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Abstract Constraining the parameters of physical mod-
els with > 5 − 10 parameters is a widespread problem in
fields like particle physics and astronomy. The generation
of data to explore this parameter space often requires large
amounts of computational resources. The commonly used
solution of reducing the number of relevant physical param-
eters hampers the generality of the results. In this paper we
show that this problem can be alleviated by the use of active
learning. We illustrate this with examples from high energy
physics, a field where simulations are often expensive and
parameter spaces are high-dimensional. We show that the
active learning techniques query-by-committee and query-
by-dropout-committee allow for the identification of model
points in interesting regions of high-dimensional parameter
spaces (e.g. around decision boundaries). This makes it pos-
sible to constrain model parameters more efficiently than is
currently done with the most common sampling algorithms
and to train better performing machine learning models on the
same amount of data. Code implementing the experiments in
this paper can be found on GitHub

1 Introduction

With the rise of computational power over the last decades,
science has gained the power to evaluate predictions of
new theories and models at unprecedented speeds. Deter-
mining the output or predictions of a model given a set of
input parameters often boils down to running a program and
waiting for it to finish. The same is however not true for
the inverse problem: determining which (ranges of) input
parameters a model can take to produce a certain output
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(e.g., finding which input parameters of a universe simula-
tion yield a universe that looks like ours) is still a challeng-
ing problem. In fields like high energy physics and astron-
omy, where models are often high-dimensional, determining
which model parameter sets are still allowed given exper-
imental data is a time-consuming process that is currently
often approached by looking only at lower-dimensional sim-
plified models. This not only requires large amounts of com-
putational resources, in general it also reduces the range of
possible physics the model is able to explain.

In this paper we approach this problem by exploring the
use of active learning [9,24,25], an iterative method that
applies machine learning to guide the sampling of new model
points to specific regions of the parameter space. Active
learning reduces the time needed to run expensive simula-
tions by evaluating points that are expected to lie in regions of
interest. As this is done iteratively, this method increases the
resolution of the true boundary with each iteration. For classi-
fication problems this results in the sampling of points around
– and thereby a better resolution on – decision boundaries. An
example of this can be seen in Fig. 1. In this paper we inves-
tigate techniques called query-by-committee [25] and query-
by-dropout-committee [11,21,28], which allow for usage of
active learning in parameter spaces with a high dimension-
ality.

The paper is structured as follows: in Sect. 2 we explain
how active learning works. In Sect. 3 we show applications of
active learning to determine decision bounds of a model in the
context of high energy physics, working in model spaces of
a 19-dimensional supersymmetry (SUSY) model.1 We con-

1 Supersymmetry (SUSY) is a theory that extends the current theory of
particles and particle interactions by adding another space-time symme-
try. It predicts the existence of new particles which could be measured
in particle physics experiments, if supersymmetry is realised in nature.
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Fig. 1 With active learning new data points can be sampled in regions
of interest, like for example a decision boundary in a classification prob-
lem. The figure shows how the initial estimation (dashed-dotted red line)
of the decision boundary (dashed black line) is located at the location
where the classification of new points is most uncertain. By iteratively
sampling new points (crosses) in this most uncertain region and deter-
mining a new estimation of the decision boundary, the estimation of
the boundary will get increasingly more accurate, as can be seen in the
picture for 3 iterations (solid blue line)

clude the paper in Sect. 4 with a summary and future research
directions.

2 Active learning

Scientific simulations can be computationally expensive to
run, making it expensive to explore the output space of these.
Approximations of these simulations can however be con-
structed in the form of machine learning estimators, which
are typically quick to evaluate. Active learning leverages this
speed, exploiting the ability to quickly estimate how much
information can be gained by querying a specific point to the
true simulation (also known as the labelling procedure).

Active learning works as an iterative sampling technique.
In this paper we specifically explore a technique called pool-
based sampling [24], of which a diagrammatic representa-
tion can be found in Fig. 2. In this technique an initial data
set is sampled from the parameter space and queried to the
labelling procedure (also called the oracle). After retriev-
ing the new labels one or more machine learning estimators
are trained on the available labelled data. This estimator (or
set of estimators) can then provide an approximation of the
boundary of the region of interest. We gather a set of can-
didate (unlabelled) data points, which can for example be
sampled randomly or be generated through some simulation,
and provide these to the trained estimator. The output of the

Fig. 2 Diagrammatic representation of active learning. Data is sam-
pled and used to create a data set. This data is used to train an ML
estimator (or a committee of estimators), which is used to get an approx-
imation of the labelling on newly sampled data. From this new data the
points with the highest uncertainty in their labelling are selected for
sampling via the true sampling procedure and added to the data set.
This process can be repeated until enough data is collected

estimator can then be used to identify which points should
be queried to the oracle. For a classification problem this
might for example entail finding out which of the candidate
points the estimator is most uncertain about. As only these
points are queried to the oracle, it will not spend time on
evaluating points which are not expected to yield significant
information about our region of interest. The selected data
points and their labels are then added to the total data set.
This procedure – from creating an estimator to adding new
to the data set – can be repeated to get an increasingly better
estimation of the region of interest and be stopped when e.g.
the collected data set reaches a certain size or when the per-
formance increase between iterations becomes smaller than
a predetermined size.

It should be noted that the active learning procedure as
described above has hyperparameters: the size of the initial
data set, the size of the pool of candidate data points and the
number of candidate data points queried to the oracle in each
iteration. The optimal configuration for these parameters is
problem dependent and finding them requires a dedicated
search. We performed a random search on the hyperparame-
ters of the experiments in Sect. 3 and selected the best con-
figuration for all experiments. For completeness a discussion
on the hyperparameters can be found in Appendix A. We do
want to note that in all the active learning configurations we
experimented with, active learning always performed at least
equally as good as random sampling.

Arguably the most important step in Fig. 2 is to select those
points that ought to be queried to the labelling procedure
from a large set of candidate data points. As the problems we
look at here are classification problems, the closeness to the
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boundary can be estimated by the uncertainty of the trained
estimator on the classification of the model point.

This uncertainty can for example be obtained from an
algorithm like Gaussian Processes [22], which has already
been successfully applied in high energy physics to aim sam-
pling of new points around 2-dimensional exclusion bound-
aries [10]. Due to the computational complexity of this algo-
rithm it is however limited to low-dimensional parameter
spaces, as it scales at best with the number of data points
squared [13]. Because of this, we investigate specifically
query-by-committee and query-by-dropout-committee.

2.1 Query-by-committee (QBC)

By training multiple machine learning estimators on the same
data set, one could use their disagreement on the prediction
for a data point as a measure for uncertainty. Data points on
which the estimators disagree most are expected to provide
the highest information gain. This method is called query-by-
committee (QBC) [25]. To create and enhance the disagree-
ment among the committee members in uncertain regions
the training set can be changed for each estimator (e.g. via
bagging [6]) or by varying the configuration of the estimator
(e.g. when using a committee of Neural Networks, each of
these could have a different architecture or different initial
conditions), such that we get a reasonable amount of diversity
in the ensemble.

The disagreement among the estimators can be quanti-
fied through metrics like the standard deviation. For binary
classification problems it can even be done by taking the
mean of the outputs of the set of N estimators. If the classes
are encoded as 0 and 1, a mean output of 0.5 would mean
maximal uncertainty, so that the uncertainty measure for N
estimators could be

uncertainty = 1 − 2 ·
∣
∣
∣
∣
∣

1

N

N
∑

i=1

predictioni − 0.5

∣
∣
∣
∣
∣
. (1)

The QBC approach is not bound to a specific estimator.
If one were to use N estimators of which the training scales
linearly with the number of data points K , the active learn-
ing procedure would have a computational complexity of
O(NK ) for each iteration. This allows for the use of large
amounts of data, as is needed in high-dimensional parameter
space.

2.2 Query-by-Dropout-committee (QBDC)

Compared to Random Forests, Neural Networks are able to
capture more complex data patterns. Using Neural Networks
for active learning might therefore be beneficial. However,
although query-by-committee can also be used to create a

committee of Neural Networks, this is generally ill-advised
due to the computational expensive more training of Neu-
ral Networks. As an alternative to this, one can also build a
committee using Monte Carlo dropout [12]. This technique
uses a Neural Network with dropout layers [26] as estima-
tor. These dropout layers are conventionally used to prevent
overtraining (i.e. increased performance on the training set at
the cost of a reduction in performance on general data sets)
by disabling a random selection of the neurons in the preced-
ing layer of the network. This selection is changed at each
evaluation, and therefore at each training step of the network.
This makes it harder for the network to strengthen a specific
node path through the network during training, making it
more robust to changes in the input data. At test time the
dropout layers are typically disabled and the weights of the
layer following the dropout layer are rescaled with a factor
of 1/(1 - dropout fraction), in order to make the network.

In Monte Carlo dropout, on the other hand, the dropout
layers are left enabled at test time, making the output of
the network vary at each evaluation. Making x predictions
on a specific data point can therefore be interpreted as
a set of predictions coming from a committee of x net-
works. The advantage here however is that only a single
network has to be trained. As this method uses Monte Carlo
dropout, this method is called Query-by-Dropout-Committee
(QBDC) [11,21,28].

For classification problems one might wonder why not
to simply use a softmax output of a normal network (i.e.
one not using Monte Carlo dropout) and use this output as
a measure for uncertainty. Softmax layers associate a proba-
bility for each output class, which could in principle be trans-
formed in an uncertainty. A measure like this can be used the
address the uncertainty inherent in the data, also known as
the aleatoric uncertainty [14]. It captures uncertainty around
decision boundaries for example, where based on the data the
network is insecure on how to classify new data. The output of
the softmax layer says however nothing about the uncertainty
in the model itself, the epistemic uncertainty [14]. The epis-
temic uncertainty on the other hand quantifies the uncertainty
related to the model configuration (i.e. that different models
would give different predictions). A single network with a
softmax activation on its output would not take epistemic
uncertainty into account, as its output has no intrinsic mech-
anism to capture epistemic uncertainty. This is especially
important in regions where training data is sparse. A single
network may therefore still give the impression to be very
certain in such regions. QBDC, like other ensemble meth-
ods, captures model uncertainty by producing more variation
in regions where training data is sparse. For active learning,
both aleatoric and epistemic uncertainty are important.

123



944 Page 4 of 11 Eur. Phys. J. C (2019) 79 :944

3 Applications in HEP

In this section active learning as a method is investigated
using data sets from high energy physics. The experiments
investigated here are all classification problems, as these have
a clear region of interest: the decision boundary. It should be
noted that the methods explored here also hold for regression
problems with a region of interest (e.g. when searching for
an optimum). Although active learning can also be used to
improve the performance of a regression algorithm over the
entire parameter space, whether or not this works is highly
problem and algorithm dependent, as can for example be seen
in Ref. [23].

3.1 Increase resolution of exclusion boundary

As there are no significant experimental signals found in
“beyond the standard model” searches that indicate the pres-
ence of unknown physics, the obtained experimental data is
used to find the region in the model parameter space that still
allowed given the experimental data. Sampling the region
around the boundary of this region in high-dimensional
spaces is highly non-trivial with conventional methods due
to the curse of dimensionality.

We test the application of active learning on a model of
new physics with 19 free parameters (the 19-dimensional
pMSSM [16]). This test is related to earlier work on the
generalisation of high-dimensional results, which resulted
in SUSY-AI [7]. In that work the exclusion information on
∼ 310,000 model points as determined by the ATLAS col-
laboration [27] was used; the same data is used in this study.
We investigate three implementations of active learning: two
Random Forest set ups, one with a finite and the other with an
infinite pool, and a setup with a QBDC. The performance of
each of these is compared to the performance of random sam-
pling, in order to evaluate the added value of active learning.
This comparison is quantified by using the following steps:

1. Call max_performance the maximum reached per-
formance for random sampling;

2. Call Nrandom the number of data points needed for random
sampling to reach max_performance;

3. Call Nactive the number of data points needed for active
learning to reach max_performance;

4. Calculate the performance gain through

performance gain = Nrandom

Nactive
. (2)

The configurations of the experiments were explicitly made
identical and were not optimised on their own.

3.1.1 Random forest with a finite pool

Just as for SUSY-AI we trained a Random Forest classifier on
the public ATLAS exclusion data set [27] (details on the con-
figuration of this experiment can be found in Appendix B).
This data set was split into three parts: an initial training set
of 1000 model points, a test set of 100,000 model points and a
pool of the remaining ∼ 200,000 model points. As the label-
ing of the points is 0 for excluded points and 1 for allowed
points, after each training iteration the 1000 new points with
their Random Forest prediction closest to 0.5 (following the
QBC scheme outlined in Sect. 2.1) are selected from the pool
and added to the training set. Using this now expanded dataset
a new estimator is trained from scratch. The performance of
this algorithm is determined using the test set.

This experiment is also performed with all points selected
from the pool at random, so that a comparison of the per-
formance of active learning and random sampling becomes
possible. The results of both experiments are shown in Fig. 3.
The bands around the curves in this figure indicate the range
in which the curves for 7 independent runs of the experiment
lie. The figure shows that active learning outperforms ran-
dom sampling initially, but after a while random sampling
catches up in performance. The decrease in accuracy of the
active learning method is caused by an overall lack of train-
ing data. After having selected approximately 70,000 points
via active learning, new data points are selected further away
from this boundary, causing a relative decrease of the weight
of the points around the decision boundary, degrading the
generalisation performance.

Based on Fig. 3 the performance gain of active learning
over random sampling in the early stages of learning, up to
a train size of 50,000, – as described by Eq. 2 – lies in the
range 3.5 to 4.

3.1.2 Random forest with an infinite pool

A solution to the problem with the finite pool in Sect. 3.1.1
is to not give it a pool of data but to give it access to a
method through which new data points can be generated. In
this experiment we create such a method that generates data
in the training volume of SUSY-AI with a uniform prior.
Although in each iteration only a limited set of candidate
points is considered, the fact that this set is sampled anew in
each iteration guarantees that the decision boundary is never
depleted of new candidate points. Because of this, the pool
can be considered infinite. In contrast to the experiment in
Sect. 3.1.1, where labeling (i.e., excluded or allowed) was
readily available, determining true labeling on these newly
sampled data points would be extremely costly. Because of
this SUSY-AI [7] was used as a stand-in for this labeling pro-
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Fig. 3 Accuracy development on model exclusion of the 19-
dimensional model for new physics (pMSSM) for random sampling
and active learning using a random forest as algorithm and a finite pool.
True labeling was provided by ATLAS [1]. Active learning quickly
starts outperforming the random sampling. The decline in accuracy for
active learning, starting from a training size of 60,000, is caused by the
limited size of the pool and the fact that the region around the pool is
depleted from data around the decision boundary. The bands around the
curves show the range in which all curves of that colour lie when the
experiment was repeated 7 times

cess.2 Since we are training a Random Forest estimator, we
retrained SUSY-AI as a Neural Network, to make sure the
newly trained Random Forest estimator would not be able to
exactly match the SUSY-AI model, as this would compro-
mise the possibility to generalise the result beyond this one.
The accuracy of this Neural Network was comparable to the
accuracy of the original SUSY-AI. Details on the technical
implementation can be found in Appendix B.

The accuracy development as recorded in this experiment
is shown in Fig. 4. The bands again correspond to the ranges
of the accuracy as measured over 7 independent runs of the
experiment. The gain of active learning with respect to ran-
dom sampling (as described by Eq. 2) is 6 to 7. The overall
reached accuracy is however lower than in Fig. 3, but note
that this experiment stopped when a total of 100,000 points
as sampled, compared to the 200,000 points in the previous
experiment.

3.1.3 QBDC with an infinite pool

To test the performance of QBDC, the infinite pool experi-
ment above was repeated with a QBDC setup. The technical

2 Since SUSY-AI has an accuracy of 93.2% on the decision boundary
described by the ATLAS data [27], active learning will not find the
decision boundary described by the true labeling in the ATLAS data.
However, as the goal of this example is to show that it is possible to find
a decision boundary in a high-dimensional parameter space in the first
place, we consider this not to be a problem.

Fig. 4 Accuracy development on model exclusion of the 19-
dimensional model for new physics (pMSSM) for random sampling and
active learning using a random forest as algorithm and an infinite pool.
True labeling was provided by a machine learning algorithm trained on
model points and labels provided by ATLAS [1]. Here active learning is
vastly superior over random sampling, yielding a gain in computational
time of a factor of 5–6. The bands around the curves show the range in
which all curves of that colour lie when the experiment was repeated 7
times

details of the setup can be found in Appendix B. The accu-
racy development plot resulting from the experiment can be
seen in Fig. 5. The bands around the lines representing the
accuracies for active learning and random sampling indicate
the minimum and maximum gained accuracy for the cor-
responding data after running the experiment 7 times. The
performance gain (as defined in Eq. 2) for active learning in
this experiment lies in the range 3–4.

QBDC sampling is approximately K times faster than
ensemble sampling with K committee members for a fixed
number of samples, as only one network has to be trained.
However, as active learning outperforms random sampling
by a factor of 3 to 4, it depends on how expensive training of
the estimator is in comparison to how much computational
time is gained.

Compared to Figs. 3 and 4 the accuracies obtained in Fig. 5
are significantly higher. This can be caused by the fact that
the model trained to quantify the performance more strongly
resembles the oracle (both of them are Neural Networks with
a similar architecture), or that the Neural Network is inher-
ently more capable of capturing the exclusion function.

3.2 QBC with infinite pool for smaller parameter spaces

To investigate the performance of the method on lower
dimensional spaces, we perform the QBC experiment of
Sect. 3.1.2 five times. Each of these iterations uses the 19-
dimensional parameter space from this original experiment,
but in each of these we fix an increasingly larger subset of
variables of the original 19. For those familiar with SUSY:
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Fig. 5 Accuracy development on model exclusion of the 19-
dimensional model for new physics (pMSSM) for random sampling
and active learning using a dropout Neural Network with infinite pool.
True labeling was provided by a machine learning algorithm trained on
model points and labels provided by ATLAS [1]. The gain of active
learning with respect to random sampling (as described by Eq. 2) is
3–4. The bands show the range in which all curves of that colour lay
when the experiment was repeated 7 times

we consecutively fix the variables associated with the slepton
sector, the electroweak (EW) sector, the higgs sector and the
third generation. An overview of the variables and their fixed
values can be found in Table 1. The specific values to which
the variables were fixed were determined using SUSY-AI: we
required that whatever value selected, there was a balance in
the fraction of allowed and excluded points. To make results
from these experiments comparable to the experiments in
Sect. 3.1.2, each of the active learning parameters (size of
the initialisation set, iteration size, sample size and maxi-
mum size) is scaled down by a factor

scaling =
(

number of free parameters

19

)2

(3)

This avoids, amongst other things, for example that the initial
data set is too large for active learning to be most effective.

The results of the five reduced dimensionality experiments
can be found in Fig. 6. We have also included the results
of Sect. 3.1.2 for comparison. The gain over active learning
with respect to random sampling (Eq. 2) differs slightly from
plot to plot and can be found in the last column of Table 2.
From this table it can be seen that active learning is of added
value, even when applied to parameter spaces with a smaller
dimensionality.

However, although the relative gain in performance is an
informative measure, when deciding to apply active learning
one also has to consider the additional computational over-
head that the procedure adds to the sampling process. How
large of an overhead one is willing to accept depends largely
on the cost associated with querying the oracle. If a query to

Table 1 List of parameters of the 19-dimensional pMSSM in the
reduced dimensionality experiments. Parameters with a fixed value have
this value denoted in the respective column. Parameters that are left free
are indicated by a dash

# Fixed 5 9 11 15 18

M1 (GeV) − 1750 1750 1750 1750

M2 (GeV) − 1750 1750 1750 1750

M3 (GeV) − − − − −
mL1 (GeV) 1750 1750 1750 1750 1750

mL3 (GeV) 1750 1750 1750 1750 1750

mE1 (GeV) 1750 1750 1750 1750 1750

mE3 (GeV) 1750 1750 1750 1750 1750

mQ1 (GeV) − − − 1750

mQ3 (GeV) − − − 1750 1750

mU1 (GeV) − − − − 1500

mU3 (GeV) − − − 3000 3000

mD1 (GeV) − − − − 2000

mD3 (GeV) − − − 2000 2000

At − − 3200 3200 3200

Ab − − − 2000 2000

Atau 2000 2000 2000 2000 2000

mu (GeV) − 200 200 200 200

mA2 (GeV2) − − 107 107 107

tan(beta) − 10 10 10 10

the oracle would be very expensive (sayO(day)) an overhead
of an hour may be completely worth the wait, whereas such
an overhead would be unreasonable for inexpensive oracles.

To investigate this influence of oracle query times we kept
track of the time taken by the sampling process and oracle
query times for active learning in this and the previous sec-
tion. Using this information we calculated the time needed
for active learning to obtain the maximum performance by
random sampling. Comparing this time to the time needed
to randomly sample the necessary amount of points for this
performance gives a time-based comparison between the two
sampling methods. In Table 2 the following metric is used

time metric = time taken by random sampling

time taken by active learning
. (4)

The table shows the results for this metric for the experiments
in this and the previous section, averaged out over the seven
performed iterations. From these results it can be concluded
that active learning can provide a benefit over random sam-
pling even for low dimensional parameter spaces, as long as
the oracle query time is long enough. An alternative interpre-
tation could be that if one would be able to find an invertible
transformation that projects the data to a lower dimensional
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Fig. 6 Accuracy development on model exclusion in the simplified
versions of the 19-dimensional model for new physics (pMSSM) for
random sampling and active learning using a random forest as algorithm
and an infinite pool. True labeling was provided by a machine learning
algorithm trained on model points and labels provided by ATLAS [1].
The bands show the range in which all curves of that colour lay when the
experiment was repeated 7 times. The subsplots show the development
for different dimensionalities for the simplified models. The relative
gain of active learning over random sampling is approximately equal
for all six of these plots, showing that active learning has added benefit
even for smaller parameter spaces

space, active learning might not be necessary – as long as the
oracle query time is short enough.

An important note should be made about the exact oracle
query times in Table 2 however. Although the ratios reported
in the table are independent on the used hardware and the used
active learning method, this is not the case of the dependence
of these ratios on the quoted oracle query times. Where the
time taken by random sampling is only dependent on this
oracle query time and has negligible overhead, this is not the
case for active learning. So if the oracle query time stays the
same but the computer becomes for example twice as slow
(or the machine learning method would be replaced with a
method that is twice as expensive), the ratio would drop with a
factor anywhere between 1 and 2, the exact value depending
on the oracle query time and the time taken by the active

learning overhead. The general trend that active learning can
be beneficial for lower dimensional parameter spaces if the
oracle time is just long enough – or alternatively: that active
learning becomes more and more relevant as one considers
higher and higher dimensional parameter spaces – is however
unaffected by this hardware dependence.

3.3 Identifying uncertain regions and steering new searches

Instead of using active learning e.g. to iteratively increase the
resolution on a decision boundary, the identification of uncer-
tain regions of the parameter space on which active learning
is built can also be used to identify regions of interest.

For example, in high energy physics one could attempt
to identify model points around the exclusion boundary in a
high-dimensional model. These model points could then be
used as targets for new searches or even new experiments.
This is an advantage over the conventional method of try-
ing to optimise a 2-dimensional projection of the exclusion
region, as this method works over the full dimensionality of
the model, which thereby can respect a more detailed account
of the underlying theory that is being tested for. One could
even go a step further by reusing the same pool for these
search-improvement studies, so that regions of parameter
space that no search has been able to exclude can be identi-
fied. Analogous to this one could also apply this method to
find targets for the design of a new experiment.

To test the application of this technique in the context
of searches for new physics we trained a Neural Network
on the publicly available ATLAS exclusion data on the
pMSSM-19 [27], enhanced with the 13 TeV exclusion infor-
mation as calculated by [4]. The technical setup is detailed
in Appendix B. We sampled ∼ 87,000 model points in the
SUSY-AI parameter space [7] usingSOFTSUSY 4.1.0 [3]
as spectrum generator and selected 1000 points with the high-
est uncertainty following the QBDC technique outlined in
Sect. 3.1.3.

Figure 7 shows the sampled model points in the gluino
mass – LSP mass projection. As the LSP mass was not
directly one of the input parameters, the fact that the selected
points are nevertheless well-sampled in the region of the deci-
sion boundary, we conclude that the active learning algo-
rithm did successfully find the decision boundary in the 19-
dimensional model.

We conclude this section by noting that in all the active
learning experiments in this section new points were selected
exclusively with active learning. In more realistic scenarios
the user can of course use a combination of random sam-
pling and active learning, in order not to miss any features in
parameter space that were either unexpected or not sampled
by the initial dataset.
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Table 2 Relative time gain (Eq. 4) of the active learning procedure
with respect to random sampling when attempting to obtain the max-
imum performance obtained with random sampling. The table shows
this gain for different parameter space dimensionalities (rows) and for
different costs for querying the oracle (columns). The shown results are
the averages over all seven iterations of the experiment in Sect. 3.2.

The last column shows the performance gain (Eq. 2), irrespective of the
active learning overhead. Noticeable is that even for lower dimensional
parameter spaces active learning can be beneficial, namely when the
computational cost associated with querying the oracle becomes high
enough

# Free parameters 1 µs 10 µs 100 µs 1 ms 10 ms 100 ms 1 s 10 s 100 s 1000 s limt→∞

19 0.0112 0.1101 0.9674 4.3736 6.7504 7.1383 7.1796 7.1837 7.1842 7.1842 7.1842

14 0.0068 0.0672 0.6149 3.3239 5.9413 6.4491 6.5047 6.5103 6.5109 6.511 6.511

10 0.0046 0.0456 0.4282 2.6664 5.587 6.2742 6.3524 6.3603 6.3611 6.3612 6.3612

8 0.0021 0.0213 0.2058 1.5164 4.1751 5.0627 5.1727 5.1839 5.1851 5.1852 5.1852

4 0.0005 0.0053 0.0525 0.4784 2.5256 4.4148 4.7718 4.8107 4.8146 4.815 4.815

1 <0.0001 0.0001 0.0012 0.012 0.1152 0.8196 2.1106 2.5051 2.5528 2.5577 2.5582

Fig. 7 The model points that were selected in a pool-based sampling
projected on the gluino mass (mg̃) – LSP mass (mχ̃0

1
) plane. The algo-

rithm did not have direct access to the variables on the axes, but was
nevertheless able to sample points in the region around the decision
boundary, indicated by the solid black line in the figure. The dashed red
lines indicate the boundary of the model, outside of which no data points
will be sampled (caused by the fact that no supersymmetric particle can
be lighter than the LSP)

4 Conclusion

In this paper we illustrated the possibility to improve the res-
olution of regions of interest in high-dimensional parameter
spaces. We specifically investigated query-by-committee and
query-by-dropout-committee as tools to constrain parame-
ters and the possibility to improve the identification of uncer-
tain regions in parameter space to steer the design of new
searches. We find that all active learning strategies presented
in this paper query the oracle more efficiently than random
sampling, by up to a factor of 7. By reducing the dimen-
sionality of the 19-dimensional parameter space used in the
experiments, we have additionally shown that active learn-
ing can be beneficial even for parameter spaces with a lower
dimensionality.

One of the limiting factors of the techniques as presented
in this paper is the fact that a pool of candidate points needs to
be sampled from the parameter space. If sampling candidate
points randomly yields too few interesting points, generative
models can be used to sample candidate points more specif-
ically.

The code for all performed experiments is made public on
GitHub .3
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Appendix A: Active learning hyperparameters

The active learning procedure as implemented for this paper
has three hyperparameters:

– size_initial: The size of the data set used at the
start of the active learning procedure;

– size_sample: The size of the pool of candidate data
points to be sampled in each iteration

3 https://github.com/bstienen/active-learning.
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Fig. 8 The dependence of the accuracy in the last iteration of the active
learning procedure on the number of candidates in each iteration. The
error bars indicate the range within which the accuracies over 7 runs lie.
As described in the text, an optimum value can be observed, although
it should be noted that this value also depends on the number of data
points selected in each iteration

– size_select: The number of data points to select
from the pool of candidate data points and query to the
oracle.

Which settings are optimal depends on the problem at
hand, although some general statements can be made about
the possible values for these hyperparameters. To illustrate
this we performed a hyperparameter optimisation for the
experiment in Sect. 3.1.2, although it should be noted that
this optimisation was performed only for illustration pur-
poses and was not used to configure the experiments in this
paper.

The size_initial for example configures how well
the first trained machine learning estimator approximates the
oracle. If this approximation is bad, the first few sampling
iterations will sample points in what will later turn out to be
uninteresting regions. A higher value for size_initial
would therefore be preferable over a smaller value, although
this could diminish the initial motivation for active learn-
ing: avoiding having to run the oracle on points that are not
interesting with respect to a specific goal.

The size_sample parameter however will have an
optimum: if chosen too small the selected samples will be
more spread out and possibly less interesting points will be
queried to the oracle. If chosen too high on the other hand
the data could be focused in a specific subset of the region
of interest because the trained estimator happens to have a
local minimum there. The existence of an optimal value for
size_sample can be seen in Fig. 8.

It should be noted that the location of the optimum
does not only depend on size_sample, but also on
size_select. If one were to set size_select to 1,
the size of the candidate pool is best as large as possible,

Fig. 9 The dependence of the accuracy in the last iteration of the active
learning procedure on the number of candidates and the number of
points selected for querying to the oracle in each iteration. The last
iteration was defined as the last iteration before 100,000 data points
were selected, meaning that a setup with size_select equal to 500
had more iterations than a setup with a size_select of 7500 for
example

in order to be sure that the selected point is really the most
informative one you can select. This would avoid the selec-
tion of clustered data points, but this comes at the cost of
having to run the procedure for more iterations in order to
get the same size for the final data set. This would however
be very expensive if the cost for training the ML estimator(s)
is very high. The dependence of the accuracy on these two
variables is shown in Fig. 9, in which the accuracy gained
in the last step of the active learning procedure is shown for
different configurations of these two parameters. The script
to generate this figure can be found on GitHub .

Appendix B: Experiment configuration

All networks were trained using Keras [8] with a Tensor-
flow [2] backend linked to CUDA [19]. scikit-learn [20] was
used when implementations of Random Forest were used.

Increase resolution of exclusion boundary

The configuration of the active learning procedure can be
found in Table 3. The experiments are denoted by the section
in this paper in which they were covered.
Random Forest with a finite pool The trained Random For-
est classifier followed the defaults of scikit-learn [20]: it con-
sisted out of 10 decision trees with gini impurity as splitting
criterion.
Random Forest with an infinite pool For active learning we
trained a Random Forest [5] classifier that consisted out of
100 decision trees with gini impurity as splitting criterion.
All other settings were left at their default values.
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Table 3 Configuration for the active learning procedures in Sect. 3.1

III.A.1 III.A.2 III.A.3

Initial dataset 10,000

Step size 2500

#candidates Remaining pool 100,000

Maximum size Until pool empty 100,000

Committee size 100 25

#iterations 7

#test points 1,000,000

Table 4 Network architecture for the oracle in the “Random Forest with
an infinite pool” and the “QBDC with an infinite pool” experiments

Layer type Config. Output shape Param. #

Input (None,19) 0

Dense 500 nodes (None, 500) 10,000

Activation selu (None, 500) 0

Dense 100 nodes (None, 100) 50,100

Activation selu (None, 100) 0

Dense 100 nodes (None, 100) 10,100

Activation selu (None, 100) 0

Dense 50 nodes (None, 50) 5050

Activation selu (None, 50) 0

Dense 2 nodes (None, 2) 102

Activation softmax (None, 2) 0

Total params: 75,352

As the oracle we used a neural network with the architec-
ture in Table 4. This network was optimised using Adam [15]
on the binary cross entropy loss. The network was trained
using the ATLAS pMSSM-19 dataset [1] for 300 epochs with
the EarlyStopping [18] callback using a patience of 50.
QBDC with an infinite pool The network architecture for
the trained neural network used for active learning can be
found in Table 5. The active learning network was optimized
using Adam [15] on a binary cross-entropy loss. It was fit-
ted on the data in 1000 epochs, a batch size of 1000 and
the EarlyStopping [18] callback using a patience of 20. The
neural network from the infinite pool experiment described
above is also used in this experiment.

Identifying uncertain regions and steering new searches

The network architecture for the trained neural network can
be found in Table 5. The network was optimized using
Adam [15] on a binary cross entropy loss. It was fitted on
the data in 1000 epochs, a batch size of 1000 and with the
EarlyStopping [18] callback using a patience of 50.

Table 5 Network architecture for the “QBDC with an infinite pool”
experiment

Layer type Config. Output shape Param. #

Input (None,19) 0

Dense 500 nodes (None, 500) 10,000

Activation relu (None, 500) 0

Dropout 0.2 (None, 500) 0

Dense 100 nodes (None, 100) 50,100

Activation relu (None, 100) 0

Dropout 0.2 (None, 100) 0

Dense 100 nodes (None, 100) 10,100

Activation relu (None, 100) 0

Dropout 0.2 (None, 100) 0

Dense 50 nodes (None, 50) 5050

Activation relu (None, 50) 0

Dropout 0.2 (None, 50) 0

Dense 2 nodes (None, 2) 102

Activation softmax (None, 2) 0

Total params: 75,352

The network was trained on the z-score normalised
ATLAS dataset [1] of 310,324 data points, of which 10 %
was used for validation.
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