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Abstract In this work, we get an idea of the existence of
compact stars in the background of f (T ) modified grav-
ity where T is a scalar torsion. We acquire the equations
of motion using anisotropic property within the spherically
compact star with electromagnetic field, quintessence field
and modified Chaplygin gas in the framework of modi-
fied f (T ) gravity. Then by matching condition, we derive
the unknown constants of our model to obtain many phys-
ical quantities to give a sketch of its nature and also study
anisotropic behavior, energy conditions and stability. Finally,
we estimate the numerical values of mass, surface redshift
etc from our model to compare with the observational data
for different types of compact stars.
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1 Introduction

Recently, compact stars, the most elemental objects of the
galaxies, acquire much attention to the researchers to study
their ages, structures and evolutions in cosmology as well as
astrophysics. After the stellar death, the residue portion is
formed as compact stars which can be classified into white
dwarfs, neutron stars, strange stars and black holes. Com-
pact star is very densed object i.e., posses massive mass and
smaller radius as compared to the ordinary star. In astro-
physics, the study of neutron star and the strange star moti-
vates the researchers to explore their features and structures
very much. Massive neutron star again collapses into black
hole but lower mass neutron star converts into quark star.
Basically, neutron star consists of neutrons whereas strange
star is made up with quarks or strange matters. After the
discovery of neutrons [1], the researchers have first imag-
ined about the presence of neutron star. Then Hewish et al.
[2] has confirmed this prediction by observation of pulsars
(considered as rotating neutron stars later) like Her X-1, 4U
1820−30, RXJ 1856−37 and SAX J 1808.4−3658. In 1916,
Karl Schwarzschild [3,4] has first given the interior stellar
solution which must be matched with the exterior solution.
We have noticed for a long time that the isotropic fluid (hav-
ing equal radial pressure (pr ) and transversal pressure (pt ))
is considered in the core of the stellar objects to study stellar
structure and stellar evolution. In 1972, Ruderman [5] for the
first time observed that the interior geometry of the nuclear
matter with a density of order 1015gm/cc posses anisotropic
behavior (having pr �= pt ). This nature may come from dif-
ferent sources: the existence of solid core, in presence of type
P superfluid, phase transition, rotation, magnetic field, mix-
ture of two fluids, viscosity etc. Herrera et al. [6] have given
a review to analyze local anisotropic nature for self gravi-
tating systems. A stable structure of stellar objects has been
found in the context of anisotropic nature by Hossein et al.
[7]. Kalam et al. [8] have investigated anisotropic neutron
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star with quintessence dark energy. A new exact solution for
compact star has been discovered by Paul et al. [9] to preserve
the hydrostatic equilibrium. Many astrophysical phenomena
of quark star and neutron star have been discussed in ref.
[10,11]. Rahaman et al. [12] have observed the existence of
strange star using MIT bag model to study mass and redshift
functions. Again, a stable anisotropic quintessence strange
star model has been proposed by Bhar [13]. Murad [14] has
also studied anisotropic charged strange star with MIT bag
model to find out the radial pressure and energy density. A
stability of strange star with the influence of anisotropic con-
text using MIT bag model has been investigated by Arbañil
and Malheiro [15].

After publishing of Einstein’s General Relativity (GR)
in 1915, our mysterious universe has been sketched more
clearly to people. Recently, we have come to know from many
observational evidences like Large Scale Structure (LSS),
Cosmic Microwave Background (CMB) radiation etc. that
our universe is expanding with acceleration which asserts that
the cosmic expansion is going due to some peculiar source of
energy having a massive negative pressure, known as Dark
Energy (DE). Similarly, there exists also a mysterious com-
ponent, known as Dark Matter (DM). A telescope is unable to
detect dark matter but its gravitational effects on visible mat-
ter and gravitational lensing of the background radiation are
giving us the evidence of its existence. On the other hand the
Equation of State (EoS) of DE is given by w = p/ρ where
w is called the EoS parameter lying in the range w < −1/3.
If −1 < w < −1/3 then it is referred as Quintessence DE
and if w < −1 then another peculiar DE viz., as Phantom
DE producing Big Rip Singularity and violating Null Energy
Condition (NEC) also. The phantom DE has been discussed
in many references [16–18]. In particular, w = −1 gives the
EoS of “Gravastar”, gravitationally vacuum condense star
[19–24].

However, GR is not sufficiently enough to describe our
present universe from theoretical as well as physical point of
view. So, we need an alternative theories to GR to present the
scenario of DE and DM. We know from the references that if
the torsion scalar T is instead of Ricci scalar R in Einstein-
Hilbert action then the obtained equations of motion of this
theory of gravity, known as Teleparallel Equivalent of Gen-
eral Relativity (TEGR) [25], are equivalent to those of GR. If
generalization of GR is possible by inserting f (R) or f (T )

instead of R or T respectively then our accelerating expan-
sion of our universe can be explained where f (R) or f (T ) are
arbitrary nonlinear functions of R or T . It is seen that fourth
order differential equations arrive in the case of f (R) gravity
whereas f (T ) gravity gives second order differential equa-
tions in the tetrad field like GR. So, the later approach is more
convenient than the former one. In the background space-
time, there has nonzero torsion with no curvature. According
to Einstein, this is the definition of space-time to relate grav-

itation with tetrad and torsion. Many authors have revealed
wide interest in [26–38].

In theoretical astrophysics, Dent [39] has derived the solu-
tion of BTZ black hole in f (T ) version in 3-dimensions.
Later, first violation of black hole thermodynamics in f (T )

gravity has been seen through violation of Lorentz invariance
[40]. For the existence of astrophysical stars in f (T ) the-
ory, the physical conditions have been investigated [41] with
very much attention after acquiring a large group of static
perfect fluid solutions [42]. Some static solutions for spheri-
cally symmetric case with charged source in f (T ) theory has
been obtained [43]. Capozziello et al. [44] have observed the
removal of singularity of the exact black hole by f (T ) grav-
ity instead of f (R) gravity in D dimensions. Sharif and Rani
[45] have studied wormhole under f (T ) gravity. They have
studied static wormhole solution in f (T ) gravity to investi-
gate energy conditions [46] and also proved that this solution
exists by violating energy conditions for charged noncommu-
tative wormhole [47,48].

The study of anisotropic stars in the background of Gen-
eral Relativity (GR) and modified gravity has drawn much
interest to many researchers [49–54]. Krori-Barua (KB) met-
ric [55,56] is the most useful metric to discuss the compact
star models. Abbas and his collaborations [57–61] have also
studied this type of stars in GR, f (R), f (G) and f (T ) with
the help of (KB) metric. Abbas et al. [60] have investigated
anisotropic strange star taking p = αρ where 0 < α < 1
which plays as a quintessence dark energy model. A study of
strange star with MIT bag model in the framework of f (T )

gravity has also been analyzed by Abbas et al. [62]. Recently,
many authors have studied anisotropic stars in GR and dif-
ferent types of modified gravity with (KB) metric [63–68].
Saha and Debnath [69] have considered a metric where the
unknown functions a(r) and b(r) have been taken some dif-
ferent from KB metric to investigate anisotropic stars in f (T )

gravity with modified Chaplygin gas. This model also reveals
as a quintessence dark energy model like the previous cases.
In this work, our motivation is to explore anisotropic compact
stars in the frame-work of f (T ) gravity with diagonal tetrad
in presence of electric field and quintessence field along
transversal direction with modified Chaplygin gas by con-
sidering a metric like the previous work [69] where we take
the general forms of a(r) and b(r) instead of particular forms.
In Sect. 2, an introduction of f (T ) gravity is given and we
take anisotropic fluid with quintessence field along transver-
sal direction. In Sect. 3, we investigate anisotropic compact
star with electromagnetic field and quintessence field in f (T )

gravity by taking modified Chaplygin gas. We calculate all
physical quantities of our proposed model. In Sect. 4, we
apply matching of two metrics to find out the unknown con-
stants of our model. We observe the nature of our model by
plotting some figures. Section 5 gives anisotropic behaviour.
We make stability analysis and verify the energy conditions
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of our model. Again, we calculate the mass function, com-
pactness and surface redshift function from our model to
make comparison with observational data. In Sect. 6, we
deliver the conclusions of the work.

2 An introduction of f (T ) gravity, electromagnetic field
and quintessence field

First we review the formulation of f (T ) gravity in the con-
cept of tetrad formalism. We assume the general form of
space-time metric is in the form

ds2 = gμνdx
μdxν . (1)

In the tetrad formalism, the above metric can be written as

ds2 = ηi jθ
iθ j (2)

where

dxμ = eμ
i θ i , ηi j = diag[−1, 1, 1, 1] , eμ

i e
ν
j = δμ

ν . (3)

The non-vanishing Christoffel symbols are

�α
μν = eα

i ∂νe
i
μ = −eiμ∂νe

α
i . (4)

The torsion and the con-torsion tensor can be defined as fol-
lows [62]:

T α
μν = �α

νμ − �α
μν = eα

i (∂μe
i
ν − ∂νe

i
μ), (5)

Kμν
α = −1

2
(Tμν

α − T νμ
α − Tμν

α ). (6)

The tensor Sμν
α are defined as in the form

Sμν
α = 1

2
(Kμν

α + δμ
α T

βν
β − δν

αT
βμ
β ). (7)

The torsion scalar is defined as follows

T = T α
μνS

μν
α . (8)

Now, the modified teleparallel action is defined as follows
[70,71]

S =
∫

d4xe
[ 1

16π
f (T ) + LMatter (�A)

]
(9)

whereG = c = 1 andLMatter (�A) is the matter Lagrangian.
Now, we consider our model containing quintessence field

and electromagnetic field along with anisotropic pressure.
So, the Einstein equations can taken as

Gμν = 8πG(T Matter
μν + T q

μν + T EM
μν ). (10)

Here, the ordinary matter corresponding to anisotropic fluid
has energy-momentum tensor as

T Matter
μν = (ρ + pt )uμuν − pt gμν + (pr − pt )vμvν (11)

where uμ is the four-velocity and vμ radial four vector
satisfying uμuμ = 1, vμvμ = −1 and uμvμ = 0. Here ρ

the energy density, pr is the radial pressure and pt is trans-
verse pressure. Also T q

μν is the energy momentum tensor of
quintessence field having energy density ρq and equation
of state parameter wq (−1 < wq < −1/3). According to
Kiselev [72], the components of this tensor require to satisfy
additivity and linearity. Taking different signatures as in line
elements, the components are given by

T t
t = T r

r = −ρq , (12)

T θ
θ = T φ

φ = 1

2
(3wq + 1)ρq . (13)

Further, the energy momentum tensor for electromagnetic
field is given by

EEM
μν = 1

4π
(gδωFμδFων − 1

4
gμνFδωF

δω) (14)

where Fμν is the Maxwell field tensor defined as Fμν =
�ν,μ −�μ,ν and �μ is the four potential. The corresponding
Maxwell electromagnetic field equations are

(
√−g Fμν),ν = 4π Jμ√−g , F[μν,δ] = 0 (15)

where Jμ is the current four-vector satisfying Jμ = σuμ,
the parameter σ is the charge density.

3 Anisotropic compact star with electromagnetic field
and quintessence field in f (T ) gravity

Let us assume the spherically symmetrical metric for the
interior space-time solution as [73]

ds2 = −ea(r)dt2 + eb(r)dr2 + r2(dθ2 + sin2 θdφ2). (16)

Here, we take a(r) and b(r) in the following forms:

a(r) = Brα + Crβ , b(r) = Arγ (17)

where A, B andC are arbitrary constants. Here, α ≥ 2, β ≥ 2
and γ ≥ 2 are constants but α �= β. For α = 2, β = γ = 3,
the unknown functions a(r) and b(r) reduce to the forms in
which anisotropic quintessence star has been studied in [69].
For this metric, the torsion scalar T and its derivative are
given as [62]

T (r) = 2e−b

r

(
a′ + 1

r

)
, (18)

T ′(r) = 2e−b

r

{
a′′ − a′

r
− b′(a′ + 1

r

)
− 2

r2

}
(19)

where the prime ′ denotes the derivative with respect to the
radial coordinate r .
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Now, the equations of motion for anisotropic fluid along
with quintessence field and magnetic field in the framework
of f (T ) gravity are as follows [62]:

−e−b

r
T ′ fT T + f

2
−

{
T − 1

r2 − e−b

r
(a′ + b′)

}
fT

= 8π(ρ + ρq) + E2, (20)

(T − 1

r2 ) fT − f

2
= 8π(pr − ρq) − E2, (21)

e−b
(a′

2
+ 1

r

)
T ′ fT T

+
[T

2
+ e−b

{a′′

2
+

(a′

4
+ 1

2r

)
(a′ − b′)

}]
fT

− f

2
= 8π

{
pt + 1

2
(3wq + 1)ρq

}
+ E2, (22)

e− b
2 cot θ

2r2 T ′ fT T = 0, (23)

E(r) = 1

r2

∫ r

0
4πr2σ(r)e

b
2 dr = q(r)

r2 (24)

where q(r) is the total charge within a sphere of radius r .
Here, we take the total charge q(r) as in the power law

form:

q(r) = q0r
m (25)

where q0 > 0, m > 0. Here we consider the fluid source
behaves as modified Chaplygin gas (MCG) whose equation
of state is [74]

pr = ξρ − ζ

ρα′ (26)

where ξ , α′ and ζ are free parameters of our model.
Now, solving equation (23) we get (assuming T ′ �= 0)

f (T ) = β1T + β2, (27)

where β1 and β2 being integration constants and we assume
β2 = 0 for simple case.

Now from equations (14), (15), (17), (18), (22) and (23)
(taking α′ = 1) we obtain the equation in ρ:

8πr2ρ2(1 + ξ) − β1e
−Arγ

ρ(αBrα + βCrβ + γ Arγ )

−8πr2ζ = 0. (28)

Solving this equation, we get the value of energy density as

ρ =
β1e−Arγ

(αBrα + βCrβ + γ Arγ ) +
√

β2
1e

−2Arγ
(αBrα + βCrβ + γ Arγ )2 + 256π2r4ζ(1 + ξ)

16πr2(1 + ξ)
. (29)

Then we found the expressions of the radial pressure,
transverse pressure and density for quintessence field as

pr =
ξβ1e−Arγ

(αBrα + βCrβ + γ Arγ ) + ξ

√
β2

1e
−2Arγ

(αBrα + βCrβ + γ Arγ )2 + 256π2r4ζ(1 + ξ)

16πr2(1 + ξ)

− 16πζr2(1 + ξ)

β1e−Arγ
(αBrα + βCrβ + γ Arγ ) +

√
β2

1e
−2Arγ

(αBrα + βCrβ + γ Arγ )2 + 256π2r4ζ(1 + ξ)

. (30)

pt = 1

8π

[
β1e

−Arγ

{
1

2
(α(α − 1)Brα−2 + β(β − 1)Crβ−2) + 1

4
(αBrα−1 + βCrβ−1)(αBrα−1 + βCrβ−1

−γ Arγ−1)+1

2
(αBrα−2+βCrβ−2−γ Arγ−2)

}
−β2

2
−q2

r4

]
−1

2
(3wq + 1)

1

8π

{
β1e−Arγ

r2 (γ Arγ − 1)+β1

r2 +β2

2

−q2

r4

}
−

β1e−Arγ
(αBrα + βCrβ + γ Arγ ) +

√
β2

1e
−2Arγ

(αBrα + βCrβ + γ Arγ )2 + 256π2r4ζ(1 + ξ)

16πr2(1 + ξ)
. (31)

ρq = 1

8π

{β1e
−Arγ

r2 (γ Arγ − 1) + β1

r2 + β2

2
− q2

r4

}

−β1e
−Arγ

(αBrα + βCrβ + γ Arγ )

16πr2(1 + ξ)

+
√

β2
1e

−2Arγ
(αBrα+βCrβ+γ Arγ )2+256π2r4ζ(1+ξ)

16πr2(1+ξ)
.

(32)

The equation of state parameters wr and wt along radial
and transversal directions of our model are given by
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wr = pr
ρ

= ξ−
⎧⎨
⎩

16πζr2(1+ξ)

β1e−Arγ
(αBrα+βCrβ+γ Arγ )+

√
β2

1e
−2Arγ

(αBrα+βCrβ+γ Arγ )2+256π2r4ζ(1+ξ)

⎫⎬
⎭

2

(33)

and

wt = pt
ρ

(34)

where pt and ρ are given by equations (31) and (29).
The above solutions are viable if ξ �= −1.

4 Matching conditions

By matching condition, many researchers have compared the
exterior solution with the interior solution [24,58,60,62]. We
make correspondence between our interior solution and the
exterior solution evoked by Reissner-Nordstrm metric whose
line element is

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2 +

(
1 − 2M

r
+ Q2

r2

)−1
dr2

+r2(dθ2 + sin2 θdφ2). (35)

where m, r and Q are mass, radius and charge respectively.
We assume the boundary of interior and exterior regions
occurs at r=R. So on the boundary, we have m(r)=M and

g−
t t = g+

t t , g−
rr = g+

rr ,
∂g−

t t

∂r
= ∂g+

t t

∂r
, (36)

where − and + indicate to interior and exterior solutions.
Now, using (36) and the metrics (16), (35), we can obtain

A = − 1
Rγ ln

(
1− 2M

R + Q2

R2

)
,

B = 1
Rα(α−β)

[
−β ln

(
1− 2M

R + Q2

R2

)
+2

(
M
R − Q2

R2

)(
1− 2M

R + Q2

R2

)−1]
,

C = 1
Rβ (α−β)

[
α ln

(
1− 2M

R + Q2

R2

)
−2

(
M
R − Q2

R2

)(
1− 2M

R + Q2

R2

)−1]

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(37)

We consider three different compact stars as Vela X -
1 (CS1), SAX J1808.4-3658 (CS2) and 4U1820-30 (CS3)

with their masses and radii in Table 1. With respect to Table 1,
we take three sets of values of α, β and γ to get three different
sets of numerical values of A, B and C for CS1, CS2 and
CS3 in Tables 2, 3, 4 respectively.

Now we have drawn different figures for physical quanti-
ties ρ, pr , ρ + 3pr , ρq and pt using Eqs. (29)–(32) with the
values of different values of A, B andC taking from Tables 2,
3, 4. Figs. 1, 2, 3 ensure that our proposed model is a candi-
date of dark energy as ρ > 0, ρ + 3pr < 0 i.e., wr < − 1

3
(See equation (33)). Again, from Fig. 3, we can conclude that
our model corresponds to quintessence dark energy model,
not phantom dark energy candidate due to ρ + 3pr < 0 i.e.,
wr < − 1

3 and ρ + pr > 0 i.e., wr > −1 (See Figs. 10, 11,
12). We have taken quintessence field in transverse direction
of anisotropic compact star in f (T ) gravity with modified
Chaplygin gas. So, Figs. 4, 5 indicate that for quintessence
field ρq > 0 and pt < 0.

5 Physical analysis

The central density ρ0 and central radial pressure p0 are given
by

ρ0 = lim
r→0

ρ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Bβ1+
√
B2β2

1 +64π2ζ(1+ξ)

8π(1+ξ)
when α = 2, β = γ = 3,

Cβ1+
√
C2β2

1 +64π2ζ(1+ξ)

8π(1+ξ)
when α = 3, β = 2, γ = 4 or α = 4, β = 2, γ = 3

p0 = lim
r→0

pr =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−32π2ζ(1+ξ)+Bβ1ξ{Bβ1+
√
B2β2

1 +64π2ζ(1+ξ)}
4π(1+ξ){Bβ1+

√
B2β2

1 +64π2ζ(1+ξ)}
when α = 2, β = γ = 3,

−32π2ζ(1+ξ)+Cβ1ξ{Cβ1+
√
C2β2

1 +64π2ζ(1+ξ)}
4π(1+ξ){Cβ1+

√
C2β2

1 +64π2ζ(1+ξ)}
when α = 3, β = 2, γ = 4,

or α = 4, β = 2, γ = 3.

In the following subsections, we investigate the nature of
the anisotropic compact star as follows:
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Table 1 Different compact stars
are taken with their masses and
radii

Compact stars M(M�) R(Km) μM = M
R μc = Q2

R2

Vela X -1 (CS1) 1.77 9.56 0.273091 0.0133624

SAX J1808.4-3658 (CS2) 1.435 7.07 0.299 0.0266898

4U1820-30 (CS3) 2.25 10 0.332 0.0133208

Table 2 The values of A, B and
C have been obtained with
α = 2, β = γ = 3 from Table 1
using equation (37)

Compact stars A (Km−2) B (Km−2) C (Km−2)

Vela X -1 (CS1) 0.0008710312 −0.037147216 0.003014661038

SAX J1808.4-3658 (CS2) 0.0023968248 −0.07625293 0.008388596829

4U1820-30 (CS3) 0.0010517646 −0.049798583 0.003928093861

Table 3 The values of A, B and
C have been obtained with
α = 3, β = 2 and γ = 4 from
Table 1 using equation (37)

Compact stars A (Km−2) B (Km−2) C (Km−2)

Vela X -1 (CS1) 0.00009111205 0.0074533913 −0.037147217

SAX J1808.4-3658 (CS2) 0.00033901341 0.0083885968 −0.076252931

4U1820-30 (CS3) 0.00010517646 0.0039280939 −0.049798584

Table 4 The values of A, B and
C have been obtained with
α = 4, β = 2 and γ = 3 from
Table 1 using equation (37)

Compact stars A (Km−2) B (Km−2) C (Km−2)

Vela X -1 (CS1) 0.00087103116 0.00015767056 −0.022737137

SAX J1808.4-3658 (CS2) 0.0023968248 0.00059325296 −0.046599241

4U1820-30 (CS3) 0.0010517646 0.000196404693 −0.030158115

Fig. 1 Variations of energy density ρ (MeV/ f m3) versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

Fig. 2 Variations of radial pressure pr (MeV/ f m3) versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively
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Fig. 3 Variations of ρ + 3pr (MeV/ f m3) versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

Fig. 4 Variations of ρq (MeV/ f m3) versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

Fig. 5 Variations of transversal pressure pt (MeV/ f m3) versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

5.1 Anisotropic effects

The anisotropic force (� = 2(pt−pr )
r ) of our anisotropic

quintessence compact object is

� = 1

8πr

[
β1e

−Arγ

{
1

2
(α(α − 1)Brα−2 + β(β − 1)Crβ−2) + 1

4
(αBrα−1 + βCrβ−1)(αBrα−1 + βCrβ−1 − γ Arγ−1)

+1

2
(αBrα−2 + βCrβ−2 − γ Arγ−2)

}
− β2

2
− q2

r4

]
− 1

2
(3wq + 1)

1

8πr

{
β1e−Arγ

r2 (γ Arγ − 1) + β1

r2 + β2

2
− q2

r4

}

−
β1e−Arγ

(αBrα + βCrβ + γ Arγ ) +
√

β2
1e

−2Arγ
(αBrα + βCrβ + γ Arγ )2 + 256π2r4ζ(1 + ξ)

16πr3

− 16πζr(1 + ξ)

β1e−Arγ
(αBrα + βCrβ + γ Arγ ) +

√
β2

1e
−2Arγ

(αBrα + βCrβ + γ Arγ )2 + 256π2r4ζ(1 + ξ)

. (38)

From Fig. 6, we have noticed that � is always nega-
tive i.e., pt < pr for three compact stars (CS1, CS2, CS3)

which implies that the anisotropic force is attractive like
quintessence field. Since, our model consists of ordinary mat-
ter and quintessence field so the effective anisotropic force is
attractive and that is why our model is very much compatible.

Now, we take derivatives of energy density and radial pres-
sure with respect to radius to see where the energy density and
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Fig. 6 Variations of � versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

Fig. 7 Variations of derivatives of dρ
dr , dpr

dr , d2ρ

dr2 and d2 pr
dr2 with respect to r (km) with the numerical values of A, B and C from Table 2

radial pressure achieve their maximum values. With respect
to three Tables 2, 3 and 4, if we make dρ

dr = 0 and dpr
dr = 0

then

From Data of Table 1:
d2ρ

dr2 < 0 and d2 pr
dr2 < 0 at r = 10.11 for CS1 model,

at r = 7.31 for CS2 model and at r = 9.9 for CS3 model
respectively. So, the energy density and radial pressure take
maximum values at r = 10.11 for CS1 model, at r = 7.31
for CS2 model and at r = 9.9 for CS3 model respec-
tively.

From Data of Table 2:
d2ρ

dr2 < 0 and d2 pr
dr2 < 0 at r = 8.29 for CS1 model, at

r = 7.06 for CS2 model and at r = 9.63 for CS3 model
respectively. So, the energy density and radial pressure take
maximum values at r = 8.29 for CS1 model, at r = 7.06
for CS2 model and at r = 9.63 for CS3 model respec-
tively.

From Data of Table 3:
d2ρ

dr2 < 0 and d2 pr
dr2 < 0 at r = 10.66 for CS1 model, at

r = 7.69 for CS2 model and at r = 10.38 for CS3 model
respectively. So, the energy density and radial pressure take
maximum values at r = 10.66 for CS1 model, at r = 7.69
for CS2 model and at r = 10.38 for CS3 model respectively.

However, we conclude for Table 2: with respect to Fig. 7,
dρ
dr > 0 always, so the energy density is increasing and dpr

dr
is positive at first then changes its sign to negative, so the
radial pressure is increasing first and then decreases; Table 3:
with respect to Fig. 8, dρ

dr and dpr
dr both are positive from

beginning then turn to negative sign, so consequently, the
energy density and the radial pressure both are increasing first
and then decrease; Table 4: with respect to Fig. 9, dρ

dr and dpr
dr

both are positive from beginning then turn to negative sign
like the previous case, so the energy density and the radial
pressure both are also increasing first and then decrease in
this case.
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Fig. 8 Variations of derivatives of dρ
dr , dpr

dr , d2ρ

dr2 and d2 pr
dr2 with respect to r (km) with the numerical values of A, B and C from Table 3

Fig. 9 Variations of derivatives of dρ
dr , dpr

dr , d2ρ

dr2 and d2 pr
dr2 with respect to r (km) with the numerical values of A, B and C from Table 4

5.2 Energy conditions

The most crucial physical properties are energy conditions
to verify the existence of realistic matter distribution in this
stellar model. These energy conditions are divided into three

parts: Null Energy Condition (NEC), Weak Energy Condition
(WEC) and Strong Energy Condition (SEC). These are very
useful in general relativity and modified gravity [24,59,62].
The energy conditions are:
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Fig. 10 Variations of energy conditions versus r (km) with the numerical values of A, B and C from Table 2

NEC : ρ + E2

8π
≥ 0,

WEC : ρ + pr ≥ 0, ρ + pt + E2

4π
≥ 0,

SEC : ρ + pr + 2pt + E2

4π
≥ 0.

From Figs. 10, 11, 12, we can conclude that our model
satisfies first two conditions for arbitrary values of parameters
but the last condition is satisfied only when β2 < 0.

5.3 Stability analysis

To analyze stability of stellar structure against external fluc-
tuation plays an essential key role for any physically con-
sistent model. According to Herrera’s cracking condition
[24,59,62,75], the sound speed square (v2

s = dp/dρ) must
lie in the interval [0, 1] to be a physically stable stellar object.
For our anisotropic quintessence compact star model, we
have 0 ≤ v2

sr ≤ 1 and 0 ≤ v2
st ≤ 1 always (See Figs. 13, 14)

where v2
sr and v2

st are sound speeds for radial and transversal
components.

Next, we calculate the difference of two speeds of our
model to examine whether transversal sound speed square is
greater than the radial one or not. Actually, Herrera’s cracking
condition [75] has prospected a different way to find out the
potentially stable or unstable model. If the radial sound speed
square is greater than the transversal sound speed square
then the model is potentially stable otherwise it is poten-
tially unstable. From Fig. 15, we can decide that our model
is potentially stable. Clearly, |v2

st − v2
sr | ≤ 1 is verified [76]

from Fig. 16.

We can check stability of our proposed model by adiabatic
index [77–80] which depicts the stiffness of the EoS param-
eter for our model. By this theory, many researchers have
examined the dynamical stability against infinitesimal radial
perturbation of the realistic as well as non-realistic stellar
objects. For anisotropic fluid, the adiabatic index is defined
as

� =
(

1 + ρ

pr

)dpr
dρ

.

According to [77], the evaluated value of this adiabatic
index should be greater than 4/3. Fig. 17 ensures that our
proposed model satisfies this condition i.e., our anisotropic
quintessence compact star model in f (T ) gravity with mod-
ified Chaplygin gas maintains stability range also.

5.4 Effective mass and compactness

According to [24], the mass function within the radius r is
defined by

m(r) =
∫ r

0
4πr2ρdr

= 1

4(1 + ξ)

∫ r

0

[
β1e

−Arγ
(αBrα + βCrβ + γ Arγ )

+
√

β2
1e

−2Arγ
(αBrα+βCrβ+γ Arγ )2+256π2r4ζ(1+ξ)

]
dr.

(39)
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Fig. 11 Variations of energy conditions versus r (km) with the numerical values of A, B and C from Table 3

Fig. 12 Variations of energy conditions versus r (km) with the numerical values of A, B and C from Table 4

123



919 Page 12 of 16 Eur. Phys. J. C (2019) 79 :919

Fig. 13 Variations of v2
sr versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

Fig. 14 Variations of v2
st versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

Fig. 15 Variations of v2
st − v2

sr versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

Fig. 16 Variations of |v2
st − v2

sr | versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

Fig. 17 Variations of � versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively
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Table 5 Calculated values of mass, energy density and pressure of our model from Table 2

Compact stars Mass standard
data (in km)

Mass from
model (in km)

ρ0 (gm/cc) ρR (gm/cc) p0 (dyne/cm2)

Vela X − 1 (CS1) 2.61075 2.64376 2.403810507 × 1015 2.403792768 × 1015 −2.160060323 × 1036

SAX J1808.4 − 3658 (CS2) 2.11662 2.10657 1.431916338 × 1015 1.431894946 × 1015 −1.285972818 × 1036

4U1820 − 30 (CS3) 3.31875 3.30465 1.739754757 × 1015 1.739733365 × 1015 −1.562934990 × 1036

Table 6 Calculated values of mass, energy density and pressure of our model from Table 3

Compact stars Mass standard
data (in km)

Mass from
model (in km)

ρ0 (gm/cc) ρR (gm/cc) p0 (dyne/cm2)

Vela X − 1 (CS1) 2.61075 2.60238 1.245098292 × 1015 1.245174948 × 1015 −1.118544296 × 1036

SAX J1808.4 − 3658 (CS2) 2.11662 2.12999 1.563552689 × 1015 1.563723828 × 1015 −1.404243397 × 1036

4U1820 − 30 (CS3) 3.31875 3.31554 1.328755055 × 1015 1.328878061 × 1015 −1.193639739 × 1036

Table 7 Calculated values of mass, energy density and pressure of our model from Table 4

Compact stars Mass standard
data (in km)

Mass from
model (in km)

ρ0 (gm/cc) ρR (gm/cc) p0 (dyne/cm2)

Vela X − 1 (CS1) 2.61075 2.64586 1.455574550 × 1015 1.455603073 × 1015 −1.307867618 × 1036

SAX J1808.4 − 3658 (CS2) 2.11662 2.10746 1.627389393 × 1015 1.627433961 × 1015 −1.461994045 × 1036

4U1820 − 30 (CS3) 3.31875 3.31585 1.662385577 × 1015 1.662423014 × 1015 −1.493684884 × 1036

Now, we draw the mass functions with respect to radius from
the numerical values of Tables 2, 3 and 4 respectively. As
r → 0, m(r) → 0 in Fig. 17 for three different compact
stars so we can conclude that the mass function is regular at
origin. We also notice that the mass function is monotonic
increasing with respect to radius.

Again, the form of compactness of the star is defined by
u(r) [24]

u(r) = m(r)

r

= 1

4(1 + ξ)r

∫ r

0

[
β1e

−Arγ (αBrα + βCrβ + γ Arγ )

+
√

β2
1 e

−2Arγ (αBrα+βCrβ+γ Arγ )2+256π2r4ζ(1+ξ)
]
dr.

(40)

Now, we evaluate the values of mass, central energy den-
sity, central radial pressure and radial pressure at the bound-
ary for the different three compact stars from our model to
compare with observational data (See Tables 5, 6, 7).

5.5 Relation between mass and radius

In this section, we study the relation between mass and radius
for three different compact stars to check whether all data are
lying in the desired range or not. The factor “M/R” is called
compactification factor. We conclude from Tables 8, 9, 10 that

it lies between 1/4 and 1/2 [81]. According to [82], twice of
the compactification factor (2M/R) takes maximum allowed
value 8/9 for our model (See Tables 8, 9, 10).

5.6 Surface redshift

The redshift function is defined as [24,59,62]

zs = 1√
1 − 2m(r)

r

− 1. (41)

We calculate the values of redshift for CS1, CS2 and CS3
in Tables 8, 9, 10. According to Bohmer and Harko [83],
the surface redshift can be arbitrarily large, it must be less
than ≤ 5 for an anisotropic star in the appearance of a cos-
mological constant. Though our model does not contain cos-
mological constant but the maximum surface redshift from
our model is always ≤ 5 (See Tables 8, 9, 10 and Fig. 20).
So, our anisotropic quintessence compact star model is quite
reasonable.

6 Conclusions

This work has given out the quintessence dark energy behav-
ior of the anisotropic compact star model in f (T ) gravity
with modified Chaplygin gas consisting of ordinary matter
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Table 8 Calculated values of the desired parameters of our model from Table 2

Compact stars M
R (standard data) M

R from model 2M
R < 8

9
ρ0
ρR

zs

V ela X − 1 (CS1) 0.273091 0.276544 0.553088 1.000007416 0.495853

SAX J1808.4 − 3658 (CS2) 0.299381 0.297989 0.595918 1.000014940 0.573132

4U1820 − 30 (CS3) 0.331875 0.330465 0.660930 1.000012296 0.717336

Table 9 Calculated values of the desired parameters of our model from Table 3

Compact stars M
R (standard data) M

R from model 2M
R < 8

9
ρ0
ρR

zs

V ela X − 1 (CS1) 0.273091 0.272215 0.544431 0.999938437 0.481572

SAX J1808.4 − 3658 (CS2) 0.299381 0.301272 0.602543 0.999890556 0.586189

4U1820 − 30 (CS3) 0.331875 0.331554 0.663108 0.999907436 0.722878

Table 10 Calculated values of the desired parameters of our model from Table 4

Compact stars M
R (standard data) M

R from model 2M
R < 8

9
ρ0
ρR

zs

V ela X − 1 (CS1) 0.273091 0.276764 0.553527 0.999980404 0.496589

SAX J1808.4 − 3658 (CS2) 0.299381 0.298085 0.596170 0.999972614 0.573622

4U1820 − 30 (CS3) 0.331875 0.331585 0.663170 0.999977480 0.723037

Fig. 18 Variations of m(r) versus r (km) with the numerical values of A, B and C from Tables 1, 2 and 3 respectively

together with quintessence field along tangential component.
Using the diagonal tetrad field we have obtained the equations
of motion by taking of quintessence field and electromagnetic
field with respect to spherically symmetric metric. We have
taken the forms of a(r) and b(r) as a(r) = Brα + Crβ and
b(r) = Arγ where we have chosen three sets values of these
parameters i.e., α = 2, β = γ = 3; α = 3, β = 2, γ = 4
and α = 4, β = 2, γ = 3. Here, we have assumed the total
charge in the form q(r) = q0rm . Next, we have solved all
of these equations to get ρ, pr , ρq and pt in terms of r and
some constants. Using matching condition, we have evalu-
ated the values of A, B and C in Tables 2, 3, 4 with respect
to Table 1 for those three cases of the parameters α, β and γ .
By these values of constants we have plotted the figures for
the above mentioned physical quantities for CS1, CS2 and
CS3 (See Figs. 1, 2, 3, 4, 5). From these figures we can con-
clude that our model corresponds to quintessence dark energy
model as energy density (ρ) is positive, radial pressure (pr ) is

highly negative, ρ + 3pr < 0, energy density corresponding
to quintessence field (ρq ) is positive and transversal pres-
sure (pt ) is negative due to considering quintessence field
along tangential component of our model. Anisotropic force
has been calculated to see whether this is positive or negative.
From Fig. 6, we can say that � < 0 always for CS1, CS2 and
CS3 i.e., there exists attractive force like quintessence field to
ensure our model to be realistic. Next, we have also noticed
from Figs. 7, 8, 9 that the both the energy density (ρ) and
radial pressure (pr ) are monotonic increasing in some region
and monotonic decreasing in some places with respect to r
and they attain various maximum values for CS1, CS2 and
CS3 with respect to three sets values of α, β, γ .

From Figs. 10, 11, 12, we have noticed that all energy
conditions except SEC are satisfied for all values of param-
eters for our proposed model. The last condition is satisfied
only for β2 < 0. By stability analysis given on the basic of
Figs. 13, 14, 15, 16, 17, we have seen that 0 < v2

sr , v
2
st ≤ 1,
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Fig. 19 Variations of u(r) versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

Fig. 20 Variations of zs versus r (km) with the numerical values of A, B and C from Tables 2, 3 and 4 respectively

v2
sr > v2

st , |v2
st − v2

sr | ≤ 1 and � > 4/3 for all of three cases.
So, we can guarantee that our model is potentially stable.

In Tables 5, 6, 7, we have evaluated numerical values of
masses of CS1, CS2 and CS3 for our model using equation
(37) to manifest the closeness with the observational data.
Also, we have calculated the corresponding values of cen-
tral and surface density and central pressure in these tables.
Due to Fig. 18, masses of these stars are tending to zero
when r → 0. From Tables 8, 9, 10, we have calculated the
compactification factor (ur ) using Eq. (34) and observed
that the twice of compactification factor is always less than
< 8

9 . We have plotted the figure of u(r) in Fig. 19 which
tells that u(r) → 0 when r → 0. In these tables, using
Eq. (35), we have also calculated the numerical values of
surface redshift and have drawn figure in Fig. 20. From both
calculation and figure, we have maximum values of the sur-
face redshift function which is always less than 5. So, our
proposed anisotropic compact stars model in f (T ) gravity
with quintessence field and modified Chaplygin gas is com-
pletely rational.
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