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Abstract We study the Yukawa model with one scalar and
one axial scalar fields, coupled to N copies of Dirac fermions,
in curved spacetime background. The theory possesses a
reach set of coupling constants, including the scalar terms
with odd powers of scalar fields in the potential, and con-
stants of non-minimal coupling of the scalar fields to gravity.
Using the heat-kernel technique and dimensional regulariza-
tion, we derive the one-loop divergences, describe the renor-
malization of the theory under consideration and calculate
the full set of beta- and gamma-functions for all coupling
constants and fields. As a next step, we construct the renor-
malized one-loop effective potential of the scalar fields up to
the terms linear in scalar curvature. This calculation includes
only the contributions from quantum scalar fields, and is
performed using covariant cut-off regularization and local
momentum representation. Some difficulties of the renor-
malization group approach to the effective potential in the
case under consideration are discussed.

1 Introduction

The interaction between scalar fields with Dirac spinors
through a Yukawa interaction is attracting a special atten-
tion in quantum field theory in curved spacetime. In this
respect one can mention recent analysis that includes both
scalar and a pseudoscalar couplings [1] and more recently
with the inclusion of a gauge field [2,3]. In the present work
we continue the previous treatment of Yukawa model with
sterile scalar discussed in [4] and extend it to the case of the
two (ordinary and axial) scalars with a Yukawa coupling to
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fermions and general renormalizable form of self-interaction.
Our immediate purpose will be the calculation of divergences
in the most economic way, as it was done in the original pub-
lication on the renormalization of the Abelian model with
Yukawa coupling in curved spacetime with torsion from long
ago [5] (see also the book [6]).

Similar consideration of the simpler model with a single
scalar field was useful in establishing the constraints on the
quantum theory that come from the condition of renormal-
izability of the Abelian theory with massive Dirac field. The
form of the self-interaction potential of a scalar field ensuring
the renormalizability of such a theory is an interesting aspect,
that was not explored completely in the original work [5]. It
was shown and discussed in details in the recent work [4] that
the renormalizable scalar with Yukawa interaction includes
self-interactions with odd powers of the scalar fields. These
qualitatively new interactions include linear term, the term
with a cubic coupling, and also a linear term describing the
interaction between scalar field and scalar curvature.

In all examples of renormalizable quantum field theo-
ries with scalar fields, which were known until now, it was
possible to construct solutions to the renormalization group
equation for the effective action which enable to derive the
effective potential in the most economic way [7], including
in curved spacetime [8] (see also the generalization to other
sectors of effective action in [6,9]). In the model with a single
sterile scalar one has to extend this nicely working scheme
to include odd powers of the scalar field, with this general-
ization it still works pretty well [4].

The generalization of these considerations to the parity-
preserving model with an additional axial scalar field is an
interesting and challenging problem. Let us start by stating
that this problem makes sense from the viewpoint of physical
applications. First of all, there is an important example of an
axial scalar, that is an axion. Regardless axion might have dif-
ferent form of coupling to gauge and fermion fields compared
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to an ordinary axial scalar field, it is interesting to explore
the renormalization of such a parity-preserving model on a
simple example. On the other hand, in the recent years there
were indications of the possible violations of parity in the
gravitational action as an explanation of some astrophysical
observations [10]. Therefore it may be interesting to have
a consistent description of the models which are capable to
explain such a violation, and the study of renormalization of
the model with axial scalar may be a useful step in better
understanding of a possible quantum origin of such terms.

Another interesting aspect of the model under considera-
tion is that such a theory has two different scalar masses, that
is a usual situation in effective field theory (see e.g. the book
[11]). In the recent work [12] we explored the non-local finite
contributions of the curved-spacetime diagrams with mixed
internal lines, e.g. one of a light and another of a heavy scalar
fields. Here we supplement this result by deriving the effec-
tive potential in the two-scalar model. It is worth pointing
out that this situation is typical for effective field theories,
especially the ones with different mass scales and diagrams
with mixed types of internal lines. The effective potential
involves two independent contributions, one from the loops
of scalar fields and another one from the spinor loop. In what
follows we show that the results for these contributions look
somehow unusual. In the scalar sector we meet a complicated
non-polynomial mixing of the scalar masses and couplings,
something one could expect for the two-scalar model.

The paper is organized as follows. In Sect. 2 we describe
the model including a real scalar field and a pseudoscalar field
coupled to N -component fermionic field and derive the corre-
sponding one-loop divergences. The one-loop renormaliza-
tion relations in this theory and the derivation of the renormal-
ization group functions are collected in Sect. 3. In Sect. 4 the
renormalized one-loop effective potential is derived by using
the local momentum representation. Finally, our conclusions
and the discussion of the results are presented in Sect. 5.

2 Yukawa model and its renormalization

Consider a Yukawa model including a real scalar field ϕ and
a real pseudoscalar (axial scalar) field χ , coupled to the N
copies of a fermionic field Ψi , with the classical action of
the form

S =
∫

d4x
√−g

{
Ψ̄i

(
i /∇ − M − h1ϕ − h2χγ 5

)
δi jΨ j

+ 1

2
gμν∂μϕ∂νϕ + 1

2
gμν∂μχ∂νχ − 1

2
m2

1ϕ
2 − 1

2
m2

2χ
2

+ 1

2
ξ1Rϕ2 + 1

2
ξ2Rχ2 − λ1

4! ϕ
4 − λ2

4! χ
4

− λ3

2
ϕ2χ2 − g

3!ϕ
3 − p

2
ϕχ2 − τϕ − f Rϕ

}
, (1)

where m1,m2 and M are respectively the masses of scalar,
pseudoscalar and spinor fields, h1 and h2 are the Yukawa cou-
pling constants. Finally, λ1, λ2, λ3, g, p and τ are coupling
constants in the scalar – pseudoscalar sectors, that survive in
the flat limit, while ξ1 and f are the nonminimal parameters
of the scalar field and ξ2 the nonminimal parameter of the
interaction between axial scalar field with gravity. It is easy
to note that the action has not only the standard even terms,
but also a set of odd terms, with the dimensional parame-
ters g, p and f . As we shall see in brief, these terms are
necessary to achieve renormalizability of the theory. The last
observation is that term which are linear and cubic in the
pseudoscalar field are excluded by the requirement that the
Lagrangian is a parity-even scalar.

In order to calculate the one-loop divergences, we shall use
the heat-kernel method, and perform the background quan-
tum splitting of the fields, according to

ϕ → ϕ + σ, χ → χ + ρ,

Ψ̄i → Ψ̄i + η̄i , Ψ j → Ψ j + η j , (2)

where ϕ, χ, Ψ̄ , Ψ are the classical background fields and
σ, ρ, η̄, η their quantum counterparts.

The bilinear in quantum fields part of the action is written
as follows

S(2) = 1

2

∫
d4x

√−g
(
σ ρ η̄i

)
Ĥ

⎛
⎝ σ

ρ

η j

⎞
⎠

= 1

2

∫
d4x

√−g{σH11σ + ρH21σ + η̄i H31σ

+ σH12ρ + ρH22ρ + η̄i H32ρ + σH13η j

+ ρH23η j + η̄i H33η j }, (3)

where the elements of the matrix operator Ĥ have the form

H11 = −� − m2
1 + ξ1R − gϕ − λ3χ

2 − λ1

2
ϕ2,

H12 = −4ϕχλ3 − 2pχ,

H13 = −2h1Ψ̄ j ,

H21 = −4ϕχλ3 − 2pχ,

H22 = −� − m2
2 + ξ2R − pϕ − λ3ϕ

2 − λ2

2
χ2,

H23 = −2h2Ψ̄ jγ
5,

H31 = −2h1Ψi ,

H32 = −2h2γ
5Ψi ,

H33 = 2(i /∇ − M − h1ϕ − h2χγ 5)δi j . (4)

It proves useful to introduce conjugated matrix operator

Ĥ∗ =
⎛
⎝−1 0 0

0 −1 0
0 0 − 1

2 (i /∇ + M)

⎞
⎠ . (5)
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The one-loop quantum contribution to effective action is
defined by the expression Tr ln(Ĥ). To calculate the diver-
gences of effective action we will write it as

Tr ln(Ĥ) = Tr ln(Ĥ Ĥ∗) − Tr ln(Ĥ∗). (6)

The last term Tr ln Ĥ∗ contributes only to the vacuum diver-
gences that are known for an arbitrary model [6,13]. There-
fore it is sufficient to calculate the divergences of the product
Ĥ Ĥ∗, that has a standard form,

Ĥ = Ĥ Ĥ∗ = 1̂� + 2ĥμ∇μ + Π̂. (7)

Hence,

H11 = � + m2
1 + λ1

2
ϕ2 − ξ1R + λ3χ

2 + gϕ,

H12 = 2pχ + 4λ3ϕχ,

H13 = h1Ψ̄ j (i /∇ + M),

H21 = 2pχ + 4λ3ϕχ,

H22 = � + m2
2 + λ2

2
χ2 − ξ2R + λ3ϕ

2 + pϕ,

H23 = h2Ψ̄ jγ
5(i /∇ + M),

H31 = 2h1Ψi ,

H32 = 2h2γ
5Ψi ,

H33 = δi j
[
� − 1

4
R + M2 + h1ϕ(i /∇ + M)

+ h2χγ 5(i /∇ + M)
]
. (8)

where we can identify

hμ
13 = ih1

2
Ψ̄ jγ

μ, hμ
23 = ih2

2
Ψ̄ jγ

5γ μ,

hμ
33 = i

2
(h1ϕ + h2χγ 5)γ μδi j (9)

and

Π11 = m2
1 + λ1

2
ϕ2 − ξ1R + gϕ + λ3χ

2,

Π12 = 2pχ + 4λ3ϕχ,

Π13 = h1MΨ̄ j ,

Π21 = 2pχ + 4λ3ϕχ,

Π22 = m2
2 + λ2

2
χ2 − ξ2R + pϕ + λ3ϕ

2,

Π23 = h2MΨ̄ jγ
5,

Π31 = 2h1Ψi ,

Π32 = 2h2γ
5Ψi ,

Π33 = δi j
[
M2 − 1

4
R + h1Mϕ + h2Mχγ 5

]
. (10)

The Schwinger–De-Witt proper-time (heat kernel) tech-
nique [14] yields the general expression for the one-loop
divergences in the form

Γ
(1)
div = −μD−4

ε

∫
dDx

√−g sTr

{
1

2
P̂2 + 1

12
Ŝ2
μν

+ 1

6
�P̂ + 1̂

180

(
R2

μναβ − R2
μν + �R

)}
, (11)

where ε = (4π)2(D − 4) and

P̂ = Π̂ + 1̂

6
R − ∇μĥ

μ − ĥμĥ
μ,

Ŝμν = [∇ν,∇μ

]
1̂ + ∇ν ĥμ − ∇μĥν + ĥν ĥμ − ĥμĥν. (12)

The relations (11), (12) lead to the following result for the
one-loop divergences in the model under consideration,1

Γ
(1)
div = Γ

(1)
vac, div + Γ

(1)
m, div, (13)

where

Γ
(1)
vac, div = −μD−4

ε

∫
dDx

√−g

{
1

2

(
m4

1 + m4
2
)

−2NM4 +
( N

3
M2 − m2

1ξ̃1 − m2
2ξ̃2

)
R

+1

2

(
ξ̃2

1 + ξ̃2
2 − N

9

)
R2 + 8N − 2

180
R2

μν

+
( N

24
+ 1

45

)
R2

μναβ +
( 1

45
+ N

9
− ξ̃1 + ξ̃2

6

)
�R

}

(14)

and

Γ
(1)
m, div = −μD−4

ε

∫
dDx

√−g

{∑
k

3Ψ̄k

[
i

2
h2

1 /∇

− i

2
h2

2 /∇ + h2
1(M + h1ϕ − h2χγ 5)

+ h2
2(M + h1ϕ − h2χγ 5)

]
Ψk + 2Nh2

1(∂μϕ)2

− 2Nh2
2(∂μχ)2 +

(1

3
Nh2

1 − λ1

2
ξ̃1 − λ3ξ̃2

)
Rϕ2

+
(1

8
λ2

1 + 1

2
λ2

3 − 2Nh4
1

)
ϕ4 +

[
2

3
Nh1M − gξ̃1

− pξ̃2

]
Rϕ + (m2

1g + m2
2 p − 8Nh1M

3)ϕ

+ 1

2

(
g2 + p2 + λ1m

2
1 + 2λ3m

2
2 − 24Nh2

1M
2)ϕ2

+
(
λ3 p − 8NMh3

1 + 1

2
gλ1

)
ϕ3

+ 1

2

(
2λ3m

2
1 + λ2m

2
2 + 8p2 + 8Nh2

2M
2)χ2

+
(1

2
λ2

3 + 1

8
λ2

2 − 2Nh4
2

)
χ4

− 1

2

(
λ2ξ̃2 + 2λ3ξ̃1 + 2N

3
h2

2

)
Rχ2

1 We present here only the final result, the intermediate formulas can
be found in the “Appendix”.
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+ 1

2

(
λ1λ3 + λ2λ3 + 8Nh2

1h
2
2 + 32λ2

3

)
ϕ2χ2

+
(
gλ3 + 1

2
pλ2 + 16pλ3 + 8Nh1h

2
2M

)
ϕχ2

+ 1

6

(
g + p − 8Nh1M

)
�ϕ

+ 1

12

(
λ1 + 2λ3 − 16Nh2

1

)
�ϕ2

+ 1

12

(
λ2 + 2λ3 + 16Nh2

2

)
�χ2

}
. (15)

For compactness, we have introduced the notations ξ̃1,2 =
ξ1,2 − 1

6 . The vacuum divergences are included for the sake
of completeness.

The expression (15) shows that the odd terms, which we
have included in the classical action (1), subject to the diver-
gences. Exactly as it is the case in the simpler single-scalar
theory, these terms have no symmetry protection and the
structure of divergences is exactly as should be expected from
the symmetry and power-counting arguments.

3 Renormalization

Once the form of the one-loop divergences is known one can
easily find the relations between bare and renormalizable
quantities. For the fields we meet

ϕ0 = μ
D−4

2

(
1 + 2Nh2

1

ε

)
ϕ,

χ0 = μ
D−4

2

(
1 − 2Nh2

2

ε

)
χ,

Ψk0 = μ
D−4

2

[
1 + 3

4ε
(h2

1 − h2
2)

]
Ψk . (16)

The relations for masses have the form

M0 =
(

1 − 9

2ε
h2

1 − 3

2ε
h2

2

)
M,

m2
10 = m2

1 − 1

ε

(
g2 + p2 + 4Nh2

1m
2
1 + λ1m

2
1 + 2λ3m

2
2

− 24Nh2
1M

2),
m2

20 = m2
2 − 1

ε

(
8p2 − 4Nh2

2m
2
2 + λ2m

2
2 + 2λ3m

2
1

+ 8Nh2
2M

2). (17)

For the even couplings and nonminimal parameters we find

ξ10 = ξ1 − λ1 + 4Nh2
1

ε
ξ̃1 − 2λ3

ε
ξ̃2,

ξ20 = ξ2 + 4Nh2
2 − λ2

ε
ξ̃2 − 2

ε
λ3ξ̃1,

h10 = μ
4−D

2 h1

(
1 − 4Nh2

1 + 9h2
1 + 3h2

2

2ε

)
,

h20 = μ
4−D

2 h2

(
1 + 4Nh2

2 + 9h2
2 + 3h2

1

2ε

)
,

λ10 = μ4−D
(

λ1 + 48Nh4
1 − 8Nλ1h2

1 − 3λ2
1 − 12λ2

3

ε

)
,

λ20 = μ4−D
(

λ2 + 48Nh4
2 + 8Nλ2h2

2 − 3λ2
2 − 12λ2

3

ε

)
,

λ30 = μ4−D
(

λ3 − 1

ε

(
λ1λ3 + λ2λ3 + 8Nh2

1h
2
2 + 32λ2

3

+ 4Nλ3h
2
1 − 4Nλ3h

2
2

))
. (18)

And, finally, for the odd couplings and nonminimal parame-
ters,

g0 = μ
4−D

2

(
g + 48NMh3

1 − 3gλ1 − 6Nh2
1g − 6λ3 p

ε

)
,

τ0 = μ
4−D

2

(
τ + 8Nh1M3 − 2Nτh2

1 − m2
1g − m2

2 p

ε

)
,

p0 = μ
D−4

2

(
p − 1

ε

(
2λ3g + λ2 p + 32λ3 p + 16Nh1h

2
2M

− 4Nh2
2 p + 2Nh2

1 p
))

,

f0 = μ
D−4

2

[
f + g

ε
ξ̃1 + p

ε
ξ̃2 − 2Nh1M + 6N f h2

1

3ε

]
. (19)

Note the non-trivial renormalization of the odd coupling
parameters and in particular of the new non-minimal cou-
pling parameter f .

The β- and γ -functions can be calculated from the renor-
malization relations for the parameters and fields. For the the-
ories in curved spacetime the procedure [15,16] is described
in detail in the book [6], so we give only the final results for

βP = lim
D→4

μ
dP

dμ
, (20)

γΦΦ = lim
D→4

μ
dΦ

dμ
, (21)

where P = (
m2

1,m
2
2, M, h1, h2, λ1, λ2, ξ1, ξ2, g, p, τ, f

)
are the renormalized parameters and Φ = (ϕ, χ, Ψk) are
the renormalized fields. Using the relations (16)–(19), we
obtain the following results:

βh1 = (4Nh3
1 + 9h3

1 + 3h1h2
2)

2(4π)2 ,

βh2 = − (4Nh3
2 + 9h3

2 + 3h2
1h2)

2(4π)2 ,

βM = 3M

2(4π)2

(
3h2

1 + h2
2

)
,

βλ1 = 1

(4π)2

(
3λ2

1 + 8Nλ1h
2
1 − 48Nh4

1 + 12λ2
3

)
,
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βλ2 = 1

(4π)2

(
3λ2

2 − 8Nλ2h
2
2 − 48Nh4

2 + 12λ2
3

)
,

βλ3 = 1

(4π)2

(
λ1λ3 + λ2λ3 + 32λ2

3 + 8Nh2
1h

2
2

+ 4Nλ3h
2
1 − 4Nλ3h

2
2

)
,

βξ1 = 1

(4π)2

[(
λ1 + 4Nh2

1

)(
ξ1 − 1

6

)
+ 2λ3

(
ξ2 − 1

6

)]
,

βξ2 = 1

(4π)2

[(
λ2 − 4Nh2

2

)(
ξ2 − 1

6

)
+ 2λ3

(
ξ1 − 1

6

)]
,

βg = 1

(4π)2

(
3gλ1 + 6Ngh2

1 − 48NMh3
1 + 6pλ3

)
,

βp = 1

(4π)2

(
pλ2 + 32λ3 p − 4Nph2

2 + 2Nph2
1

+ 2gλ3 + 16NMh1h
2
2

)
,

βm2
1

= 1

(4π)2

[
m2

1λ1 + g2 + p2 +
(

4m2
1 − 24M2

)
Nh2

1

+ 2λ3m
2
2

]
,

βm2
2

= 1

(4π)2

[
m2

2λ2 + 8p2 +
(

8M2 − 4m2
2

)
Nh2

2

+ 2λ3m
2
1

]
,

βτ = 1

(4π)2

(
2Nτh2

1 + gm2
1 + pm2

2 − 8Nh1M
3
)
,

β f = 1

(4π)2

[
2N f h2

1 − g
(
ξ1 − 1

6

)
− p

(
ξ2 − 1

6

)

+ 2

3
NMh1

]
. (22)

For the γ -functions we have

γϕ = −2Nh2
1

(4π)2 , γχ = 2Nh2
2

(4π)2 ,

γΨk = 3

4(4π)2 (h2
2 − h2

1). (23)

A good check is that, if considering the conformal invariant
theory, with vanishing masses and other dimensional con-
stants, g, p, τ and f , and assuming ξ1 = ξ2 = 1

6 , the pole
coefficient in the expression for the divergences (15) is also
conformal invariant. Consequently, theβ-functions for ξ1 and
ξ2 in this case are linear combinations of ξ̃1 and ξ̃2, defined
after Eq. (14).

4 Effective potential

In this section we derive the one-loop effective potential in the
model under consideration up to first order in scalar curva-
ture, using the local momentum representation, based on the
Riemann normal coordinates. This method is quite efficient

for mass-dependent calculations of local quantities, such as
the effective potential.

The effective potential Vef f (ϕ) is defined as the zeroth-
order term in the derivative expansion of the effective action
of a background scalar field ϕ(x),

Γ [ϕ, gμν] =
∫

dDx
√−g

{
− Vef f (ϕ)

+ 1

2
Z(ϕ) gμν∂μϕ ∂νϕ + · · ·

}
, (24)

where D is the spacetime dimension.
Within the loop expansion of the effective action, the cor-

responding one-loop correction to the effective potential is
given by

∫
dDx

√−g V (ϕ) = 1

2
sTr ln Ĥ

∣∣∣
ϕ=const

(25)

where Ĥ is the bilinear operator of action (3).
The curvature expansion of V (ϕ) reads

V = V0 + V1 + · · · , (26)

where V (1)
0 is the well-known flat-spacetime effective poten-

tial, which has been derived many times and in different ways
starting from the work of Coleman and Weinberg [7] and V1

is the first order in scalar curvature R. In curved spacetime
the potential can also be derived in different ways.

Let us emphasize that in all known examples the effec-
tive potential can be obtained by solving the renormalization
group equation for the effective action, in both flat [7] and
curved [8] spacetimes (see e.g. Ref. [6] for detailed introduc-
tion and further references. The generalization to the model
with a single sterile scalar proceeds is done in a close analogy
to the standard approach, but with some modification due to
the presence of the odd interaction terms [4].

The renormalization group equation for the the effective
action has the form [6,15]

{
μ

∂

∂μ
+ βP

∂

∂P
+

∫
dDx γΦΦ

δ

δΦ(x)

}

×Γ [gαβ,Φ, P, D, μ] = 0, (27)

where we assume the sum over all parameters (couplings
and masses) P and the fields Φ = (ϕ, χ, Ψk). The effective
potential satisfies the same equation, due to the separation of
different terms in (24). Then, the result for, e.g., a single scalar
field can be presented as a general symbolic expression2

2 We will not write down similar formula for the theory (1), because it
is too long. The interested reader can easily obtain it by analogy with
Eq. (28).
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Vef f = −1

2
m2ϕ2 − 1

2
ξ Rϕ2 + λ

4! ϕ4+ g

3!ϕ
3 + τϕ + f Rϕ

− 1

4
ϕ2(βm2 + 2m2γϕ)

[
ln

(ϕ2
1∗

μ2

)
+ C1

]

− 1

4
Rϕ2(βξ + 2ξγϕ)

[
ln

(ϕ2
2∗

μ2

)
+ C2

]

+ 1

12
ϕ3(βg + 3gγϕ)

[
ln

(ϕ2
3∗

μ2

)
+ C3

]

+ 1

48
ϕ4(βλ + 4λγϕ)

[
ln

(ϕ2
4∗

μ2

)
+ C4

]

+ 1

2
ϕ(βτ + τγϕ)

[
ln

(ϕ2
5∗

μ2

)
+ C5

]

+ 1

2
Rϕ(β f + f γϕ)

[
ln

(ϕ2
6∗

μ2

)
+ C6

]
, (28)

where all beta- and gamma-functions are given in Eqs. (22)
and (23). The set of the constantsC1 ... 6 in the last expression
(28) can be found from the initial renormalization conditions.
For instance, the two well-known values, corresponding to
the standard choices in the massless scalar case areC4 = − 25

6
obtained in [7] and C2 = −3 obtained in [6,8].

The symbolic expressions ln
(ϕ2

k∗
μ2

)
with k = 1, 2, ..., 6, in

the formula (28) depend on the theory under consideration.
For instance, in the model with a single sterile scalar [4], these
quantities appear as linear combinations of the logarithms

t (0) = 1

2
ln

[
m2 + 1

2λϕ2 + gϕ

μ2

]
(29)

and

t (
1
2 ) = 1

2
ln

[
(M + hϕ)2

μ2

]
(30)

for the scalar and fermion contributions to the effective poten-
tial, correspondingly. Namely, the logarithms (29) and (30)
are used as an efficient Ansatz to solve the renormalization
group equation for the effective potential.

In the massless case or in the limit of large-scalar limit,
one should expect that the asymptotic behavior of all terms
should be

ln
(ϕ2

k∗
μ2

)
∝ ln

(ϕ2

μ2

)
. (31)

In the subsequent subsection we perform direct calculation
of the scalar contribution in the model (1) and show that the
result is inconsistent with the expectation based on the Ansatz
that consists in guessing the form of the logarithms, such as
(29) and (30).

The calculations presented below were performed in the
covariant cut-off regularization of the Euclidean integrals in
the local momentum representation. In the case of effective
potential this regularization is the simplest options. On the
other hand, the transition to the covariant cut-off in the proper

time integral, and consequently to the dimensional regular-
ization is automatic, as discussed in [18] (see also earlier
general investigation in flat spacetime [19]).

4.1 Two-scalar sector

Let us start from the bilinear form of the action in the scalar
sector of (3) in the form

S(2)
0 = 1

2

∫
d4x

√−g
(
σ ρ

)
Ĥs

(
σ

ρ

)
, (32)

where the matrix operator has the form

Ĥs = �1̂ +
(
M2

11 M2
12

M2
21 M2

22

)
(33)

with 1̂ = diag (1, 1) and

M2
11 = m̃2

1 − ξ1R,

M2
22 = m̃2

2 − ξ2R,

M2
12 = M2

21 = 2pχ + 4λ3ϕχ, (34)

where

m̃2
1 = m2

1 + λ1

2
ϕ2 + λ3χ

2 + gϕ , (35)

m̃2
2 = m2

2 + λ2

2
χ2 + λ3ϕ

2 + pϕ. (36)

In order to simplify the calculations let us diagonalize
the matrix in the second term of relation (33), by making a
rotation in the space of the fields,
(

σ

ρ

)
= U

(
φ1

φ2

)
, where U =

(
cos α − sin α

sin α cos α

)
. (37)

After this transformation, Eq. (32) becomes

S(2)
0 = 1

2

∫
d4x

√−g

{
φ1�φ1 + φ2�φ2

+ φ1

[
cos2(α)M2

11 + sin2(α)M2
22 − sin(2α)M2

12

]
φ1

+ φ2

[
sin2(α)M2

11 + cos2(α)M2
22 + sin(2α)M2

12

]
φ2

+ φ1

[
sin(2α)

(
M2

22 − M2
11

)
+ 2 cos(2α)M2

12

]
φ2

}
.

(38)

Now, we can simply choose

cos(2α) = M2
22 − M2

11

2M2
12

sin(2α) �⇒

cot(2α) = Θ = M2
22 − M2

11

2M2
12

, (39)

123
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such that the last term in (38) vanishes and the new diagonal
matrix Ĥs = U−1 ĤsU has the form

Ĥs = �1̂

+
(
aM2

11 + bM2
22 − cM2

12 0
0 bM2

11 + aM2
22 + cM2

12

)
,

(40)

where

a = 1

2
+ Θ

2
√

1 + Θ2
, b = 1

2
− Θ

2
√

1 + Θ2
,

c = 1√
1 + Θ2

. (41)

Since we are interested in the O(R)-approximation, it is
useful to rewrite (40) as

Ĥs =
(

� − Π1 − ζ1R + · · · 0
0 � − Π2 − ζ2R + · · ·

)
,

(42)

where · · · stands for higher orders in R with

Π1 = −
⎛
⎝1

2
+ Θ0

2
√

1 + Θ2
0

⎞
⎠ m̃2

1

−
⎛
⎝1

2
− Θ0

2
√

1 + Θ2
0

⎞
⎠ m̃2

2 + M2
12√

1 + Θ2
0

, (43)

Π2 = −
⎛
⎝1

2
− Θ0

2
√

1 + Θ2
0

⎞
⎠ m̃2

1

−
⎛
⎝1

2
+ Θ0

2
√

1 + Θ2
0

⎞
⎠ m̃2

2 − M2
12√

1 + Θ2
0

, (44)

and

ζ1 =
⎛
⎝1

2
+ Θ0

2
√

1 + Θ2
0

⎞
⎠ ξ1 +

⎛
⎝1

2
− Θ0

2
√

1 + Θ2
0

⎞
⎠ ξ2,

(45)

ζ2 =
⎛
⎝1

2
− Θ0

2
√

1 + Θ2
0

⎞
⎠ ξ1 +

⎛
⎝1

2
+ Θ0

2
√

1 + Θ2
0

⎞
⎠ ξ2,

(46)

where we denote Θ0 = m̃2
2−m̃2

1
2M2

12
.

As next step, we define

Ĥs =
(
H (1) 0

0 H (2)

)
, (47)

where H (1) =(� − Π1 − ζ1R) and H (2) =(�−Π2 − ζ2R),
so that

Tr ln Ĥs = ln Det Ĥs = Tr ln H (1) + Tr ln H (2). (48)

Let us point out that using the rotation in the fields space to
diagonalize Ĥ , we also have to consider the contribution that
comes from the transformation Ĥs = U−1 ĤsU . In relation
(48), since DetU = DetU−1 = 1, then there is no con-
tribution. However the Jacobian of a such transformation in
four-dimensional spacetime is proportional to δ4(0), which
in dimensional regularization formally vanishes while in our
case via cut-off regularization scheme this means a cut-off
dependent contribution to the cosmological constant.

Another important observation is that rotation (37) and an
expansion to the first order in curvature are not commuting
operations. This means that if we extract the O(R)-term first
and after that make a rotation only for a flat-space sector, the
result would be different and not satisfactory from the point
of view of our calculations.

Starting from this point, we meet a product of two normal
scalar operators (47). In this situation it is possible to use the
technique elaborated in [17] (see also [4,18,20]) to find the
one-loop effective potential up to first order in R, using the
Riemann normal coordinates formalism.

The equation for the propagator of a scalar field Gc(x, x ′)
related to H (1) has the form
(
g

1
4 �g− 1

4 − Π1 − ζ1R
)
Ḡ(x, x ′) = − δD(x − x ′). (49)

In Eq. (49) we take into account the expression for the covari-
ant Dirac delta function

δc(x, x
′) = g−1/4 δD(x − x ′) g′ −1/4 (50)

and the modified propagator Ḡ(x, x ′) [17]. Both elements
are necessary for the consistency of the expansion, so that
the r.h.s. of the above equation does not depend on the
metric tensor. Thus, one can use the relation Tr ln Ĥ =
− Tr ln Ḡ to derive the dependence on the curvature tensor in
Eq. (25).

In the Riemann normal coordinates the expansion of the
spacetime metric gαβ up to first order in the curvature is given
by [21] (see also simplified introduction and more references
in [22])

gαβ(x) = ηαβ − 1

3
Rαμβν(x

′) yμyν + · · · , (51)

hence

R(x) = R(x ′) + · · · , (52)

� = ∂2 + 1

3
Rμν

α β(x ′) yα yβ ∂μ∂ν − 2

3
Rα

β (x ′) yβ ∂α

+ · · · . (53)

123
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Starting from this formula, it is easy to get

g1/4 � g−1/4 = ∂2 + 1

6
R + 1

3

(
Rμν

α β(x ′) yα yβ ∂μ∂ν

− Rα
β (x ′) yβ ∂α

)
+ · · · , (54)

where the derivatives are ∂α = ∂
∂yα , ∂2 = ημν∂μ∂ν and the

dots mean higher order terms in the curvature tensor and its
covariant derivatives.

After all, Eq. (49) becomes

[
− ∂2 + Π1 +

(
ζ1 − 1

6

)
R
]
Ḡ(x, x ′) = δD(x − x ′). (55)

We can also note that the last term in Eq. (54) does not con-
tribute to the effective potential due to the Lorentz invariance
[17].

The solution up to the first order in the curvature has the
form

Ḡ(x, x ′) =
∫

dDk

(2π)D
eiky

[
1

k2 + Π1

−
(
ζ1 − 1

6

) R

(k2 + Π1)2

]
. (56)

The results presented above, enable one to find the one-
loop effective potential. Taking into account the expansion
of bilinear operator H (1) and the Green’s function Ḡ(x, x ′)
up to first order in R, we have

− Tr ln Ḡ = Tr ln(Ĥ (1)
0 + Ĥ (1)

1 R)

= Tr ln Ĥ (1)
0 + Tr Ḡ0 Ĥ

(1)
1 R. (57)

For the effective potential in flat spacetime we need just
the first term in the r.h.s. of Eq. (57) given by

−
∫

dDx V̄ (1)
0 = 1

2
Tr ln Ĥ (1)

0

= 1

2
Tr ln S2(ϕ, χ)

− 1

2
Tr ln S2(ϕ = χ = 0), (58)

where S2(φ) is the bilinear form of the classical action in the
background-field formalism. The last term in Eq. (58) can be
seen as a normalization of the functional integral. This term
arises naturally through the diagrammatic representation of
effective potential. From Eq. (58) we get

V̄ (1)
0 (ϕ, χ) = 1

2

∫
dDk

(2π)D
ln

(
k2 + Π1

k2 + m2
1

)
. (59)

Using the Euclidean momentum cut-off Ω , for D = 4 we
have

V̄ (1)
0 (ϕ, χ) = 1

2(4π)2

∫ Ω

0
dk2 k2 ln

(
k2 + Π1

k2 + m2
1

)
, (60)

and we finally get

V̄ (1)
0 (ϕ, χ) = V̄ (1)

0−div(ϕ, χ) + V̄ (1)
0− f in(ϕ, χ), (61)

where

V̄ (1)
0−div(ϕ, χ) = 1

32π2

{
Ω2

(
Π1 − m2

1

)
− Π2

1

2
ln

Ω2

μ2

+ 1

2
m4

1 ln
Ω2

μ2

}
, (62)

V̄ (1)
0− f in(ϕ, χ) = 1

32π2

{
− 1

4

(
Π2

1 − m4
1

)
+ Π2

1

2
ln

Π1

μ2

− 1

2
m4

1 ln
m2

1

μ2

}
. (63)

The second term in the r.h.s. of Eq. (57) corresponds to
the first order in curvature correction V̄ (1)

1 (ϕ, χ), which can
be derived as follows

−
∫

dDx V̄ (1)
1 = 1

2
Tr Ḡ0 Ĥ1R

= −1

2

∫
dDx

∫
dDx ′ Ḡ−1

0 (x, x ′) Ḡ1(x
′, x)R, (64)

so that

V̄ (1)
1 = 1

2

∫
dDx ′

∫
dDk

(2π)D
eik(x−x ′)

×
∫

dD p

(2π)D
eip(x

′−x) Ḡ−1
0 (k) Ḡ1(p) R

= 1

2

∫
dDk

(2π)D
Ḡ−1

0 (k) Ḡ1(k) R. (65)

For D = 4 and replacing the explicit forms of Ḡ−1
0 (k) and

Ḡ1(k) of Eq. (56) in Eq. (65), one arrives at

V̄ (1)
1 = − 1

2(2π)4

(
ζ1 − 1

6

)
R

∫ Ω

0

k2dk2

k2 + Π1
. (66)

After taking the last integral, the result has the form

V̄ (1)
1 (ϕ, χ) = V̄ (1)

1−div(ϕ, χ) + V̄ (1)
1− f in(ϕ, χ), (67)

where

V̄ (1)
1−div(ϕ, χ) = − 1

32π2

(
ζ1 − 1

6

)
R

[
Ω2 − Π1 ln

Ω2

μ2

]
,

V̄ (1)
1− f in(ϕ, χ) = − 1

32π2

(
ζ1 − 1

6

)
R Π1 ln

Π1

μ2 . (68)

We have described the calculations for the first contribu-
tion due to Ĥ (1). For the second term Ĥ (2) the calculations
are analogous except that in this case we have to use Π2 and
ζ2 instead Π1 and ζ1. The final result has the form

123
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V̄ (ϕ, χ) = V̄ (1)
0 (ϕ, χ) + V̄ (2)

0 (ϕ, χ)

+ V̄ (1)
1 (ϕ, χ) + V̄ (2)

1 (ϕ, χ)

= 1

32π2

{
− 1

4

[
Π2

1 + Π2
2 − (m4

1 + m4
2)

]

+ Ω2
[
Π1 + Π2 − (m2

1 + m2
2)

]

+ 1

2
(Π2

1 + Π2
2 ) ln

Π2

μ2 − 1

2
(Π2

1 + Π2
2 ) ln

Ω2

μ2

− 1

2
m4

1 ln
m2

1

μ2 − 1

2
m4

2 ln
m2

2

μ2

+ 1

2
(m4

1 + m4
2) ln

Ω2

μ2

−
(
ζ1 − 1

6

)
R

[
Π1 ln

Π1

μ2 + Ω2 − Π1 ln
Ω2

μ2

]

−
(
ζ2 − 1

6

)
R

[
Π2 ln

Π2

μ2 +Ω2 − Π2 ln
Ω2

μ2

] }
.

(69)

This is the final result for scalar fields loop to effective poten-
tial.

Some observations concerning the expression (69) are in
order. First of all, the divergent part is in the perfect corre-
spondence with the corresponding part of the result (15),
obtained on the base of the heat-kernel method. In order
to see this it is sufficient to use the well-known correspon-
dence between covariant cut-off and dimensional regulariza-
tion parameter (see, e.g., [23]),

2

4 − n
μn−4 ∼ ln

Ω2

μ2 , n −→ 4. (70)

Second, the dependence on the renormalization parameter
μ is exactly the standard one, such that the effective potential
is a solution of the standard renormalization group equation
(27).

Thus, the expression (69) indicates that the quantum cor-
rections are given by some logarithmic terms, similar to the
general renormalization group-based form (28). On the other
hand, the logarithmic terms in (69) depend on the unusual
arguments representing the mixture of different scalar fields,
their masses and coupling constants. This situation is in fact
typical for the quantum corrections coming from the loops
with mixed internal lines, e.g. of the light and heavy mass
fields [11] (see also a recent work [12] for the extension to
curved space). However, it is interesting to point out that this
form of the effective potential does not confirm a naive expec-
tation that the scalar fields contribution to effective potential
can be obtained using the anzatz of the form t (0) from Eq. (29)
for each of the background scalars. This output means that
the possibility to derive the full result (69) from the renormal-
ization group equation is not evident and deserves a further
study.

We can point out that in the limit of large scalar fields,
when both |ϕ| → ∞ and |χ | → ∞, our result (69) reduce
to the sum of logarithmic contributions of the scalar fields.
However, in general the effective potential has more compli-
cated form. The origin of this feature of the two-scalar model
is the rotation (37), that mixes different masses, interactions
and non-minimal parameters.

5 Conclusions and perspectives

We have formulated the Yukawa model of one sterile scalar
and one axial scalar (pseudoscalar) fields, interacting to
themselves and also to the set of fermions through the
Yukawa couplings.

The power counting analysis of the divergences shows
that the helps us to identify the form of the classical potential
of scalar and pseudoscalar self-interaction, providing renor-
malizable quantum theory. This potential has all even and
odd terms that are allowed by symmetries (including parity)
of the classical theory, without coupling constants with the
inverse-mass dimensions.

The complete analysis of one-loop renormalization, β−
and γ -functions was given in Sect. 3. The main results of
this part is the importance of the mixed scalar-pseudoscalar
terms, which do not have symmetry protection and, as a
result, are indispensable for renormalizability of the theory.
Thus, we have completely described the one-loop renormal-
ization structure of the model under consideration.

The effective potential has been calculated up to the linear
in scalar curvature terms. The results is a sum of independent
contributions from the scalar fields loop and from the spinor
field loop. The contributions of the scalar sector has been
calculated in the explicit form and demonstrate a nontriv-
ial dependence on the background scalar fields, on masses
and coupling constants. Let us note that the derivation of the
fermion contribution to effective potential in the full massive
theory faces serious technical difficulties and we left it for
the future work.

It is interesting that unlike the single scalar field mod-
els, the effective potential in the two-scalar model under dis-
cussion contains usual logarithmic terms and also the terms
with the non-logarithmic asymptotic. In the scalar loop sec-
tor the model under consideration is qualitatively similar to
the situation with two quantum fields with different masses,
that is well-known from the literature (see, e.g. [11]) and
was recently discussed in curved space [12]. It is remark-
able, however, that in our expressions we could observe the
effect of masses even in the local effective potential, without
invoking the non-local form factors, as it is done in the men-
tioned publications. It is worth mentioning, that the direct
calculation of the scalar loop for effective potential has been
performed using rotation (37) in the space of the scalar fields.
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This operation turns out to be not commutative with the
expansion using local momentum representation.
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Appendix

The intermediate expressions leading to (15) are

∇μĥ
μ =

⎛
⎜⎜⎝

0 0 i
2h1∇μΨ̄ jγ

μ

0 0 i
2h2∇μΨ̄ jγ

5γ μ

0 0 i
2 (h1∇μϕ + h2∇μχγ 5)γ μδi j

⎞
⎟⎟⎠ ,

ĥμĥ
μ =

⎛
⎜⎝

0 0 −h2
1Ψ̄kϕ + h1h2Ψ̄kχγ 5

0 0 −h1h2Ψ̄kγ
5ϕ + h2

2Ψ̄kχ

0 0 (−h2
1ϕ

2 + h2
2χ

2)δik

⎞
⎟⎠

and

ĥμĥν =
⎛
⎜⎝

0 0 − 1
4 (h2

1Ψ̄kϕ − h1h2Ψ̄kχγ 5)γμγνδ
ik

0 0 − 1
4 (h1h2Ψ̄kϕγ 5 − h2

2Ψ̄kχ)γμγνδ
ik

0 0 − 1
4 (h2

1ϕ
2 − h2

2χ
2)γμγν

⎞
⎟⎠ .

(71)

As a result, the elements of the matrices P̂ and Ŝμν in Eq. (12)
have the form

P11 = m2
1 + λ1ϕ

2

2
+ gϕ −

(
ξ1 − 1

6

)
R + λ3χ

2,

P12 = 2pχ + 4λ3ϕχ, P21 = 2pχ + 4λ3ϕχ,

P13 = h1Ψ̄k(M + h1ϕ − h2χγ 5) − i

2
h1(∇μΨ̄k)γ

μ,

P22 = m2
2 + λ2χ

2

2
+ pϕ −

(
ξ2 − 1

6

)
R + λ3ϕ

2,

P23 = h2Ψ̄k(Mγ 5 + h1ϕγ 5 − h2χ) − i

2
h2(∇μΨ̄k)γ

5γ μ,

P31 = 2h1Ψi , P32 = 2h2γ
5Ψi ,

P33 =
[
M2 − 1

12
R + h1Mϕ + h2Mχγ 5 + h2

1ϕ
2 − h2

2χ
2

− i

2
(h1∇μϕ + h2∇μχγ 5)γ μ

]
δik (72)

and

Sμν 13 = − i

2
h1

[
(∇μΨ̄k)γν − (∇νΨ̄k)γμ

]

+ 1

4
(h2

1Ψ̄kϕ − h1h2Ψ̄kχγ 5)
[
γμ, γν

]
,

Sμν 23 = − i

2
h2

[
(∇μΨ̄k)γ

5γν − (∇νΨ̄k)γ
5γμ

]

+ 1

4
(h1h2ϕΨ̄kγ

5 − h2
2Ψ̄kχ)

[
γμ, γν

]
,

Sμν 33 =
[
[∇ν,∇μ] − i

2
h1

[
(∇μϕ)γν − (∇νϕ)γμ

]

− i

2
h2

[
(∇μχ)γ 5γν − (∇νχ)γ 5γμ

]

+ 1

4
(h2

1ϕ
2 − h2

2χ
2)

[
γμ, γν

] ]
δik . (73)
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