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Abstract The present work is devoted to the study of
anisotropic compact matter distributions within the frame-
work of five-dimensional Einstein—Gauss—Bonnet gravity.
To solve the field equations, we have considered that the
inner geometry is described by Tolman—Kuchowicz space-
time. The Gauss—Bonnet Lagrangian L p is coupled to the
Einstein—Hilbert action through a coupling constant, namely
o. When this coupling tends to zero general relativity results
are recovered. We analyze the effect of this parameter on
the principal salient features of the model, such as energy
density, radial and tangential pressure and anisotropy fac-
tor. These effects are contrasted with the corresponding gen-
eral relativity results. Besides, we have checked the inci-
dence on an important mechanism: equilibrium by means of
a generalized Tolman—Oppenheimer—Volkoff equation and
stability through relativistic adiabatic index and Abreu’s cri-
terion. Additionally, the behavior of the subliminal sound
speeds of the pressure waves in the principal directions of
the configuration and the conduct of the energy-momentum
tensor throughout the star are analyzed employing the causal-
ity condition and energy conditions, respectively. All these
subjects are illuminated by means of physical, mathematical
and graphical surveys. The M—I and the M—R graphs imply
that the stiffness of the equation of state increases with «;
however, it is less stiff than GR.

1 Introduction

Nowadays it is of great interest to obtain models that describe
compact structures, that is, massive objects with a small
size, which configurations due to their high density, such
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as white dwarfs, neutron stars or more exotic stars such as
those formed by quarks, constitute a real laboratory to inves-
tigate the regime of strongly coupled gravitational fields.
For a long time the development of these models in order
to describe and understand the behavior of the aforemen-
tioned objects was under the framework of the general rela-
tivity theory (GR). With great observational and experimental
support [1] GR describes very well the gravitational interac-
tion and its consequences in a four-dimensional spacetime.
However, two questions arise: Is it possible to study gravity
in less than four dimensions? Is it possible to study grav-
ity in more than four dimensions? If so, what benefits and
consequences would such studies bring about? In the first
case, for a two-dimensional spacetime the Einstein tensor is
zero. This is just the consequence of the Einstein—Hilbert
Lagrangian being the two-dimensional Euler characteristic
x. This is a topological invariant in two dimensions, and
therefore we cannot obtain equations of motion for our fields
from it. In three dimensions we already have an Einstein
tensor not identically zero, but we run into another problem.
Now the number of independent components of the Riemann
tensor is six: the same as the number of independent com-
ponents of the Ricci tensor. So, Ricci-plane solutions, i.e.,
those with R, = 0, are solutions with vanishing Riemann
tensor, not giving place to solutions of gravitational waves for
example. We then end in the usual three spatial dimensions
plus a temporal one. The previous discussion may already
be enough to hope that the study in larger dimensions can
bear fruit. Perhaps the dynamics resulting from the action
of Einstein—Hilbert in four dimensions hides effects that in
larger dimensions could become manifest. In fact, several
theories have been favored in part to study a larger number
of dimensions, such as Kaluza—Klein theory (adding an extra
dimension to unify gravity with electromagnetism) or string
theory (reaching a total of 11 dimensions in order to unify all
the known interactions). Thus, in larger numbers of dimen-
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sions there is no reason to exclude quadratic, cubic terms,
etc., of scalars formed from the Riemann tensor and its con-
tractions. In this direction Lanczos [2] was the first to extend
the GR including covariant high-order derivatives terms of
the metric tensor, in order to study the scale invariance under
guv —> Aguy transformation, A being a constant parameter.
Nevertheless, the quadratic term combination found by Lanc-
zos in four dimensions did not contribute to the dynamics of
the theory. This was because Lanczos was dealing with the
four-dimensional Euler characteristic x, which is a topolog-
ical invariant in four dimensions just as the Einstein—Hilbert
action is in two dimensions.

Lovelock [3], later generalized the Einstein—Hilbert action
including terms of higher order, with the first-order term cor-
responding to the Einstein—Hilbert action and the second-
order one to the Gauss—Bonnet (GB) Lagrangian. In a n-
dimensional spacetime (with n > 5) the GB Lagrangian
leads to second-order equations of motion, as is required.
In the spirit of searching for compact structures, Einstein—
Gauss—Bonnet (EGB) theory is promising. In the context of
black holes, Boulware and Deser [4] generalized the higher-
dimensional solutions in Einstein theory due to Tangherlini
[5], obtained the exterior vacuum spacetime, i.e., the equiv-
alent Schwarzschild solition in EGB theory. Moreover, the
study by Ghosh and Deshkar [6] of Vaidya radiating black
holes in EGB gravity revealed that the location of the hori-
zons is changed from the standard four-dimensional gravity.
In the cosmological and modified gravity theories context
EGB gravity has received much attention [7—17]. Recently,
Bamba et al. [18] have investigated the energy conditions
in the cosmological scenario employing FLRW spacetime.
On the other hand, regarding stellar interiors much inter-
esting work available in the literature has been devoted to
the study of the existence of collapsed structures [19-22].
Besides, Wright [23] has studied the maximum mass—radius
ratio (Buchdahl’s limit [24]) in five-dimensional EGB grav-
ity.

The study of a compact object driven by an anisotropic
matter distribution has a long history. Since the pioneer-
ing work by Bowers and Liang [25] many researchers have
been studying the properties and consequences of this type of
structures [26—41]. These well-known works explore diverse
properties such as: mechanisms of stability and hydrody-
namic equilibrium, the behavior of the material content
through energy conditions, causality conditions, maximum
limit of the mass—radius ratio, maximum value of the super-
ficial redshift, etc. A recent work on the role played by the
anisotropy on the properties mentioned above is [42] (see
also the references therein).

Following this line, in this paper we construct a well
behaved anisotropic fluid sphere in the five-dimensional EGB
scenario, by using Tolman—Kuchowicz [43,44] spacetime.
This metric has been used by other authors in the study of
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anisotropic charged/uncharged interior solutions [45,46]. So,
the plan of this paper is as follows: in Sect. 2 we discuss
Einstein—Gauss—Bonnet gravity in a five-dimensional space-
time.

In Sect. 3 we study the field equations and the mathe-
matical solutions of EGB gravity within Tolman—Kuchowicz
spacetime, obtaining the main salient features that character-
ize the model such as the energy-matter density p, the radial
pressure p, and the tangential pressure p, and the anisotropy
factor A. In Sect. 4 we analyze the physical and mathemat-
ical behavior of the thermodynamic variables. In Sect. 5 we
obtain the complete set of constant parameters, joining the
inner geometry with exterior spacetime in a smooth way.
Several physical properties are studied in Sects. 6, 7, 8 and 9,
such as the causality condition, stability, equilibrium under
different forces and energy conditions. Finally, in Sect. 11
we provide some remarks of the model obtained.

2 Field equations

We start with a brief description of Einstein—Gauss—Bonnet
gravity without cosmological constant [47]. The action in the
n (> 5)-dimensional spacetime is given by

1
S = /d"x\/ —g |:2K_2(R +0l£GB>j| + Smatter (D
n

where k, = +/87G,, and R is the n-dimensional Ricci scalar.
The last term in Eq. (1) represents the action for the matter
fields. The Gauss—Bonnet term (also known as Lovelock’s
second-order term [3]) compromises the combination of the
Ricci scalar R, Ricci tensor R, and Riemann tensor R“/’g e
Explicitly the Gauss—Bonnet terms reads

LGB = R* — 4R,y R*” + Rypn RPPH. )

It is worth mentioning that in a four-dimensional spacetime
the Gauss—Bonnet term (2) does not contribute to the field
equations since it becomes a total derivative (It is related with
a topological invariant, specifically the Euler characteristic).
It should be noted that when the coupling constant « is zero
then GR results are recovered.

The action given by (1) can be obtained from the lower
energy limit in the heterotic string theory. In such a case
the coupling parameter « is related with the inverse string
tension and is positive definite. Therefore, we will consider
a > 0 throughout the study. Variation of (1) with respect to
the metric tensor g, yields the following field equations:

G/w + OlH/w = K,%T;w, (3)
where G, and H), stand for the Einstein tensor and the

Lanczos tensor, respectively. The corresponding expression
for these tensors are given by
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The energy-momentum tensor 7}, corresponding to the mat-
ter fields is obtained from Spagter-

So, by taking n = 5, the five-dimensional line element
for a static spherically symmetric spacetime has the standard
form

ds? = —e®Ide? + 2 Vdr? 4 r2(do? + sin 0 dgp?
+ sin? 0 sin® ¢d1ﬁ2), (6)

in coordinates (xi =t,r,0,¢,Y¥). For our model the energy-
momentum tensor for the stellar fluid is taken to be

T/w=diag(_p7pr’p17pt7pl), (7)

where p, p,, and p, are the proper energy density, the radial
pressure, and the tangential pressure, respectively. By con-
sidering the comoving fluid velocity as u® = e™"§f, the EGB
field equation (3) leads to the following set of independent
equations:

3
Kp = —= (4ak' + re* —re* —r

2 2hq7 2A7
A3 e N — doe A),

3
[(rzv/ +r +dav)e? — re¥ — 40{\/] , 9

K =
Pr =53
1
kKpr = 0,2 (120{\/)»/ — e — 4 — 4(11)’2)
1

+—>5 (1 — 2V +2ry —2r )+ rzv’2>
ey

1
+—>5 <r2v” — 4oV’ ) + dav? + 4011/’) . (10)
e2rr

Besides, we have considered units such that the speed of light
c and the constant G5 are set to unity. Then k = 8x. Here /
denotes differentiation with respect to the radial coordinate
r.

3 Solution of the field equations

To solve the above field equations (8)—(10) we choose A(r) =
In(1 4+ ar? + br*) and v = Br? + 21InC with a, b, B and
C as constants. These metric potentials conform to the well-
known Tolman—Kuchowicz [43,44] spacetime. This choice
on e’ and e is well motivated because both metric potentials
are free from physical and mathematical singularities at every
point inside the compact star. Moreover, at the center of the
structure they have the appropriate behavior, i.e., e*|,—¢ =

1.00

o
©
©
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Fig. 1 Variation of metric potentials for 4U 1538-52 using the param-
eter provided in Table 1

lande""|,_g = C2, whichimplies (¢*)|,—o = (€")'|,=0 =
0, as is required for a well behaved model. The trend of the
inner geometry is displayed in the upper panel of Fig. 1.
A completely regular behavior is observed, also as o grows
e* and e" take higher values, in distinction with GR whose
values are dominated by those of EGB theory for all . So,
inserting e* and ¢V into Egs. (8)—(10) we arrive at

3 5 8ar(a + 2br?)
Kp = W[Sar(a + 2br )‘P — T

273 (a 4+ 2br)W — rw? 4 r‘lf4)], (11)
3
Kpyr = —[(r + 8aBr 4+ 2Br’)W? — 8aBr — r\IJ4],
r3gp4
(12)

Kp; = [48aB(a 4 2br2) + 8aB(a — 2B + brA)Ww

1
WS
—4(a — 2B +2aaB + Blr2>\112 — (a + brHwt

—\P3{a+23+br2—432(4a+r2)}]. (13)

The anisotropic factor defined by A = p, — p, is obtained:

KA = é[%aB(a +2br%) — 8aB(a + B + brh)w

—2(a — 2B + 8aaB + Bar)W2 + (a + brH)w?

n w3[a +br2 +2B(=2 + 4aB + Brz)}] (14)
where

By = —aB + b2+ 6aB),
U = (14ar’ +br),
By = —aB +2b(1 + 6aB).

The behavior of the metric function, density, pressure,
anisotropy and equation of state parameter are given in Figs.
1, 2, 3, 4 and 5. The interior red-shift can be found to be

2r)y=e"? -1 (15)

@ Springer
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Fig. 2 Variation of density for 4U 1538-52 using the parameter pro-
vided in Table 1
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Fig. 3 Variation of pressures for 4U 1538-52 using the parameter pro-
vided in Table 1
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Fig. 4 Variation of anisotropy for 4U 1538-52 using the parameter
provided in Table 1

and its trend in shown in Fig. 6.

4 Physical analysis

In this section we study and analyze the behavior of the main
physical salient features of the model. These correspond to
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Fig. 5 Variation of the equation of state parameters for 4U 1538-52
using the parameter provided in Table 1
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Fig. 6 Variation of gravitation red-shift for 4U 1538-52 using the
parameter provided in Table 1

the thermodynamic variables, i.e., the energy-density p, the
radial pressure, p,, and the tangential pressure, p;. It is well
known that a purely theoretical well behaved compact object
from the physical and mathematical point of view must sat-
isfy some general requirements in order to compare with the
astrophysical observational data. Mainly, these general cri-
teria say that the thermodynamic parameters must be mono-
tonically decreasing functions at all points within the con-
figuration from the center towards the surface of the object.
Obviously, such a behavior means that the maximum value
of each of these physical quantities is attained at the center
of the star. So, by means of the second derivative criteria we
have

d 6
Kd—p - —W—Z [(a2 ¥ b+ abr)W* 4+ 2(a2+8b+abr)w?
r

—i—4001(a2 —4b)(a + br?) + 8aa W {4a(a + brz)
+b} FwS 2\1/2{3(12 + 52aab + 12b(4arbr?

o)

(16)
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d 6
K§ - \Ij—’;_[(az + b+ abr?) — 32aB(d® — 2b + abr?)
W3 4 2{A3+b(a—4B)r2}\112 + bW — 8aBW
x{b+3a(a +br2)”, (17)
P 2—r[240a(4B —d®)B - 32aB{a2 +25b
dr ~ Wwo

—2aB + b(a — 4B)r2}

XW + (a*> + b — 12B* + abr?)

W 4 pwS 4\1/2{ — 6aabBr® + 3a(1 + 2aB
+Br?) —2b(6 4+ 25aB + 6Br2)} +203 {a2

+18b — 8aB(1 4 2aB) + a(b + 4B*)r?
+4B[2B + br® + ab(15 — 8Br2)]”. (18)

Then at the center of the star

kp” = —18(1 4 8aw)(3a* — 2b) < 0,
kp} = —6{4aB +2b(1 — 8aB) + a*(S6a B — 3)} <0,
kp! = a*(30 — 4960 B) + 32aB2aB — 1)
+4{2B2 +5b(8aB — 1)} <0.
Additionally, in order to ensure a positive definite p, p,
and p, throughout the compact object, the central density and

central pressure must be positive at » = 0. Hence, from Egs.
(8) to (10) we get

kpe = 12a(1 + 4aa) > 0, (19)
kpe =6[B +aBaB —1)] > 0. (20)
It is clear from Eqgs. (19)—(20) that

a
a>0 and B> —— 21

1+ 8aa’

Moreover, it is also required to ensure that any physical
fluid satisfies the Zeldovich criterion i.e. py./p. < 1, which
implies

&=B+a(83a—l)< 22)
Pe 2a (1 + 4aw)
On the other hand, regarding the anisotropy factor A =
p: — pr given by Eq. (14) plays an important role in the
stellar matter distribution. In the study of anisotropic mat-
ter distributions, a well behaved model has a monotonically
increasing anisotropy factor with increasing radial coordinate
r at all its interior points. It means that A > 0 everywhere
within the star. Explicitly the former requirement reads

0, if r =0,
Ar) = (23)
p:(R), ifr =R.

The first statement of (23) ensures the regularity of the
solution in the origin, besides that this allows for the possi-
bility that the inner geometry is regular not only at the center
of the structure but in all points. Vanishing A at the center
purports p,(0) = p;(0). This fact is a consequence of matter
collineation induced by the Killing vector fields of the spher-
ical symmetry. The second statement of (23) says that at the
boundary of the star ¥ (defined by r = R, where R stands
for the radius of the object), p,(R) = 0 and in consequence
A(R) = ps(R) > 0, implying A(r) > OforO <r < R. As
pointed out earlier one needs positive thermodynamic vari-
ables throughout the star. Furthermore, a positive anisotropy
factor introduces in the system a repulsive force (outward)
that helps to counteract the gravitational gradient. The pres-
ence of a repulsive anisotropic force allows for the construc-
tion of more compact objects [40]. In addition, it contributes
to an enhancement of the equilibrium and stability mecha-
nism. From Figs. 2 and 3 for different values of the parameter
o, we can see the behavior of the energy density p (Fig. 2),
both the radial pressure, p,, and the transverse pressure, p;
(Fig. 3), and the anisotropy factor A (Fig. 4) against the radial
coordinate inside the star. It is observed that for 10 < o < 50
(EGB gravity) the maximum values reached by all the phys-
ical quantities is less than the values reached by GR the-
ory (¢ — 0). Moreover, the anisotropy factor is greater in
GR theory than in EGB theory. We also observe that as «
increases the anisotropy decreases at each interior point of
the configuration. The effect of the EGB term is to dimin-
ish the relative difference between the radial and tangential
stresses. This may be a possible mechanism to achieving
pressure isotropy within the stellar interior. Besides, Fig. 5
shows the behavior of the ratios p,/p and p;/p. It is appre-
ciated that Zeldovich’s condition is satisfied.

5 Exterior spacetime and matching conditions

In order to obtain the constant parameters that characterize
the model, i.e., a, b, B and C it is necessary to match in a
smooth way the internal manifold M~ given by Tolman—
Kuchowicz [43,44] spacetime with the static exterior space-
time M™ in 5-D which is described by the Einstein—-Gauss—
Bonnet—Schwarzschild solution [4],

ds? = —F()dr + [F()]7'dr? + 72 (d6% + sin® 6 dg?

+ sin® 0 sin? ¢d¢2) , (24)

@ Springer



922 Page 6 of 12

Eur. Phys. J. C (2019) 79:922

where

r? 8aM
Fry=14—1{1—,/1+ o . (25)

4o

In (25) M is associated with the gravitational mass of the
hypersphere. It is remarkable that when ¢« — 0 the usual
Schwarzschild solution is recovered. So, joining the inner
and exterior spacetime demands the compliance of the first
and second fundamental forms. These matching conditions
are known as Israel-Darmois junction conditions [48,49]
in GR. Nevertheless, in higher-dimensional theories Israel—
Darmois matching conditions should be adapted or modified.
Actually, in Einstein—Gauss—Bonnet gravity theory the corre-
sponding or equivalent Israel-Darmois junction conditions in
the arena of the study concerning compact configurations are
still unknown. On the other hand, in the brane-world frame-
work regarding the cosmological scenario, Israel-Darmois
conditions were explored [50]. Taking into account these
antecedents one can infer some insights of how to proceed
in the compact structure context.

In obtaining the field equations from (1) by taking varia-
tions with respect to the metric tensor g, (this metric tensor
describes the geometry of the higher-dimensional manifold)
one gets Eq. (3) plus a boundary term (BT) given by

1
BT=— — /Q d*xv/—hn, (g"[”gé]‘”+2ozP“”“") Vodgve,
(26)

where h is the determinant of the induced metric hy,, =
guv — hyny, on the © manifold and P ye corresponds to
the divergence free part of the Riemann tensor. As can be
seen Eq. (26) compromises normal derivatives of the metric
variation. In considering GR this term can be cancelled out
after integration by parts by assuming without loss of gen-
erality an asymptotically flat spacetime without boundary or
by adding a suitable boundary term to the Einstein—Hilbert
action in order to kill them. This specific term is referred
to the Gibbons—Hawking boundary term [51]. However, in
this case this assumption of asymptotically flat spacetime is
not valid anymore, because the embedded spacetime €2 could
contain a boundary. So, in order to cancel out the boundary
term provided by the ambient M spacetime on the induced
one 2 the best option is to incorporate into the action the cor-
responding Gibbons—Hawking boundary term. In the case of
Einstein—Gauss—Bonnet theory this term was found in [52].
So, after taking variations with respect to the metric tensor
of the ambient spacetime one arrives at the field equations
(3) on M and

2Ky — Khyy) + 40300 — Jhyy

+2Puean K<) = =12 Sy0, 27)

@ Springer

where K, is the extrinsic curvature tensor of the hyper-
surfaces €2, K its trace and J,, a symmetric tensor [50].
Besides, the circumflex accent and () represent quantities
associated with the induced metric 4, and the average of a
quantity over two sides of the hypersurfaces €2, respectively.
As said before, the previous discussion concerns the cosmo-
logical scenario in the brane-world context. In principle, the
same procedure could be utilized in order to derive the corre-
sponding Israel-Darmois junction conditions in the context
of compact stars studies. In this concern, the Gauss—Bonnet
combination presents a good behavior, coherent with the fact
that Eq. (1) is unique in five dimensions like Einstein—Hilbert
gravity is in four dimensions. Hence we can expect a reg-
ular gravity theory and hence regular boundary conditions
[53]. Therefore, in principle the well-known Israel-Darmois
matching conditions could be translated from four dimen-
sions to higher ones without problems. So, the first funda-
mental from consists in the continuity of the metric potentials
across the boundary 2. Explicitly

[dsz] =0, (28)
)
e)F lr=r = e}ﬁr lr=R, and ev* lr=r = ev+|r:Rs (29)

and the first derivative of the g,, metric component gives,

deV de’”
( ar ) =< ar ) ; (30)
[r=R [r=R

ensures the fulfillment of the second fundamental form,
which reads

pr(R) =0. €1y

This condition determines the object size. This is so because
the pressure decreases as we approach the surface and the
pressure at the exterior of the star must be null, then this will
correspond to the star boundary. In other words, the second
fundamental form says that the matter distribution is confined
in a finite spacetime region; in consequence the star does
not expand indefinitely beyond X. Therefore, from the first
fundamental form we obtain

1 2 SaM
—1+aR2+bR4=1+E L=+ = |- (32)
R? S8aM
CQeBRzzl—i-E(l— 1+%>, (33)
S8aM
DBC2BR =V R (34)
2Ny
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and from the second fundamental form we get
3 2 4\?
(R+8BRa+2BR*) (1+aR® +bR*)” — 8B Ra

2 2\*
—R(l—i—aR +bR) = 0. (35)
Equations (32)—(35) are the necessary and sufficient condi-
tions to determine the complete set of constant parameters
{a, b, B, C} that describe the model.

6 Causality condition

For any model describing a stellar interior, the subliminal
sound speed of the pressure waves must be less than the speed
of light. In the treatment of anisotropic fluids, the propaga-
tion of the pressure waves is along the main directions of
the object, i.e., the radial and transverse directions. The sub-
liminal sound speeds along these directions are defined by

d d
v = Pr and v, = ﬁ (36)
dp dp

So, in order to obtain a physically admissible model, both
speeds, v, and v;, must be bounded by the speed of light.
This is the so-called causality condition. Causality means
that pressure (sound) waves in the fluid do not propagate
at arbitrary speeds. On the other hand, in distinction with
what happens in the case of an isotropic fluid (in this case
the pressure waves propagate only in one direction because
pr = p:), the speed behavior within the star against the
radial coordinate in decreasing. However, this is not true in
the case where there is anisotropy, since the behavior of the
speed depends on the rigidity of the material. So, the causality
condition reads

0<wv, <1 and 0<v <1, 37)
where the speed of light was taken to be ¢ = 1. Preservation/
non-preservation of the causality condition (37) has strong
implications on the matter distribution within the structure.
This is so because it is related with the behavior of the
energy-momentum tensor, which describes the material con-
tent. Preservation of causality yields a well-defined energy-
momentum tensor. Additionally, the fact of having different
speeds in the directions, mentioned above, influences the sta-
bility of the system.

Now at the center of the star the subliminal sound speeds
are

,  4aB +2b(1 —8aB) + a*(—3 + 56aB)
v =
r0 3(1 + 8aa)(3a2 — 2b)

) (3%)

T T T

0.5F ]
vr - Solid GR--Black
0.4f v - Dashed b
>
- gy iy gy
[ I e e T
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T
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Fig. 7 Variation of sound speed for 4U 1538-52 using the parameter
provided in Table 1

1
9(1 + 8aw)(3a% — 2b)

+16aB(1 — 2aB) + a*(—15 +248aB)]. (39)

V3 = [—4Bz+b(10—80aB)

Equations (38)—(39) impose some restrictions on {a, b, B}
in order to preserve the causality condition. Figure 7 (upper
panel) exhibits the trend of both speeds throughout the con-
figuration. As we can see EGB theory dominates GR in both
directions. Besides, the speed of the radial and tangential sub-
liminal sound pressure waves are decreasing in nature and as
« increases they take higher values at the center of the star.
Otherwise we have increasing radius.

7 Stability mechanisms: relativistic adiabatic index and
Abreu’s criterion

In this section we analyze an important mechanism—the sta-
bility mechanism. The general theory of stability is com-
plicated since many variables can change at the same time.
Therefore maintaining consistency can be a difficult task.
Within this branch there are some heuristic methods of deter-
mining stability, such as relativistic adiabatic index [54,55],
Abreu’s criterion [56] (based on Herrera’s cracking concept
[34]), static stability criterion [57,58], and Ponce De Leon’s
criterion [59]. This clearly suggests that the study of stabil-
ity of compact objects can only be carried out in a tentative
manner, that is, there is no mechanism to test whether an
astrophysical system is stable from a global point of view.
However, these heuristic mechanisms, even if only in a ten-
tative manner, allow us to check how stable an anisotropic
matter distribution is, which is susceptible to radial distur-
bances due to the presence of repulsive forces in the case
A > 0 (in the case of attractive forces, which occurs when
A < 0 and the system is also under disturbances of the radial
type). So, in this case we use the first two, i.e., the relativistic
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adiabatic index and Abreu’s criterion. The former gives the
ratio of two specific heats; it is defined by

P+ pr

r, = 2
r pr r
X1{1 + (o + ) (a + b2+ ar® + br4)} .
pr— U 9
W[2B — (a+br)Q+ar+brtyya] "
(40)
T, = o+ pe Uz2
Pt

- ;[Al 43407 + 2457t + Ayr® + Asr® 4 Agr!©
1262 A2 4 dabdr ' 4 b0 Xg]vf, (41)
where
X1 = 2(a LB+ Q2b+aB)y?+ bBr4>,

X2 = 2ar? —8aB —2Br? +r*(2b + [a + br?1?) + 1,
12a (a Y4B 420 + aB)r2>

X3 =

14 ar? + br# ’
48 Br(a + 2br?)
X4 = 1+ar?+brt
=3+ 2Br? + (4 + 2ar?)
x5 = 1 +ar?+ brt
Y6 = —Thr* + 4B<1 —br* + B2 + br6))

+a(=3+4B%*r%),
= x4 —8aB — 160 B*r* — w*
+2BUA(r? + days) + W(1 + r’xe),

where the constants A; (i = 1,2, ..., 7) are given by

A = 12a(a + 4B),

Ao =a+4a2a+8ab+B,

A3z = B> + b(2 — 4aB) + a*(3 — 2aB) + 2a(9ab
+B + 4aB?),

A4 = 4a® + 13ab + 24ab® + (a® + 2b — 16aab) B
+4(a + 2d%a + 4ab)B2,

As = 12a%b + 7b* — 12ab*B + 2(a* + 2b + 8aab) B>
+a*,

Ag = b[4a3 4+ bB(—1 +8aB) +4a(3b + Bz)],
A7 = 3a> +2b + B>.

Equations (40)—(41) provide the relativistic adiabatic indices
in the radial direction, ', and in the tangential direction, I';.
However, it should be noted that in the event of a gravitational
re-collapse of the structure, it is sufficient to study the behav-
ior of the relativistic adiabatic index in the radial direction,
since the compression of the object due to the gravitational

@ Springer

force would occur in that direction. Bondi’s pioneering work
[54] has shown that I" > 4/3 is the condition for the stabil-
ity of a Newtonian isotropic matter distribution. This con-
dition is very different in the case of anisotropic relativistic
fluid spheres, because the stability will depend on the type
of anisotropy. Then the stability condition for an anisotropic
relativistic sphere is given by [31-33]

1 popro 4(p10_pr0)i| 42)
max

4
F>—+[K r+ =
35037 Ipll 3 Ipllr

where pg, pro and p;o are the initial density, radial and tan-
gential pressure when the fluid is in static equilibrium. The
second term in the right hand side represents the relativistic
corrections to the Newtonian perfect fluid and the third term
is the contribution due to anisotropy. It is clear from (42) that
if we have a non-relativistic perfect fluid matter distribution
the bracket vanishes and we recast the collapsing Newto-
nian limit in the form I' < 4/3. Heintzmann and Hillebrandt
[55] showed that in the presence of a positive and increasing
anisotropy factor A = p; — p, > 0, the stability condition
for a relativistic compact object is given by I' > 4/3. This
is so because a positive anisotropy factor may slow down
the growth of an instability. In Fig. 8 it has been shown that
[y, Ty > 4/3 everywhere within the stellar interior for both
EGB and GR theories. Therefore, from the relativistic adia-
batic index point of view our model is stable.

On the other hand, Abreu’s criterion [56] basically con-
sists in contrasting the speeds of the pressure waves in the
two principal directions of the spherically symmetric star:
the subliminal radial sound speed with the subliminal tan-
gential sound speed; and then based on those values at par-
ticular points in the object one could potentially conclude
whether the system is stable or unstable under the cracking
instability. The cracking process is the mechanism to study
instability when anisotropy matter distributions are present
[34]. Nevertheless, this mechanism can be characterized most
easily through the subliminal speed of pressure waves. Fur-
thermore, from the causality condition one has 0 < v,2 <1
and 0 < v? < 1, whichimplies 0 < [v? —v?| < 1. Explicitly
it reads

2 2
-1 <v — v

B { —1 <v? —v2 <0 Potentially stable ,

0 <v?—v2 <1 Potentially unstable.

<1
} (43)

So, the principal aim of Abreu’s criterion is that if the sublim-
inal tangential speed vf is larger than the subliminal radial
speed v,2; then instability regions may occur in the object,
rendering the latter an unstable configuration. So, with the
help of a graphical analysis one can determine the poten-
tially stable/unstable regions inside the star and then con-
clude whether the system is stable or not, at least locally.
From Fig. 9 it is appreciated that the system presents all
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Fig. 9 Variation of stability factor for 4U 1538-52 using the parameter
provided in Table 1

the regions completely stable for all values of «, including
GR. However, GR seems to be more stable than EGB theory,
because the stability factor takes smaller values between — 1
and 0 with respect to EGB theory.

8 Energy conditions

The matter content that makes up astrophysical bodies can be
composed of a large number of material fields. Although the
components that constitute the matter distribution are known,
it could be very complex to describe the concrete form of the
energy-momentum tensor. Indeed, one has some ideas on the
behavior of the matter under extreme conditions of density
and pressure.

Nonetheless there are certain inequalities which are phys-
ically reasonable to assume to check the conduct of the
energy-momentum tensor at every point inside the star. These
inequalities are known as energy conditions. We have the null
energy condition (NEC), the strong energy condition (SEC)
and the weak energy condition (WEC). Explicitly, these are

given by
WEC:T,,,[*I” > 0or p >0, p+ pi =0, (44)
NEC:T,,t*t" > 0or p+ p; > 0, (45)
1
SEC:T),,["1" + ETMIU >0o0rp+Y pi=0. (46

1

where i = (radial r, transverse t), [* and t* are timelike
vector and null vector, respectively. To verify a well behaved
energy-momentum tensor everywhere within the compact
structure the above inequalities must be satisfied simulta-
neously. In Fig. 10, we have plotted the LHSs of the above
inequalities, which verifies that all the energy conditions are
satisfied at the stellar interior.

Moreover, from the physical point of view NEC means that
an observer traversing a null curve will measure the ambient
(ordinary) energy density to be positive. WEC implies that
the energy density measured by an observer crossing a time-
like curve is never negative. SEC purports that the trace of
the tidal tensor measured by the corresponding observers is
always non-negative [60]. Furthermore, violations of energy
conditions have sometimes been presented as only being pro-
duced by unphysical stress energy tensors. Usually SEC as
used as a fundamental guide will be extremely idealistic.
Nevertheless, SEC is violated in many cases, e.g. in mini-
mally coupled scalar field and curvature-coupled scalar field
theories. It may or may not imply the violation of the more
basic energy conditions, i.e., NEC and WEC.

9 Generalized Tolman—-Oppenheimer—Volkoff equation

In this section, we discuss the dynamical equilibrium condi-
tion of the stellar model by using the Tolman—Oppenheimer—
Volkoff (TOV) approach in five dimensions [43,61] by the
equation

/

dp, v 3
—Z(p+p)+>(pi—pr) =0, 47
ar 2(p pr) r(Pr pr) 47

where we denote first term —dc{; =

—‘%(,o—i—p,) = F, and the third term %(p, —pr) = F;. These
terms describe the hydrostatic force (F},), the gravitational
force (F) and the anisotropic force (Fy), respectively.

In the case of isotropic fluid spheres (p, = p;) and regard-
ing@ — 0 (GR limit), this equation drives the equilibrium of
relativistic compact structures described by isotropic matter
distribution. Regarding the presence of anisotropies and the
EGB framework, this equation still determines the balance of
the system. As was pointed out before, the present model is
determined by three forces. To guarantee the equilibrium of
the proposed stellar structure, we have shown in Fig. 11 that
the balance of the forces is reached at all the values of « and
GR also. Consequently, Fig. 11 indicates that, in the situation

= Fj, the second term

@ Springer



922 Page 10 of 12

Eur. Phys. J. C (2019) 79:922

T.E a=10(Brown),
% 20 (Blue), 1
= 30 (Purple),
_5 ~ 40 (Green)
35 B 50 (Red) ]
c ~
o ~
o
-
g o 2 3 4 5 6 71 # = pr (Solid)
2 p - p¢ - (Short - Dashed) 1
w km )
140+ r( p-pr-2p; - (Dashed)
120 : . ) "
0 1 2 3 4 5 6 7
r(km)

Fig. 10 Variation of energy conditions for 4U 1538-52 using the
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of 10 < @ < 50, the resulting impact of the hydrodynamic
force (F},) and the anisotropic force (F, ) compensates for the
internal attraction due to the gravitational force (Fy). Further-
more, it is worth mentioning that in the GR case the F},, F,
and F forces are greater than the corresponding EGB forces.

10 Rigid rotation, moment of inertia and comparison
with M—-R graph

Bejger and Haensel [62] proposed an approximate formula
which converts a static model to rotating model and is given
by

C2p, | (M/R)-kmy
I= 5[1 T ]MR . (48)

Using the above expression we have plotted the trend of /
w.r.t. mass M in Fig. 12. From this graph it can be seen
that the maximum moment of inertia (/,x) increases with
increasing coupling constant «. Also from the M—R graph
(Fig. 13) we can see that as « increases the maximum mass
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(Mmax) also increases. From Figs. 12 and 13 one can notice
that the sensitivity of the M-I graph is better than M—R
graph when the stiffness of the equation of state changes.

11 Concluding remarks

It is evident that within the framework of five-dimensional
Einstein—Gauss—Bonnet gravity theory, it is plausible to
obtain models that describe real compact objects such as
white dwarfs, neutron stars and others. In addition, the
obtained solution fulfills the basic and general requirements
to be a physically and mathematically admissible model. In
this case we have solved the field equations (8)—(10) by
imposing the Tolman—Kuchowicz spacetime (Fig. 1). This
choice is well motivated for two reasons: (i) this metric is
free from physical and geometrical singularities, so itis com-
pletely plausible to describe the inner geometry of compact
objects, (ii) it yields a well behaved energy density, i.e., a
positive definite and monotone decreasing function from the
center to the boundary of the star (Fig. 2). As is well known,
this is a fundamental requirement to describe in a good way
the material content inside the star.

Moreover, the remaining thermodynamic variables that
characterize the solution, i.e., the radial pressure p, and
the tangential pressure p;, are well behaved at all points
within the configuration (3). Besides, the tangential pressure
p: coincides with the radial pressure p, at the center and
then is always greater than p, everywhere. Actually, it is a
very important fact, because it induces a positive anisotropy
factor A inside the star (Fig. 4). A positive A brings with
it important consequences for the structure. For example,
it allows the construction of more compact objects (greater
amount of mass contained in a smaller size) and introduces a
force (repulsive in nature) that helps sustain the hydrostatic
balance by counteracting the gravitational compression. The
latter not only prevents the system from being subject to a



Eur. Phys. J. C (2019) 79:922

Page 11 of 12 922

Table 1 Values of all the parameters corresponding to different values of « and the corresponding (M4, R)

R

Mmax

b

Pe

Pc

(km)

(Mg)

x 1033 (dyne cm~2) x 1014 (gm cm™3)

x 1014 (gm cm ™)

x1073 (km~2) x1073 (km~2)

x1078 (km™%)

4.09734

7.04898

4.43142

713032 0.95768

688655

15

12.77
12.784
12.80
12.813
12.83

2.999

2.11426
2.13184
2.14398
2.15641
2.16905

1.80466
1.84999
1.88714
1.92088
1.95076

2.19653
2.21053
2.22415

0.97947

0.979853
0.980493
0.980278
0.980881

33405
32364

33681
334567
332382
330251

10
20
30
40
50

3.027
3.062
3.093
3.12
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31387
29605
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Fig. 13 The M—R graphs are plotted for a = 2.13 x 10~% and b =
4x1078

gravitational re-collapse (as would be the case of A < O,
which would introduce an attractive force, contributing to
the gravitational gradient to collapse the object, which can
take it even below its Schwarzschild’s radius to form a black
hole), but it improves the stability of the system as well.

On the other hand, as the material content is confined
within the region givenby ¥ = r = R, to find all the constant
parameters that describe the solution {a, b, B, C} we have
made the junction between the internal geometry and the
outer spacetime, the Schwarzschild equivalent solution (free
of material content, i.e., the vacuum solution) in EGB. This
was performed by applying the first and second fundamental
forms.

The remaining main physical highlights of the current
solution can be summarized as follows:

1. The causality condition (Fig. 7) for the stability of the
anisotropic matter distribution as a profile of the differ-
ence in squared of subliminal sound speed of the pressure
waves, [v? — v?| with respect to the radial coordinate r
satisfies the inequality —1 < v> — v? < 0 which mani-
fests itself in Fig. 9 (lower panel).

2. In Fig. 8 we have displayed the behavior of the adiabatic
index I with respect to the infinitesimal radial adiabatic
perturbation which confirms that when I > 4/3 our stel-
lar structure is stable in all interior points of the stellar
object with spherical symmetry.

3. Asregards examination of the energy conditions in order
to test the physical validity of the obtained solution, in
Fig. 10 we have indicated the behavior of all energy con-
ditions with respect to the radial coordinate r for the stel-
lar system, which shows that our compact stellar structure
is well suited for the system in the context of the EGB
gravity at various choose values of «, also considering
GR theory.
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4. We have shown in Fig. 11 that the equilibrium of the
forces is reached for all the values of « (including GR),
which confirms that our stellar model is stable with
respect to the equilibrium of forces.

5. The stiffness of the corresponding EoS increases with
increasing coupling constant «, however, it is less stiff
w.r.t. the GR limit. The maximum mass corresponding
to o = 10-50 is given in Table 1. As « increases to 10—
50, the moment of inertia also increases. This makes the
EoS stiffer and therefore the system can support higher
masses (Figs. 12 and 13).

Finally, it is worth mentioning that taking « — 0 GR
results in five dimensions are recovered. Moreover, as we
can observe in the complete graphic analysis GR provides
a more compact and stable model in distinction with EBG.
Nevertheless, the same can be reached in the arena of EGB
gravity taking smaller values of the coupling constant «.

Acknowledgements P.B is thankful to IUCAA, Govt of India, for
providing a visiting associateship, F. Tello-Ortiz thanks the financial
support by the CONICYT PFCHA/DOCTORADO-NACIONAL/2019-
21190856, Grant Fondecyt No. 1161192, Chile and project ANT-1855
at the Universidad de Antofagasta, Chile.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
article. So, there are no external data associated with this manuscript.]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Funded by SCOAP3.

References
1. C.M. Will, Living Rev. Rel. 9, 3 (2005)
2. C. Lanczos, Ann. Math. 39, 842 (1938)
3. D. Lovelock, J. Math. Phys. 498, (1971)
4. D.G. Boulware, S. Deser, Phys. Rev. Lett. 55, 2656 (1985)
5. ER. Tangherlini, I1 Nuovo Cimento 27, 636 (1963)
6. S.G. Ghosh, D.W. Deshkar, Phys. Rev. D 77, 047504 (2008)
7. S. Nojiri, S.D. Odintsov, Phys. Lett. B 631, 1 (2005)
8. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, S. Zerbini, Phys.

Rev. D 75, 086002 (2007)

S. Nojiri, S.D. Odintsov, S. Ogushi, Int. J. Mod. Phys. A 17, 4809

(2002)

10. B.M. Leith, I.P. Neupane, J. Cosmol. Astropart. Phys. 0705, 019
(2007)

11. A. De Felice, S. Tsujikawa, Phys. Lett. B 675, 1 (2009)

12. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)

13. S. Nojiri, S.D. Odintsov, P.V. Tretyakov, Prog. Theor. Phys. Suppl.
172, 81 (2008)

14. K. Bamba, S.D. Odintsov, L. Sebastiani, S. Zerbini, Eur. Phys. J.
C 67,295 (2010)

15. A. De Felice, S. Tsujikawa, Phys. Rev. D 80, 063516 (2009)

©

@ Springer

16.
17.
18.

19.
20.

21.

22.
23.
24.
25.
26.

27.

28.
29.
. J. Ponce de Leén, J. Math. Phys. 28, 1114 (1987)
31.

32.
33.

34.
35.

36.
37.

38.

39.
40.
41.
42.

43.
44,
45.
46.
47.
48.
49.

50.
51.
52.
53.
54.
55.
56.

57.

58.

59.
60.
61.
62.

J.H. Kung, Phys. Rev. D 52, 6922 (1995)

J.H. Kung, Phys. Rev. D 53, 3017 (1996)

K. Bamba, M. Ilyas, M.Z. Bhatti, Z. Yousaf, Gen. Relativ. Gravit.
49, 112 (2017)

P. Bhar, M. Govender, R. Sharma, Eur. Phys. J. C 77, 109 (2017)
S. Hansraj, B. Chilambwe, S.D. Maharaj, Eur. Phys. J. C 75, 277
(2015)

S.D. Maharaj, B. Chilambwe, S. Hansraj, Phys. Rev. D 91, 084049
(2015)

S. Hansraj, Eur. Phys. J. C 77, 557 (2017)

M. Wright, Gen. Relativ. Gravit. 48, 93 (2016)

H.A. Buchdahl, Phys. Rev. D 116, 1027 (1959)

R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974)

M. Cosenza, L. Herrera, M. Esculpi, L. Witten, J. Math. Phys. 22,
118 (1981)

M. Cosenza, L. Herrera, M. Esculpi, L. Witten, Phys. Rev. D 25,
2527 (1982)

L. Herrera, J. Ponce de Ledn, J. Math. Phys. 26, 2302 (1985)

J. Ponce de Ledn, Gen. Relativ. Gravit. 19, 797 (1987)

R. Chan, S. Kichenassamy, G. Le Denmat, N.O. Santos, Mon. Not.
R. Astron. Soc. 239, 91 (1989)

R. Chan, L. Herrera, N.O. Santos, Class. Quantum Grav. 9, 133
(1992)

R. Chan, L. Herrera, N.O. Santos, Mon. Not. R. Astron. Soc. 265,
533 (1993)

L. Herrera, Phys. Lett. A 165, 206 (1992)

A. Di Prisco, E. Fuenmayor, L. Herrera, V. Varela, Phys. Lett. A
195, 23 (1994)

L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

A. Di Prisco, L. Herrera, V. Varela, Gen. Relativ. Gravit. 29, 1239
(1997)

L. Herrera, A.D. Prisco, J. Ospino, E. Fuenmayor, J. Math. Phys.
42,2129 (2001)

L. Herrera, J. Ospino, A.D. Prisco, Phys. Rev. D 77, 027502 (2008)
M.K. Gokhroo, A.L. Mehra, Gen. Relativ. Gravit. 26, 75 (1994)
B.V. Ivanov, Phys. Rev. D 65, 104011 (2002)

S.K. Maurya, A. Banerjee, S. Hansraj, Phys. Rev. D 97, 044022
(2018)

R.C. Tolman, Phys. Rev. 55, 364 (1939)

B. Kuchowicz, Acta Phys. Pol. 33, 541 (1968)

M.K. Jasim, D. Deb, S. Ray et al., Eur. Phys. J. C 78, 603 (2018)
S.K. Maurya, F. Tello-Ortiz, Eur. Phys. J. C 79, 33 (2019)

H. Maeda, M. Nozawa, Phys. Rev. D 77, 064031 (2008)

W. Israel, Nuovo Cim. B 44, 1 (1966)

G. Darmois, Mémorial des Sciences Mathematiques (Gauthier-
Villars, Paris, 1927). Fasc. 25, (1927)

S.C. Davis, Phys. Rev. D 67, 024030 (2003)

G.W. Gibbons, S.W. Hawking, Phys. Rev. D 15, 27 (1977)

R.C. Myers, Phys. Rev. D 36, 392 (1987)

C. Charmousis, J.F. Dufaux, Class. Quant. Grav. 19, 4671 (2002)
H. Bondi, Mon. Not. R. Astron. Soc. 281, 39 (1964)

H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)
H. Abreu, H. Hernandez, L.A. Nufez, Calss. Quant. Gravit. 24,
4631 (2007)

B.K. Harrison, K.S. Thorne, M. Wakano, J.A. Wheeler, Gravita-
tional Theory and Gravitational Collapse (University of Chicago
Press, Chicago, 1965)

Ya B. Zeldovich, I.D. Novikov, Relativistic Astrophysics Stars and
Relativity, vol. 1 (University of Chicago Press, Chicago, 1971)

J. Ponce de Ledn, Phys. Rev. D 37, 309 (1988)

E. Curiel, Einstein Stud. 13, 43 (2017)

J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

M. Bejger, P. Haensel, A & A 396, 917 (2002)


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Compact star in Tolman–Kuchowicz spacetime in the background of Einstein–Gauss–Bonnet gravity
	Abstract 
	1 Introduction
	2 Field equations
	3 Solution of the field equations
	4 Physical analysis
	5 Exterior spacetime and matching conditions
	6 Causality condition
	7 Stability mechanisms: relativistic adiabatic index and Abreu's criterion
	8 Energy conditions
	9 Generalized Tolman–Oppenheimer–Volkoff equation
	10 Rigid rotation, moment of inertia and comparison with M–R graph
	11 Concluding remarks
	Acknowledgements
	References




