent work within the context of a scalar-tensor theory
with torsion [33], where the authors showed that an effective
torsional fluid plays an important role in recent acceleration
phase of expansion of universe but becomes subdominant in
the past, where a pressureless matter component dominates
at redshift around 200.

The behaviour of the deceleration parameter is better to
understand the recent evolution of the universe and is pre-
sented on Fig. 6. For larger z values the deceleration param-
eter seems to converge to 0.5, a value characteristic of a mat-
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Table 5 Common cosmological parameters (Ωm and H0) from Cases
I, II, III, IV and from ΛCDM, OΛCDM models at 95% c.l. and respec-
tive statistical parameters. χ2

ν = χ2
min/(n − p), where n is number

of data and p is number of free parameters. AIC = χ2
min + 2p,

BIC = χ2
min + p ln N

Case I Case II Case III Case IV OΛCDM ΛCDM

Ωm 0.52+0.21
−0.20 0.116+0.059

−0.057 0.31+0.11
−0.12 0.62+0.39

−0.62 0.238+0.056
−0.057 0.278+0.031

−0.028

H0 69.6 ± 3.1 59.2 ± 1.3 68.8+3.0
−3.1 68.7 ± 2.2 68.0+2.7

−2.6 69.57+0.99
−0.98

χ2
min 1068.23 1097.90 1053.28 1054.20 1055.15 1057.74

χ2
ν 0.9747 1.0017 0.9619 0.9627 0.9627 0.9642

p 3 3 4 4 3 2

AIC 1074.23 1103.90 1061.28 1062.20 1061.15 1061.74

BIC 1089.24 1118.91 1081.29 1082.21 1076.16 1071.74

0 2 4 6 8 10
z

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−
φ H
0

Fig. 5 Evolution of φ(z) for the mean values of parameters (blue line)
and for 1σ c.l. (orange and green lines)
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z

−0.8
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−0.2
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0.4

q(
z)

Fig. 6 Evolution of q(z) for the mean values of parameters (blue line)
and for 1σ c.l. (orange and green lines)

ter dominated universe, as expected from standard model. As
seen above, for z � 1 the torsion function start to increase and
a transition to accelerated phase occurs, dominated by torsion
term. The transition redshift zt occurs at about zt = 0.65, in
good agreement to standard model.

5 Conclusion

We have analysed a Friedmann like universe with the contri-
bution of a torsion function in Einstein–Cartan cosmology.
The torsion function is represented by φ(t), and for four
different types of function written in terms of one, two and
three free parameters we have studied the cosmic evolution
and constrained the free parameters with observational data
from H(z) and SN Ia.

From the four different functions, Case III presents a very
good agreement to observational data, in the sense that both
matter energy density parameter and H0 are completely com-
patible with the results for ΛCDM model obtained from last
Planck mission observations. Statistical parameters as BIC
and χ2 also favours Case III, as pointed out in Table 5, com-
paring the four models with standard Λ CDM model.

The effect of torsion function is to act as a dark energy
fluid at late time, correctly explaining the present accelerated
phase of expansion of the universe. A model-independent
result concerning Einstein–Cartan gravity was obtained in
[34], showing that torsion can be responsible for the vacuum
energy density or the cosmological constant, exactly as dark
energy density in the universe.

Finally, the deceleration parameter obtained for the model
furnish a desirable transition to accelerated phase at about
zt = 0.65, coming from a matter dominated phase in the
past, as occurs for standard model of cosmology.
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