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Abstract We provide an algorithm that shows how to
decouple gravitational sources in pure Lovelock gravity. This
method allows to obtain several new and known analytic solu-
tions of physical interest in scenarios with extra dimensions
and with presence of higher curvature terms. Furthermore,
using our method, it is shown that applying the minimal geo-
metric deformation to the Anti de Sitter space time it is pos-
sible to obtain regular black hole solutions.

1 Introduction

In the last years, several branches of theoretical physics have
predicted the presence of extra dimensions. Thus, it makes
sense to think of the existence of geometrical objects in space
times with a number of dimensions greater than four as for
example branes, strings, or higher dimensional black holes.
In regarding this, theories of gravity emerged which present
higher curvature correction terms when the space time has a
number of dimensions greater than four. One interesting the-
ory among of them is Lovelock gravity [1]. One achievement
of Lovelock theory is that it shares the following features
with the general relativity.

– Its equation of motion are symmetric.
– Its equations of motion are of second order on the deriva-

tive of the metric tensor.
– Free divergence.

Into the Lovelock gravities, we can find the Pure Lovelock
theory. It is well known that the general relativity has a no
non-trivial vacuum solution (without cosmological constant)
when d = 3 (i.e d = 2n + 1, where n = 1), one interesting
feature is that Pure Lovelock keeps this property for d =
2n+1 with n > 1, see Ref. [2]. On the other hand, including
the cosmological constant, general relativity has a unique
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(Anti) de Sitter ground state for Λ(< 0) > 0, in regarding
this, other interesting feature of Pure Lovelock theory is that,
it keeps this feature for n odd, however, for n even, this theory
has a double Anti de Sitter or de Sitter ground state for Λ > 0
and does not have ground state for Λ < 0 [3,4].

On the other hand, in Einstein Hilbert theory, finding new
solutions of physical interest is not a simple task due to the
highly nonlinear behavior of its equations. In regarding this,
Ovalle [5] proposed a method called Gravitational Decou-
pling of Sources, which corresponds to the first algorithm
that shows how to decouple gravitational sources in Gen-
eral Relativity. This method applies a Minimal Geometric
Deformation (MGD) to the temporal and radial metric com-
ponents together with a decoupling of sources. The method
is explained in Ref. [6]: “given two gravitational sources: a
source A and an extra source B, standard Einstein’s equations
are first solved for A, and then a simpler set of quasi-Einstein
equations are solved for B. Finally, the two solutions can be
combined in order to derive the complete solution for the
total system.”.

By applying this method to a solution of Einstein equa-
tions, named seed solution, it is possible to obtain new
analytic solutions of physical interest. Related to this, by
deforming some isotropic well known and well behaved solu-
tions, new anisotropic and well behaved solutions have been
obtained that represent stellar distributions in Refs. [6–13].
By deforming the Schwarzschild space time new black hole
solutions have been obtained in Ref. [14] (other black hole
solutions obtained with this method in Refs. [15–18]). Other
examples of applications of the method are: solutions in Ein-
stein Klein Gordon system [19]; solutions in f (G) gravity
[20]; solutions in f (R) gravity [21], cloud of strings solu-
tions [22]. See other applications in Refs. [23–27,27–31].

Thus, motivated by the fact that in Pure Lovelock theory
there are several kind of solutions in literature as for example:
black hole solutions in Refs. [4,32–36] and stellar distribu-
tions in Refs. [37–39], it seems of physical interest to provide
an algorithm to decouple gravitational sources in Pure Love-
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lock gravity, and thus, to apply the method to known ( or
unknown) solutions and to test if it is possible to obtain new
solutions of physical interest. See also [3,40,41].

We start by deforming the seed energy momentum tensor
T̄AB by an additional source θAB , which causes anisotropic
effects on the self-gravitating system. This additional source
can contain new fields, like scalar, vector and tensor fields
[6]. Therefore the energy momentum tensor is:

TAB = T̄AB + θAB, (1)

since Pure Lovelock theory has free divergence, then, the
energy momentum tensor satisfies the conservation equation:

∇AT
AB = 0. (2)

In this work we provide a Gravitational Decoupling
method in Pure Lovelock gravity, and therefore we show
a simple approach to decoupling gravitational sources in this
theory. We will show that the Pure Lovelock equations of
motion can be solved for each component {T̄AB, θAB} sepa-
rately, at least for the spherically symmetric and static case.
For each component will be obtained a particular metric ten-
sor {ḡAB, g θ

AB}, and the final metric gAB is a simple combi-
nation of these metrics. As a simple test, we will apply our
method to an Anti de Sitter space time and, we will test if
it is possible to obtain solutions that represent regular black
holes.

2 Lovelock Gravity and the Pure Lovelock case

The Lovelock Lagrangian is :

L = √−g
N∑

n=0

γnLn, (3)

where N = d
2 −1 for d even and N = d−1

2 for d odd and, γn
are arbitrary coupling constants. Ln is a topological density
defined as:

Ln = 1

2n
δ
μ1ν1···μnνn
α1β1···αnβn Πn

r=1R
αrβr
μr νr

, (4)

where Rαβ
μν is a n order generalization of the Riemann tensor

for the Lovelock theory, and:

δ
μ1ν1···μnνn
α1β1···αnβn = 1

n!δ
μ1
[α1

δ
ν1
β1

· · · δμn
αn

δ
νn
βn ] (5)

is the generalized Kronecker delta.
It is worth to stress that, the terms L0, L1 and L2 are pro-

portional to the cosmological constant, Ricci Scalar and the
Gauss Bonnet Lagrangian, respectively. The corresponding
equation of motion is given by:

N∑

n=0

γnG(n)
AB = TAB, (6)

where G(n)
AB is a n order generalization of the Einstein tensor

due to the topological density Ln . As example G(1)
AB is just

the Einstein tensor associated with the Ricci scalar (Einstein
Hilbert theory is a particular case of Lovelock theory), and
G(2)
AB is the Lanczos tensor HAB associated with the Gauss

Bonnet Lagrangian.
For example, the Einstein Gauss Bonnet equations of

motion up to n = 2, without cosmological constant are:

GA
B + γ2H

A
B = T A

B (7)

where the Lanczos tensor is:

HAB =2
(
RRAB − 2RAC R

C
B − 2RCDRACBD

+ RCDE
A RBCDE

)
− 1

2
gABL2. (8)

2.1 Pure Lovelock case

Pure Lovelock is a theory that involving only a single fixed
value of n (with n ≥ 1), without sum over the lower order.
In some cases it is considered one single value of n ≥ 1 plus
the n = 0 term, i.e. L = L0 + Ln , as for example in Refs.
[3,34,35]. For simplicity, in this work we take a single value
of Ln without the L0 term, as for example in Refs. [37,41].
Thus, the Lagrangian is:

L = √−gγnLn = √−gγn
1

2n
δ
μ1ν1···μnνn
α1β1···αnβn Πn

r=1R
αrβr
μr νr

, (9)

The equations of motion are given by:

G(n)
AB = TAB, (10)

where

(G(n))AB = − 1

2n+1 δ
AB1···B2n
BA1···A2n

RA1A2
B1B2

· · · RA2n−1A2n
B2n−1B2n

. (11)

and where the coupling constants were set to unity as in Refs.
[37,41].

In this work we study the static d dimensional spherically
symmetric metric, wich in Schwarzschild-like coordinates
reads:

ds2 = −eν(r) + eλ(r)dr2 + r2dΩ2
d−2, (12)

where dΩ2
d−2 corresponds to the metric of a (d − 2) uni-

tary sphere. The energy momentum tensor corresponds to a
neutral perfect fluid:
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T A
B = diag(−ρ, pr , pθ , pθ , . . .), (13)

where, from the spherical symmetry, we have for all the
(d − 2) angular coordinates that pθ = pφ = · · · . The
conservation law T AB

;B = 0 gives:

1

2
(pr + ρ)ν′ + p′

r + d − 2

r
(pr − pθ ) = 0. (14)

Note that the analogue Einstein tensor has free divergence
(G(n))AB;B = 0 [42], and the Bianchi Identities are satisfied
[43].

It is worth stressing that the (d − 2) angular components
of the equations of motion are similar (θ, θ) = (φ, φ) = · · ·
and the conservation equation can be written as a combination
of the (t, t),(r, r) and (θ, θ) components [37]. In this way,
there are three field equations (t, t), (r, r), (θ, θ) = (φ, φ) =
· · · and one conservation Eq. 14. But only three equations
are independent. Thus, any one equation could be ignored
and the system will be satisfied if the other three are solved.

3 Pure Lovelock equations of motion for multiples
sources

In the equations of motion 10, T A
B = diag(−ρ, pr , pθ , pθ ,

· · · ) is given by Eq. 1, and the seed energy momentum tensor
is given by T̄ A

B = diag(−ρ̄, p̄r , p̄θ , p̄θ , · · · ).
In the Gravitational Decoupling method, Ref. [5], devel-

oped for Einstein Hilbert theory, is introduced an additional
source (θ1)

A
B coupled with the seed energy momentum by the

constant α. It is worth to notice that the power of α coincides
with the value n = 1 corresponding to the Einstein Hilbert
theory. Thus, the energy momentum 1 is:

T A
B = T̄ A

B + α(θ1)
A
B (15)

where the source (θ1)
A
B is arbitrary. Thus, it is easily see that:

ρ = ρ̄ − α(θ1)
0
0 (16)

pr = p̄r + α(θ1)
1
1 (17)

pθ = p̄θ + α(θ1)
2
2 (18)

In this work, inspired by the above mentioned method,
for a generic value of n, it is proposed the following energy
momentum tensor:

T A
B = T̄ A

B + α(θ1)
A
B + α2(θ2)

A
B + · · ·

+ αn−1(θn−1)
A
B + αn(θn)

A
B (19)

therefore the number of sources is determined by the value
of n. It is worth to stress that the energy momentum 15 is

a particular case of 19 for n = 1. As example, for the Pure
Gauss Bonnet case with n = 2 the energy momentum 19 has
the form T A

B = T̄ A
B + α(θ1)

A
B + α2(θ2)

A
B . Now:

ρ = ρ̄ − α(θ1)
0
0 − α2(θ2)

0
0 − · · ·

− αn−1(θn−1)
0
0 − αn(θn)

0
0 (20)

pr = p̄r + α(θ1)
1
1 + α2(θ2)

1
1 + · · ·

+ αn−1(θn−1)
1
1 + αn(θn)

1
1 (21)

pθ = p̄θ + α(θ1)
2
2 + α2(θ2)

2
2 + · · ·

+ αn−1(θn−1)
2
2 + αn(θn)

2
2 (22)

where pθ = pφ = · · · . In Eq. 22 p̄θ = p̄φ = · · · and we
impose that (θi )

2
2 = (θi )

3
3 = · · ·

So, for (θi )
1
1 �= (θi )

2
2 = (θi )

3
3 = · · · and p̄r �= p̄θ =

p̄φ = · · · these sources induce an anisotropy:

Π = p̄θ − p̄r + α
(
(θ1)

2
2 − (θ1)

1
1

) + α2 (
(θ2)

2
2 − (θ2)

1
1

) + · · ·
+ αn−1 (

(θn−1)
2
2 − (θn−1)

1
1

)

+ αn (
(θn)

2
2 − (θn)

1
1

)
. (23)

For the isotropic case where p̄θ = p̄r , the addition of our
source θAB is a simple way to generate an anisotropy.

So, the (t, t) and (r, r) components of the equations of
motion are given by [37,41]:

2

d − 2
rd−2

(
ρ̄ − α(θ1)

0
0 − α2(θ2)

0
0 − · · · − αn−1(θn−1)

0
0

− αn(θn)
0
0

)
= d

dr

(
rd−2n−1 (

1 − e−λ
)n )

, (24)

and

2

d − 2
r2n

(
p̄r + α(θ1)

1
1 + α2(θ2)

1
1 + · · · + αn−1(θn−1)

1
1

+ αn(θn)
1
1

)
= nrν′e−λ

(
1 − e−λ

)n−1

− (d − 2n − 1)
(
1 − e−λ

)n
(25)

We solve the (t, t) and (r, r) components of the Pure
Lovelock equations together with the conservation equa-
tion. Using the Bianchi identities, we ignore the remaining
(θ, θ) = (φ, φ) = · · · components (the suspense points indi-
cate that all the tangential components of the Pure Lovelock
equations are similar).

By inserting Eqs. 20, 21 and 22 into Eq. 14:

1

2
( p̄r + ρ̄)ν′ + p̄′

r + d − 2

r
( p̄r − p̄θ )

+ α

(
1

2

(
(θ1)

1
1 − (θ1)

0
0

)
ν′ + (

(θ1)
1
1

)′

+ d − 2

r

(
(θ1)

1
1 − (θ1)

2
2

))
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+ α2
(

1

2

(
(θ2)

1
1 − (θ2)

0
0

)
ν′ + (

(θ2)
1
1

)′

+ d − 2

r

(
(θ2)

1
1 − (θ2)

2
2

))

+ · · · + αn−1
(

1

2

(
(θn−1)

1
1 − (θn−1)

0
0

)
ν′ + (

(θn−1)
1
1

)′

+ d − 2

r

(
(θn−1)

1
1 − (θn−1)

2
2

))

+ αn
(

1

2

(
(θn)

1
1 − (θn)

0
0

)
ν′ + (

(θn)
1
1

)′

+ d − 2

r

(
(θn)

1
1 − (θn)

2
2

))

= 0. (26)

Thus, the system to solve corresponds to Eqs. 24, 25 and 26.
At this stage we would deal with five unknown functions,
namely, the metric components λ(r) and ν(r), and the effec-
tive thermodynamics functions ρ, pr and pθ = pφ = · · · .
However, below, we implement the gravitational decoupling
method where this scenario is modified.

The Pure Lovelock equations of motion for the seed
energy momentum tensor are recovered for the limit α → 0
in the system 24, 25 and 26. So, it is fulfilled that

∇AT̄
A
B = 0, (27)

and next, the first line of Eq. 26 is conserved. For n = 1
both components of energy momentum tensor are directly
conserved, ı.e ∇A(θ1)

A
B = 0, however, for n > 1 one can

notice that:

α∇A(θ1)
A
B + α2∇A(θ2)

A
B + · · · + αn−1∇A(θn−1)

A
B

+ αn∇A(θn)
A
B = 0, (28)

where the covariant derivative is computed by using the line
element 12. In this work we impose in arbitrarily way that:

αi∇A(θi )
A
B = 0. (29)

Thus, we will solve the system 24, 25, 27 and 29. Under this
assumption each source is separately conserved, and thus,
there is no exchange of energy momentum between them.
Therefore, our energy momentum tensor 19 is a specific way
of decoupling the system inspired by the approach of Ref. [5].

4 Gravitational decoupling by MGD in Pure Lovelock
gravity

We start with a solution to Eqs. 24, 25, 27 and 29 with α = 0,
namely seed solution {η,μ, ρ̄, p̄r , p̄t }, where η and μ are the
corresponding metric functions:

ds2 = −eη(r)dt2 + μ(r)−1dr2 + r2dΩ2
d−2. (30)

Turning on the parameter α, the effects of the sources
(θi )AB appear on the seed solution {η,μ, ρ̄, p̄r , p̄t }. These
effects can be encoded in the geometric deformation under-
gone by the seed fluid geometry {η,μ} in Eq. 30 as follows:

η(r) → ν(r) = η(r) (31)

μ(r) → e−λ = μ(r) − αg(r). (32)

It means that only the radial component of the line element
30 is deformed, where g(r) is the corresponding deformation
of the radial part. This is known asMinimalGeometricDefor-
mation [5] .Thus, replacing Eqs. 31 and 32 into of Eqs. 24
and 25:

2

d − 2
rd−2

(
ρ̄ − α(θ1)

0
0 − α2(θ2)

0
0 − · · · − αn−1(θn−1)

0
0

−αn(θn)
0
0

)
= d

dr

(
rd−2n−1( (1 − μ) + αg

)n)
, (33)

and

2

d − 2
r2n

(
p̄r + α(θ1)

1
1 + α2(θ2)

1
1 + · · · + αn−1(θn−1)

1
1

+αn(θn)
1
1

)
= nrν′(μ − αg)

(
(1 − μ) + αg

)n−1

−(d − 2n − 1)
(

(1 − μ) + αg
)n

. (34)

Thus we must solve the system of Eqs. 33, 34, 27 and 29.
We use the Binomial theorem :

(x + y)N = xN + NxN−1y +
(
N
2

)
xN−2y2 + · · ·

+ NxyN−1 + yN , (35)

thus:
(

(1 − μ) + αg
)n = (1 − μ)n + n (1 − μ)n−1 gα

+
(
n
2

)
(1 − μ)n−2 g2α2 + · · ·

+n (1 − μ) gn−1αn−1 + gnαn, (36)

and

(
(1 − μ) + αg

)n−1 = (1 − μ)n−1 + (n − 1) (1 − μ)n−2 gα

+
(
n − 1

2

)
(1 − μ)n−3 g2α2 + · · ·

+(n − 1) (1 − μ) gn−2αn−2 + gn−1αn−1,

(37)

Thus, replacing Eqs. 36 and 37 into of Eqs. 33 and 34, the
system splits into the following sets of equations:
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– The standard Pure Lovelock equations for a seed solution
(with α = 0) :

2

d − 2
rd−2ρ̄ = d

dr

(
rd−2n−1 (1 − μ)n

)
, (38)

and

2

d − 2
r2n ( p̄r ) = nrν′μ (1 − μ)n−1

−(d − 2n − 1) (1 − μ)n (39)

and the respective conservation equation:

1

2
( p̄r + ρ̄)ν′ + p̄′

r + d − 2

r
( p̄r − p̄θ ) = 0 (40)

– The terms of order α give rise to the following quasi-Pure
Lovelock equations of order α1, which include the source
θAB :

− 2

d − 2
rd−2(θ1)

0
0 = d

dr

(
rd−2n−1n (1 − μ)n−1 g

)
, (41)

2

d − 2
r2n(θ1)

1
1 =n(1 − μ)n−1g

(
rν′((n − 1)μ(1 − μ)−1

− 1
)

− (d − 2n − 1)

)
(42)

and the respective conservation equation:

1

2

(
(θ1)

1
1 −(θ1)

0
0

)
ν′+(

(θ1)
1
1

)′+ d − 2

r

(
(θ1)

1
1 −(θ1)

2
2

)
= 0

(43)

Thus, following the iteration, it is possible to obtain the
quasi pure Lovelock equations of orderα2, α3, . . . , αn−3,

αn−2.
– The terms of order αn−1 give rise to the following quasi-

Pure Lovelock equations of order αn−1:

− 2

d − 2
rd−2(θn−1)

0
0 = d

dr

(
rd−2n−1n (1 − μ) gn−1

)
,

(44)

and

2

d − 2
r2n(θn−1)

1
1 =ngn−1

(
rν′(μ − (n − 1)(1 − μ)

)

− (d − 2n − 1)(1 − μ)
)

(45)

and the respective conservation equation

1

2

(
(θn−1)

1
1 − (θn−1)

0
0

)
ν′ + (

(θn−1)
1
1

)′

+ d − 2

r

(
(θn−1)

1
1 − (θn−1)

2
2

)
= 0. (46)

– The terms of order αn give rise to the following quasi-
Pure Lovelock equations of order αn :

− 2

d − 2
rd−2(θn)

0
0 = d

dr

(
rd−2n−1gn

)
, (47)

and

2

d − 2
r2n(θn)

1
1 = −gn

(
nrν′ + (d − 2n − 1)

)
(48)

and the respective conservation equation

1

2

(
(θn)

1
1−(θn)

0
0

)
ν′+(

(θn)
1
1

)′+ d − 2

r

(
(θn)

1
1−(θn)

2
2

)
= 0.

(49)

It is worth stressing that each quasi Pure Lovelock equa-
tion cannot be formally identified as the spherically symmet-
ric Pure Lovelock equations for n > 1, because the right sides
of each quasi Pure Lovelock equation do not have the stan-
dard expressions for the Generalized Einstein tensor com-
ponents G(n)

00 and G(n)
11 . Furthermore, the Bianchi identities

are not satisfied for each quasi Pure Lovelock equation. For
n = 1 the quasi Einstein equations can be transformed in the
standard Einstein equations after a convenient redefinition of
the energy momentum tensor [5], however, the method of the
Ref. [5] has been widely used to find new solutions without
using this mentioned redefinition in several works.

Despite the above mentioned, our imposed way for solv-
ing the system 33, 34, 27 and 29, based in the decoupling of
sources by means of the standard and quasi Pure Lovelock
equations, ensures us to solve successfully the original sys-
tem 33, 34 and 26. Furthermore, under our assumptions, each
conservation Eqs. 40, 43,· · · 46, 49 is separately conserved,
and thus, there is no exchange of energy momentum between
the seed fluid and each sector (θi )AB . So, in our gravitational
decoupling method there is only purely gravitational inter-
action.

It is worth stressing that as a consequence of the applica-
tion of the MGD:

– We start with the indefinite system 24, 25 and 26. After
the application of MGD, we have a set of equations for
the seed fluid (ν, μ, ρ̄, p̄r , p̄θ ) given by the standard Pure
Lovelock equations.
Next, we suppose that we have already found a seed fluid
solution (ν, μ) and the sources (ρ̄, p̄r , p̄θ ), thus we have
:

– A much simpler system of four unknown functions(
g, (θn)0

0, (θn)
1
1, (θn)

2
2

)
given by the quasi Pure Lovelock

equations of order αn .
– Supposing that we have found the values of g and (θn)AB ,

we have n − 1 systems, given by the quasi Pure Love-
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lock equations of order αi , where each of them has three
unknown functions

(
(θi )

0
0, (θi )

1
1, (θi )

2
2

)

For the study of well behaved solutions that represent stel-
lar distributions it is necessary to analyse the matching con-
ditions [13]. This is outside of the scope of this work and
could be studied in elsewhere.

5 A special case

We impose the condition ν = −λ in Eq. 12. So, the (t, t)
component of Pure Lovelock equation keeps its form as in Eq.
24. However, it is direct to check that the (r, r) component,
Eq. 25, now is:

2

d − 2
rd−2

(
− p̄r − α(θ1)

1
1 − α2(θ2)

1
1 − · · · − αn−1(θn−1)

1
1

−αn(θn)
1
1

)
= d

dr

(
rd−2n−1 (

1 − e−λ
)n )

, (50)

see Ref. [32]. Now, the system to solve is: Eq. 24 that corre-
sponds to (t, t) component, Eq. 50 that corresponds to (r, r)
component, and Eqs. 27 and 29.

Furthermore, we impose the condition ρ = −pr , as in
Refs. [3,44], where ρ corresponds to Eq. 20 and pr to Eq.
21. Additionally, we will impose arbitrarily that ρ̄ = − p̄r
and (θi )

0
0 = (θi )

1
1, with i = 1, 2, . . . , n. Thus, the condition

ρ = −pr is fulfilled.
So, the (t, t) and (r, r) components are similar to Eq. 24,

whereas, now the conservation Eq. 26 takes the following
form:

p̄′
r + d − 2

r
( p̄r − p̄t )

+ α
((

(θ1)
1
1

)′ + d − 2

r

(
(θ1)

1
1 − (θ1)

2
2

))

+ α2
((

(θ2)
1
1

)′ + d − 2

r

(
(θ2)

1
1 − (θ2)

2
2

)) + · · ·

+ αn−1
((

(θn−1)
1
1

)′ + d − 2

r

(
(θn−1)

1
1 − (θn−1)

2
2

))

+ αn
((

(θn)
1
1

)′ + d − 2

r

(
(θn)

1
1 − (θn)

2
2

)) = 0 (51)

In this way, the system to solve corresponds to the Eqs.
24, 27 with ρ̄ = − p̄r and 29 with (θi )

0
0 = (θi )

1
1. Our seed

solution, which is solution of this system with α = 0, is:

ds2 = −μ(r)dt2 + μ(r)−1dr2 + r2dΩ2
d−2. (52)

Again, turning on α, the effects of the source θAB appear
on the seed solution. These effects are encoded in the geo-
metric deformation undergone by the seed fluid geometry in
Eq. 52 as follows:

μ(r) → eν = μ(r) − αg(r). (53)

μ(r) → e−λ = μ(r) − αg(r).. (54)

Thus, taking into account the geometric deformation of
Eqs. 53 and 54, the (t, t) and (r, r) components are similar
to the Eq. 33 and, the system to solve is given by Eqs. 33, 27
with ρ̄ = − p̄r and 29 with (θi )

0
0 = (θi )

1
1.

Finally, using the binomial development 36, the system
splits into the following sets of equations:

– The standard Pure Lovelock equations for a seed solution
(with α = 0), that correspond to the Eqs. 38 and the
conservation equation given by:

p̄′
r + d − 2

r
( p̄r − p̄θ ) = 0 (55)

– The terms of order α give rise to the quasi-Pure Lovelock
equations of order α1, that correspond to the Eqs. 41 and
the conservation equation given by:

(
(θ1)

1
1

)′ + d − 2

r

(
(θ1)

1
1 − (θ1)

2
2

) = 0 (56)

Again, following the iteration, it is possible to obtain the
quasi pure Lovelock equations of orderα2, α3, . . . , αn−3,

αn−2.
– The terms of order αn−1 give rise to the quasi-Pure Love-

lock equations of order αn−1, that correspond to the Eq.
44 and the conservation equation given by:

(
(θn−1)

1
1

)′ + d − 2

r

(
(θn−1)

1
1 − (θn−1)

2
2

) = 0 (57)

– The terms of order αn give rise to the quasi-Pure Lovelock
equations of order αn , that correspond to the Eqs. 47 and
the conservation equation given by:

(
(θn)

1
1

)′ + d − 2

r

(
(θn)

1
1 − (θn)

2
2

) = 0. (58)

5.1 A very simple test: applying the method to the AdS
space time

As a simple test, we apply our method to a seed Anti de Sitter
space time and, we test if it is possible to obtain a solution
of physical interest that represents regular black holes.

The Schwarzschild black hole has a singularity where the
laws of physics cease to operate. From the classical point of
view, Bardeen in Ref. [45] proposed the first model of regu-
lar black holes, where the singularity is avoided, due to the
formation of a dense core near the origin, whose effective cos-
mological constant Λe f f causes repulsive effects and, whose
internal geometry has de Sitter form. This is achieved, by the
change of the constant mass parameter by a mass function

123
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M → m(r) , such that near the origin m(r) ≈ Λe f f
6 r3, and

lim
r→∞m(r) = M . Thus, the factor f = 1 − 2m(r)

r near the

origin behaves as de Sitter space time, and far from origin
behaves as Scharzschild space time. After this, the forma-
tion of the Sitter core is associated to quantum fluctuations,
where the energy density is of order of Planck units near the
origin. This model is called Planck star , see Refs. [46,47].
Other more recent studies about regular black holes have
been developed in Refs. [3,48–51].

Due that regular black holes with de Sitter ground state
have a cosmological horizon, we apply the method to a seed
solution with Anti de Sitter structure. This is because, the
presence of the cosmological horizon prevents a correct def-
inition of the mass. Conversely, Anti de Sitter space time has
a well defined asymptotically region, and thus, it is possible
to define the mass.

As was said above, Pure Lovelock is a theory that, for
Λ > 0, has a unique de Sitter ground state for n odd, and has
a double Anti de Sitter or de Sitter ground state for n even.
Conversely, for Λ < 0, has a unique Anti de Sitter ground
state for n odd and does not have physical solution for n even.

So, to find a seed solution with Anti de Sitter structure, we
study the case where the seed fluid has the following energy
density:

ρ̄ = − p̄r = Λd = (d − 1)(d − 2)

2l2n
, for n even, (59)

and

ρ̄ = − p̄r = Λd = − (d − 1)(d − 2)

2l2n
, for n odd, (60)

thus, the energy density represents a d dimensional cosmo-
logical constant, and ln is the Anti de Sitter radius.

Then, we will apply the Gravitational Decoupling method
as follows:

– We solve the standard Pure Lovelock equations for our
seed fluid:
First, we test the case with n even. Inserting the seed
energy density 59 into Eq. 38, we get to

r2n

l2n
= (1 − μ)n (61)

where d − 2n − 1 > 0 and,whose solution is ± r2

l2
=

(1 − μ). Taking the minus sign:

μ = 1 + r2

l2
(62)

For the case with n odd, with d − 2n − 1 > 0, inserting
the seed energy density 60 into Eq. 38, it is direct that the
unique solution is Eq. 62.

Thus, both for n odd or n even, our seed solutions rep-
resent an Anti de Sitter space time. The tangential seed
pressure is determined by Eq. 55.

– We solve the quasi-Pure Lovelock of order αn :
We choose a source −(θn)

0
0 = F(r) as in Ref. [3]: F(r)

has a maximum value at r = 0, such that the m(r) func-
tion near the origin behaves as :

m(r)|r≈0 ≈ rd−1

k2n , (63)

where k is a constant, and the m(r) function is computed
as:

m(r) = 2

d − 2

∫ r

0
F(r)rd−2dr, (64)

By solving Eq. 47:

g(r) =
(

m(r)

rd−2n−1

)1/n

(65)

So, our line element is given by

ds2 = − f (r)dt2 + dr2

f (r)
+ r2dΩ2

d−2, (66)

where:

f (r) = μ − αg = 1 + r2

l2
− α

( m(r)

rd−2n−1

)1/n
, (67)

thus, near the origin the function behaves as:

f (r)|r≈0 = 1 −
( α

k2 − 1

l2

)
r2, (68)

thus, for

α >
k2

l2
, (69)

the solution behaves as de Sitter near the origin, and rep-
resents to a Pure Lovelock regular black hole by gravita-
tional decoupling.
One example of F(r) function is found in Ref. [3], wich is
a d dimensional generalization of Hayward density and,
in our case is:

F(r) = (d − 1)(d − 2)

2

Qd−2M2

(Qd−2 + rd−1)2

which yields m(r) = Mrd−1

Q2M + rd−1 , (70)
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where, one can notice that:

F(r)max = F(0) = (d − 1)(d − 2)

2Qd−2

and m(r)|r≈0 ≈ 1

Qd−2 r
d−1, (71)

on the other hand:

lim
r→∞ F(r) = 0 and lim

r→∞m(r) = M, (72)

where Q is defined in this reference as a regulator and M
is the total mass. There is a deep analysis of unities in Ref.
[3]. So, k2n = Qd−2 and if the condition 69 is satisfied,
then the function F(r) is suitable for represent a Pure
Lovelock Regular black hole. The fact that lim

r→∞m(r) =
M allows to define correctly the mass in a space time
with AdS ground state.
The source (θn)

2
2 is determined with Eq. 58

– Known ρ̄, p̄r , p̄t , (θn)0
0, (θn)

1
1, (θn)

2
2, μ, ν and g, the

remaining sources (θi )
0
0, (θi )

1
1, (θi )

2
2 are determined by

the quasi-Pure Lovelock equations of order αi .

6 Conclusion and discussion

We have shown an approach that represents a simple method
for decoupling gravitational sources in Pure Lovelock grav-
ity. Thus, it is possible to decouple gravitational sources
under the effects of higher curvature correction terms for
space times with a number of dimensions greater than four.

Applying our method, the final solution obtained is the
result of the decoupling of the Pure Lovelock equations in
a seed sector described by the seed energy momentum ten-
sor T̄ A

B and the quasi Pure Lovelock equations of order αi

described by the sources (θi )
A
B . Thus, the equations of motion

are solved for each sector separately and, by the superposi-
tion of these solutions, the complete solution is obtained.

The seed and the extra sources are separately conserved
under the assumptions imposed in this work. The quasi
Pure Lovelock equations are of order α1, α2, . . . , αn−1, αn .
Therefore, the combination of these n + 1 sectors only
has gravitational interaction and does not have exchange of
energy momentum. The order αn corresponds to the order of
the Generalized Einstein TensorG(n)

AB . Thus, for n = 1, where

G(1)
AB represents to the Einstein Tensor in Einstein Hilbert the-

ory, the quasi Pure Lovelock are of order α1, and then, the
quasi Einstein equations described in Ref. [5] are a particular
case of our method. As indicates Ref. [5], the quasi Einstein
equations are useful to study the interaction between ordi-
nary matter and the conjectured dark matter, so, our quasi
Pure Lovelock equations perhaps could serve to investigate
this problem in presence of higher curvature terms and in
space times with a number of dimensions greater than four.

Furthermore, we have presented our method for the case
where the line element has the form of Eq. 12 in Sect. 4,
and for the case where ν = −λ and ρ = −pr in Sect. 5.
As a simple test, we have applied our method to an Anti de
Sitter seed solution. Choosing a source F(r) that fulfills the
condition 63, we have found thePure Lovelock Regular black
hole solution by gravitational decoupling 67. This solution
differs in its structure with the Pure Lovelock regular black
hole found in Ref. [3], whose structure is:

f (r) = 1 −
(

m(r)

rd−2n−1 ± r2n

l2n

)1/n

. (73)

wich takes the sign +(−) for Λ > (<)0. Thus, Eq. 67 is a
new solution in Pure Lovelock gravity, and thus a new Pure
Lovelock regular black hole. In our solution, the ground state
is obtained with the seed fluid, and when the extra sources
(θi )AB are turn off. Although both solutions 67 and 73 differ
in its structure, both share the same structure of ground state
: for Λ > 0 both solutions have a double Anti de Sitter or
de Sitter ground state for n even (where we have chosen the
AdS branch) , whereas for Λ < 0 both solutions have a single
Anti de Sitter ground state for n odd.

Although our solution 67 is new by using Pure Lovelock
gravity, one solution with similar mathematical structure was
found by using the n-fold degenerated ground state theory in
Ref. [3]. Therefore both solutions share the horizons structure
and thermodynamics features described in Ref. [3]. How-
ever, both solutions have different ground state structure. The
ground state in the n-fold degenerated ground state theory is
obtained by choosing a suited election of the coupled con-
stants γ such that the solution has one unique Anti de Sitter
ground state (or n fold degenerated Anti de Sitter ground
state) with Λ < 0, whereas in our case the ground state
structure is different and was described in the last paragraph.

So, we have showed that our Gravitational Decoupling
method is a direct way to obtain regular black holes. In
regarding this, the Minimal Geometric Deformation of the
Anti de Sitter space time give rise to regular black holes,
under the assumptions used in this work.

A simple recipe to apply our method could be:

– Pick up a seed Pure Lovelock solution {μ, ν, ρ̄, p̄r , p̄t }
and solve the standard Pure Lovelock equations.

– Solve the quasi Pure Lovelock equations of order αn .
In regarding this, we impose a form of the source (θn)

0
0

and the function g(r) is directly determined by the (t, t)
component. Furthermore, in direct way, the sources (θn)

1
1

and (θn)
2
2 are obtained by solving the (r, r) and (θ, θ)

components, respectively.
– Well known ρ̄, p̄r , p̄t , (θn)0

0, (θn)
1
1, (θn)

2
2, μ, ν and g, the

remaining functions (θi )
0
0, (θi )

1
1, (θi )

2
2 are directly deter-

mined by the quasi-Pure Lovelock equations of order αi .
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Thus, our method is an easy algorithm to search new ana-
lytical solutions of physical interest in Pure Lovelock grav-
ity. In Einstein Hilbert theory, the Gravitational Decoupling
method of Ref. [5] have been used to find new 4D black hole
solutions in Refs. [14–18] and new 4D well behaved solu-
tions that represent stellar distributions in Refs. [6–13,27].
So, inspired by this method, we have presented a useful tool
that could serve to find new black hole solutions or stellar
distributions in space times with a number of dimensions
greater than four, and in presence of higher curvature correc-
tion terms. This applications could be studied in elsewhere.
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