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Abstract We present the construction of the first-order
D = 4, N = 1 supergravity action by gauging the Maxwell-
Weyl superalgebra. The four-form lagrangian is constructed
by using the curvatures of the algebra and the local scale
invariance of the action is achieved through the introduction
of a compensating scalar field. Finally, we find the general-
ized Einstein equation with a coordinate dependent cosmo-
logical term.

1 Introduction

The Maxwell symmetry appears if the Minkowski space-
time is filled with an additional background field [1,2]. In
other words, this symmetry can be interpreted as a modifi-
cation of the Poincaré symmetry which describes the empty
Minkowski space-time, and the translation generators are no
longer abelian but satisfy [3],

[Pa, Pb] = i Zab, (1)

where the six additional antisymmetric generators Zab trans-
form as a second rank tensor under the action of Lorentz
group. In early studies, this background field was associated
with constant electromagnetic (EM) fields. Nowadays inter-
pretation of the background field as well as this new alge-
bra have opened up new directions. For example, this alge-
bra was extensively studied to generalize Einstein’s theory
of gravity. In [4–7], the generalized cosmological constant
and additional interaction terms were derived alternatively by
extending the theory of gravity based on the Maxwell alge-
bra. This fact may have a fundamental importance since the
studies and observations on the cosmological constant, the
dark energy and the cosmic microwave background indicate
that there should be a background field filling our space-time.
We also know that there is a close connection between cos-
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mological constant and dark energy [8,9], so the Maxwell
symmetries may provide a powerful geometrical framework
for these significant topics.

The supersymmetric extension of the Maxwell algebra
was presented in [10] and it describes the geometry of D = 4,
N = 1 superspace with a constant abelian supersymmetric
gauge field background. This modification of superspace is
known as the superMaxwell space. Contrary to the conven-
tional superalgebras, this superalgebra contains two Majo-
rana spinor generators Qα and �α . This superalgebra can
be considered as a generalization of the D’Auria-Fré super-
algebra [11] and the Green algebra [12] which have addi-
tional fermionic generators. Besides, the Maxwell superalge-
bras were also obtained in [13,14] by using algebraic expan-
sion methods [15,16]. In [17], the authors derived the first
order D = 4, N = 1 pure supergravity lagrangian four-
form by using the curvatures of the Maxwell superalgebra.
Subsequently, the generalized supersymmetric cosmological
constant was constructed based on the Maxwell superalge-
bras in N = 1 case [18,19]. Beyond the case of N = 1,
the N−extended Maxwell superalgebras were considered in
[13,14,20,21]. Recent developments and some interesting
studies about the Maxwell (super)algebras can be found in
[22–35].

The Weyl enlargement of the Maxwell algebra, which
named as the Maxwell-Weyl algebra MW , and its super-
symmetric extension sMW were firstly presented in [24].
In our earlier work, we constructed a gauge theory of gravity
based on MW and obtained the generalized Einstein equa-
tion with cosmological constant [7]. The main purpose of this
letter is to establish a gauge theory of gravity based on sMW
and to construct the first-order D = 4, N = 1 supergravity
action.

The paper organized as follows. In Sect. 2, we give a
brief summary of the MW algebra and its gravity action. In
Sect. 3, we introduce sMW algebra and obtain transforma-
tion of the gauge fields, the curvatures and the Bianchi iden-
tities of the algebra. In Sect. 4, the supergravity action is con-
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structed by using the curvatures of sMW algebra together
with an additional compensating scalar field. In Sect. 5, we
conclude the paper with some comments. In the last section,
our notations and conventions are given.

2 Maxwell-Weyl algebra and the gravity action

In this section, we briefly give the results of our previous
study [7]. The Maxwell-Weyl algebra MW can be consid-
ered as Weyl enlargement of the Maxwell algebra with a
dilatation generator [24]. The non-zero commutation rela-
tions of MW algebra are given by,

[Mab, Mcd ] = i (ηadMbc + ηbcMad − ηacMbd − ηbdMac) ,

[Pa, Pb] = i Zab,

[Mab, Pc] = i (ηbc Pa − ηac Pb) ,

[Mab, Zcd ] = i (ηad Zbc + ηbc Zad − ηac Zbd − ηbd Zac) ,

[Pa, D] = i Pa,

[Zab, D] = 2i Zab, (2)

where ηab is the Minkowski metric which has diag (ηab) =
(+,−,−,−) and the indices a, b, . . . = 0, . . . , 3. In addi-
tion to the Weyl algebra, this algebra contains six new addi-
tional tensorial generators Zab.

Let us start to construct the gauge theory of gravity based
on MW algebra. We first introduce the following one-form
gauge field with,

A = ea Pa + BabZab + χD − 1

2
ωabMab, (3)

where the coefficient fields ea (x), Bab (x), χ (x) and ωab (x)
are the one-form gauge fields for the corresponding gen-
erators, respectively. Using the structure equation F =
dA+ i

2 [A,A] and defining the curvatures as F = Fa Pa +
FabZab + f D− 1

2 R
abMab, we find the associated two-form

curvatures as,

Fa = dea + ωa
b ∧ eb + χ ∧ ea,

Fab = dBab + ω[a
c ∧ Bc|b] + 2χ ∧ Bab − 1

2
ea ∧ eb,

f = dχ,

Rab = dωab + ωa
c ∧ ωcb. (4)

The infinitesimal gauge transformation of the curvatures can
be found by introducing the Lie algebra valued parameters,

ζ (x) = ya (x) Pa + ϕab (x) Zab

+ρ (x) D − 1

2
τ ab (x) Mab, (5)

with the help of the equation δF = i [ζ,F]. Here, ya (x),
ϕab (x), ρ (x) and τ ab (x) are the space-time translations,
translation in tensorial space, dilatation parameter, and the

Lorentz transformation parameters respectively. Thus, the
transformations of the curvatures under MW algebra are
found as follows,

δFa = ωa
bF

b + ρFa − Ra
b y

b − f ya,

δFab = ω[a
cF

c|b] + 2ρFab + 1

2
F [a yb] − R[a

cϕ
c|b] − 1

2
f ϕab,

δ f = 0,

δRab = ω[a
c R

c|b]. (6)

Taking the covariant derivative of given curvatures, the cor-
responding Bianchi identities can be found as follows

DFa = Ra
b ∧ eb + f ∧ ea,

DFab = R[a
c ∧ Bc|b] + 2 f ∧ Bab − 1

2
F [a ∧ eb],

D f = 0,

DRab = 0, (7)

whereD� = [d+ω+w(�)χ ]� is the Lorentz-Weyl covari-
ant derivative and w being the Weyl weight of the correspond-
ing field.

Construction of a lagrangian based on MW algebra is
slightly different from the ordinary Maxwell algebra because
MW algebra contains the scale transformations which act
on fields as

�′ (x) = ewρ(x)� (x) (8)

where ρ (x) is local scale parameter and w is the Weyl weight
of scalar field �(x) (for more detail about the Weyl trans-
formation see [36–41]). In our context, transformation of
the metric tensor with respect to the Weyl transformation is
g′
μν = e2ρ(x)gμν . Thus, the variation of metric tensor satis-

fies

δgμν (x) = 2ρ (x) gμν (x) (9)

under infinitesimal gauge transformations, where μ, ν =
0, . . . , 3 are space-time indices. This means that the Weyl
weight of the metric tensor is w

(
gμν

) = 2, w (gμν) = −2
and w

(√−g
) = 4. For this reason, the well-known action

S = ∫
d4x

√−gR is not invariant under the local scale trans-
formations. To overcome this difficulty, Weyl used quadratic
terms in the action to construct a consistent theory [42]. Fur-
thermore, Brans and Dicke constructed a lagrangian with the
combination of the scalar curvature R and a new compensat-
ing scalar field φ (x) which have a Weyl weight [43]. Later,
Dirac used the scalar field φ (x) with having w (φ) = − 1
and constructed the action by using φ2R rather than R [44]
(for more information see [45,46]).

From these theoretical backgrounds, in accordance with
Dirac’s convention, we introduced a compensating scalar
field φ (x) which transforms as δφ = −ρφ in order to make
the Einstein-Hilbert action to be local scale invariant (more
detail see [7,44]). Now, if we define a shifted curvature as
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J ab = Rab + 2γφ2Fab, we can write the following action
having Weyl weight zero,

S =
∫

1

2κγ
J ∧∗ J+1

4
f ∧∗ f − 1

2
Dφ ∧∗ Dφ+λ

4
φ4∗1,

(10)

where κ , γ and λ are constants and ∗ represents the Hodge
duality operator.

3 Gauging the maxwell-weyl superalgebra

In this section, we consider gauge theory of the sMW alge-
bra. The Weyl enlargement of the Maxwell superalgebra was
first proposed in [24] with a different notation. In our con-
vention, we can write the sMW algebra in addition to Eq.
(2) as
{
Qα, Qβ

} = 2
(
Cγ c)

αβ
Pc,

[
Pa, Qβ

] = −i (γa�)β ,

{
Qα,�β

} = − i

2

(
Cσ cd

)

αβ
Zcd − i (Cγ5)αβ B,

[
Mab, Qρ

] = 1

2
(σabQ)ρ ,

[
Mab, �ρ

] = 1

2
(σab�)ρ ,

[D, B] = −2i B,

[D, Qα] = − i

2
Qα, [D, �α] = −3i

2
�α. (11)

Here Qα are the standard supersymmetric fermionic charges
where the spinor indices α, β, . . . = 1, . . . , 4. To close the
commutator [P, Q] satisfying at the same time the Jacobi
identities (P, Q, Q), we need to introduce an additional
fermionic generator �α as in [10,24]. In first glance, the
presence of an extra fermionic charge in the theory means
a second gravitino, but it is not so. As we will see later,
the sigma generator does not contribute the spacetime coor-
dinates. Only contribution from the fermionic charges to
the spacetime coordinates comes from Qα supercharges. In
N = 1 case, the motivation for introducing extra fermionic
generators can be found in [11,12] and they can also be
obtained by taking into account of the algebraic expansion
methods [15,16]. The central charge B describes the off-shell
extension of U (1) field strength multiplet in D = 4. If we
remove B, which is mathematically possible, we get the min-
imal Maxwell-Weyl superalgebra (for more detail see [24]).
For the closure of this superalgebra, we need to use the cyclic
identities given as (Cγe)(αβ (Cγ e)ρσ) = 0. All spinors given
in this paper are characterized by Majorana spinors and sat-
isfying the generic relation Q̄ = QTC where C is the charge
conjugation matrix.

To gauge this algebra, we start by introducing a one-form
connection A (x) as,

A (x) = ea Pa + BabZab + χD

−1

2
ωabMab + ψαQα + ξα�α + AB. (12)

Comparing with Eq. (3), the last expression contains three
additional gauge fields ψα (x), ξα (x), and A (x) which cor-
respond to the gravitino field, the additional fermionic gauge
field and gauge field of central charge B, respectively. The
variations of these fields under infinitesimal gauge transfor-
mation of sMW can be obtained by δA = −dζ + i [ζ,A],
where ζ (x) is the Lie algebra valued auxiliary field defined
as,

ζ (x) = ya Pa + ϕabZab + ρD

−1

2
τ abMab + εαQα + vα�α + r B. (13)

In addition to Eq. (5), εα (x), vα (x) and r (x) represent the
parameters of Qα , �α and B, respectively. From these defi-
nitions, one can find transformation of the gauge fields as,

δea = −Dya + τ abe
b + ρea − 2i ε̄γ aψ,

δBab = −Dϕab + τ [a
cB

c|b] + 2ρBab + 1

2
e[a yb]

−1

2
ε̄σ abξ − 1

2
v̄σ abψ,

δχ = −dρ,

δωab = −Dτ ab,

δψα = −Dεα − i

4
τ ab (σabψ)α + 1

2
ρψα,

δξα = −Dvα − i

4
τ ab (σabξ)α + 3

2
ρξα

+yc (γcψ)α − ec (γcε)
α ,

δA = −Dr − 2ρA − ε̄γ5ξ + v̄γ5ψ, (14)

where D is the Lorentz-Weyl covariant derivative which was
given in Sect. 2. To find the associated two-form curvatures of
corresponding superalgebra, we use the well-known relation
F = dA+ i

2 [A,A], where F represents the curvatures and
it is given in the following form,

F = Fa Pa + FabZab + f D

−1

2
RabMab + �αQα + �α�α + K B. (15)

Therefore, the explicit form of the curvatures can be found
as follows,

Fa = dea + ωa
b ∧ eb + χ ∧ ea − i

(
ψ̄ ∧ γ aψ

)
,

Fab = dBab + ω[a
c ∧ Bc|b] + 2χ ∧ Bab

−1

2
ea ∧ eb − 1

2

(
ψ̄ ∧ σ abξ

)
, (16)

f = dχ,

Rab = dωab + ωa
c ∧ ωcb,

�α = dψα − i

4
ωab ∧ (σabψ)α + 1

2
χ ∧ ψα,
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Ξα = dξα − i

4
ωab ∧ (σabξ)α+ 3

2
χ ∧ ξα+ec ∧ (γcψ)α ,

K = d A + 2χ ∧ A − (
ψ̄γ5ξ

)
. (17)

The curvatures have the following length dimensions:
[
Fa

] =
L ,

[
Fab

] = L2, [ f ] = L0,
[
Rab

] = L0, [�α] = L1/2,
[�α] = L3/2 and [K ] = L2. Here, if we take F = 0, we find
the Maurer-Cartan equations for sMW . The infinitesimal
gauge transformation of the curvatures under sMW group
can be found by using the relation δF = i [ζ,F] as,

δFa = ωa
bF

b + ρFa − Ra
by

b − f ya − 2i ε̄γ a�,

δFab = ω[a
cF

c|b] + 2ρFab + 1

2
F [a yb]

−R[a
cϕ

c|b] − 1

2
f ϕab

−1

2
ε̄σ ab� − 1

2
v̄σ ab�,

δ f = 0,

δRab = ω[a
c R

c|b],

δ�α = − i

4
τ ab (σab�)α + 1

2
ρ�α

+ i

4
Rab (σabε)

α − 1

2
εα f,

δ�α = − i

4
τ ab (σab�)α + 3

2
ρ�α + i

4
Rab (σabv)α

−3

2
vα f + yc (γc�)α + Fc (γcε)

α ,

δK = 2ρK − 2r f − k̄γ5� + v̄γ5�. (18)

Finally, the Bianchi identities of corresponding curvatures
can be obtained as follows,

DFa = Ra
b ∧ eb + f ∧ ea + 2iψ̄γ a�,

DFab = R[a
c ∧ Bc|b] + 2 f ∧ Bab

−1

2
F [a ∧ eb] − 1

2
�̄ ∧ σ abξ

+1

2
ψ̄ ∧ σ ab� + 1

2
ec ∧

(
ψ̄ ∧ σ abγcψ

)
,

D f = 0,

DRab = 0,

D�α = − i

4
Rab ∧ (σabψ)α + 1

2
f ∧ ψα,

D�α = − i

4
Rab ∧ (σabξ)α

+3

2
f ∧ ξα + Fc ∧ (γcψ)α − ec ∧ (γc�)α ,

DK = 2 f ∧ A − �̄ ∧ γ5ξ + ψ̄ ∧ γ5�. (19)

4 Constructing D = 4, N = 1 supergravity action

To construct scale invariant theory of gravity, as we men-
tioned in Sect. 2, we will use the method of the Brans-

Dicke theory of gravitation [43] with the Dirac formalism
[44] which contains a scalar compensating field φ (x) with
w (φ) = − 1. Following a similar method to [7,17,47], we
will establish a lagrangian by using the curvature bilinear
constructed out of sMW algebra together with the additional
scalar field (more details on supergravity including the local
scale transformation can be found in [48–50]).

In sMW framework, the metric tensor shows the same
characteristics with Eq. (9) so it has w

(
gμν

) = 2. According
to Eq. (14), the Weyl weights of the gauge fields are defined
as w

(
eaμ

) = 1, w
(
Bab

μ

) = 2, w
(
χμ

) = 0, w
(
ωab

μ

) = 0,

w
(
ψα

μ

) = 1/2, w
(
ξα
μ

) = 3/2, and w
(
Aμ

) = 2. Simi-
larly, the Weyl weights of the curvatures can be found from
Eq. (17). Finally, we can write a free gravitational four-form
lagrangian density as follows,

L f = φ2

2κ

(
εabcd R

ab ∧ Fcd + 4�̄ ∧ γ5� − 2 f ∧ K
)

,

(20)

where κ is a constant. In addition, one can use the following
lagrangian for vacuum,

L0 = 1

4
f ∧∗ f − 1

2
Dφ ∧∗ Dφ + λ

4
φ4∗1, (21)

where λ is another constant, the first term represents a
Maxwell like kinetic term, the second corresponds to the
kinetic term for the compensating scalar field and the last
one is a self-interaction term for the scalar field. Finally, the
total action can be written as follows,

S =
∫

L f + L0. (22)

In order to simplify the total action, let us expand the free
part L f as follows,

S f = 1

2κ

∫
φ2εabcd R

ab ∧ DBcd − 1

2
φ2εabcd R

ab ∧ ec ∧ ed

−1

2
φ2εabcd R

ab ∧
(
ξ̄ ∧ σ cdψ

)
+ 4φ2Dξ̄ ∧ γ5�

+4φ2ψ̄ ∧ eaγ
aγ5 ∧ � − 2φ2 f ∧ (DA − ψ̄ ∧ γ5ξ

)

= 1

2κ

∫
−1

2
φ2

(
εabcd R

ab ∧ ec ∧ ed − 8ψ̄ ∧ ea ∧ γ aγ5Dψ
)

+D
(
φ2εabcd R

ab ∧ Bcd − 2φ2 f ∧ A
)

−Dφ2
(
εabcd R

ab ∧ Bcd − 2 f ∧ A
)

−1

2
φ2εabcd R

ab ∧
(
ξ̄ ∧ σ cdψ

)

+4φ2Dξ̄ ∧ γ5� + 2φ2 f ∧ (
ψ̄ ∧ γ5ξ

)
, (23)

where the term 4φ2Dξ̄ γ5 ∧ � can be expanded by using
the Bianchi identity D� given in Eq. (19) together with the
relation γ5σab = i

2εabcdσ
cd as follows,

4φ2Dξ̄ ∧ γ5�

= D
(

4φ2ξ̄ ∧ γ5�
)

+ 4Dφ2 (
ξ̄ ∧ γ5�

)

123



Eur. Phys. J. C (2019) 79 :898 Page 5 of 8 898

+ 1

2
φ2εabcd R

ab ∧
(
ξ̄ ∧ σ cdψ

)
− 2φ2 f ∧ (

ψ̄ ∧ δ5ξ
)
.

(24)

Substituting Eq. (24) in Eq. (23), the free lagrangian density
is reduced to the following form,

S f = 1

2κ

∫
−1

2
φ2

(
εabcd R

ab ∧ ec ∧ ed − 8ψ̄ ∧ ea ∧ γ aγ5Dψ
)

−Dφ2
(
εabcd R

ab ∧ Bcd − 4ξ̄ ∧ γ5� − 2 f ∧ A
)

+D
(
φ2εabcd R

ab ∧ Bcd + 4φ2ξ̄ ∧ γ5� − 2φ2 f ∧ A
)

,

(25)

where the first part of the resulting action represents the
Rarita-Schwinger term including the compensating scalar
field, the second is an extra term and the third one is total
derivative. It can be easily found that the total action in Eq.
(22) is clearly invariant under the local Lorentz and scale
gauge transformations. Let us now check the invariance of
the action in Eq. (25) under the local supersymmetry trans-
formation. To do this, take the first term in Eq. (25) and name
it as S1

f . Using Eq. (14), the variation of S1
f becomes,

δsusy S
1
f

= − 1

4κ

∫
−4φ2iεabcd R

ab ∧ ε̄γ cψ ∧ ed

− 8φ2Dε̄ ∧ γ5γaDψ ∧ ea

− 8φ2ψ̄ ∧ γ5γaD2ε ∧ ea

− 16iφ2ψ̄ ∧ γ5γaDψ ∧ ε̄γ aψ. (26)

With the help of partial integration and the super-torsion Fa ,
the second term in Eq. (26) turns into,

− 8φ2Dε̄ ∧ γ5γaDψ ∧ ea

= D
(

8φ2ε̄γ5γaDψ ∧ ea
)

+ 8Dφ2 ∧ ε̄γ5γaDψ ∧ ea

+ 8φ2ε̄γ5γaD2ψ ∧ ea

+ 8φ2ε̄γ5γaDψ ∧ Fa + 8φ2i ε̄γ5γaDψ ∧ ψ̄ ∧ γ aψ.

(27)

Ignoring the total derivative and substituting the last result
into Eq. (26), we get,

δsusy S
1
f

= − 1

4κ

∫
−4iφ2εabcd R

ab ∧ ε̄γ cψ ∧ ed

+ 8φ2ε̄ ∧ γ5γaD2ψ ∧ ea

+ 8φ2ε̄ ∧ γ5γaDψ ∧ Fa

+ 8iφ2ε̄ ∧ γ5γaDψ ∧ ψ̄ ∧ γ aψ

− 8φ2ψ̄ ∧ γ5γaD2ε ∧ ea

− 16φ2ψ̄ ∧ γ5γaDψ ∧ ε̄γ aψ

+ 8Dφ2 ∧ ε̄ ∧ γ5γaDψ ∧ ea . (28)

Considering the second and fifth terms in Eq. (28), one
obtains,

8φ2ε̄γ5γaD2ψ ∧ ea − 8φ2ψ̄ ∧ γ5γaD2ε ∧ ea

= 4iφ2εabcd R
ab ∧ ε̄γ cψ ∧ ed . (29)

Here, γ5γaγbc = iγ5ηa[bγc] + εabcdγ
d and D2Υ =

− i
4 R

abγabΥ +w (Υ ) f Υ have been used where Υ is a spinor
field. Therefore, the last result and the first term in Eq.(28)
cancel each other, so we get,

δsusy S
1
f

= − 1

4κ

∫
8ε̄γ5γaDψ ∧ Fa + 8Dφ2 ∧ ε̄γ5γaDψ ∧ ea

+ 8iφ2 (
ε̄γ5γaDψ ∧ ψ̄ ∧ γ aψ + 2ε̄γ aψ ∧ ψ̄ ∧ γ5γaDψ

)
.

(30)

Using the relations ψ ∧ ψ̄ = 1
2

(
ψ̄ ∧ γ aψ

)

γa − 1
8

(
ψ̄ ∧ γ abψ

)
γab, γaγ

bcγ a = 0 and γ aγ bγ5γa =
2γ bγ5, the fourth term becomes,

2ε̄γ aψ ∧ ψ̄ ∧ γ5γaDψ = −ε̄γ5γaDψ ∧ (
ψ̄ ∧ γ aψ

)
, (31)

then substituting the last equation into Eq. (30), the variation
reduces to

δsusy S
1
f = − 1

4κ

∫
8ε̄γ5γaDψ ∧ Fa − 8Dφ2 ∧ ea ∧ ε̄γ aγ5Dψ.

(32)

Assuming the constraints as Fa = 0 and Dφ = 0, δsusy S1
f

becomes zero. Under these constraints, Eq. (25) finally
reduces to pure scale-invariant supergravity action with a
boundary term,

S f = 1

2κ

∫
−1

2
φ2

(
εabcd R

ab ∧ ec ∧ ed − 8ψ̄ ∧ ea ∧ γ aγ5Dψ
)

+D
(
φ2εabcd R

ab ∧ Bcd + 4φ2ξ̄ ∧ γ5� − 2φ2 f ∧ A
)

.

(33)

Therefore, the action S f leave invariant under the local
supersymmetry transformations in terms of given conditions.
The additional fields Bab (x), ξα (x) and A (x) appeared
only in the boundary term so we can say that they do not
affect the dynamics of the action. This result also shows that
sMW algebra provides an alternative way to construct the
supergravity lagrangian including the local scale invariance.
Finally, ignoring the boundary term and applying the con-
dition to L0, the total action in Eq. (22) takes the following
form,

S =
∫

− 1

4κ
φ2

(
εabcd R

ab ∧ ec ∧ ed − 8ψ̄ ∧ ea ∧ γ aγ5Dψ
)

+ 1

4
f ∧ ∗ f + λ

4
φ4 ∗1. (34)
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The equations of motion can be found by taking variations
of Eq. (34) with respect to gauge fields ωab (x), ea (x), χ (x),
ψ̄α (x) and φ (x), respectively,

0 = εabcdDec ∧ ed + iψ̄ ∧ ec ∧ γcσabγ5ψ, (35)

0 = φ2

κ

(
εabcd R

bc ∧ ed + 4ψ̄ ∧ γaγ5Dψ
)

+1

2

(
fabe

b ∧ ∗ f − 1

2
εabcd f

bced ∧ f

)
− λφ4

2
∗ea, (36)

0 = φ2

κ
ψ̄ ∧ ea ∧ γ aγ5ψ + 1

2
D ∗ f, (37)

0 = ec ∧ γcγ5Dψ, (38)

0 =
(
εabcd R

ab ∧ ec ∧ ed − 8ψ̄ ∧ ea ∧ γ aγ5Dψ
)

− 2κλφ2 ∗1.

(39)

Let us analyze Eq. (35) which is known as the torsion equa-
tion,

εabcdDec ∧ ed = −iψ̄ ∧ ecγcσabγ5 ∧ ψ

= −1

2
ψ̄ ∧ γ5e

cγc (γaγb − γbγa) ∧ ψ

= iεabcd ψ̄γ c ∧ ψ ∧ ed ,

(40)

where we used the expressions γcγaγb = ηcaγb − ηcbγa +
ηabγc − iεcabdγ5γ

d and ψ̄γ5γaψ = 0. If we compare the
both sides of Eq. (40), we obtain Dec = i

(
ψ̄γ c ∧ ψ

)
which

satisfies the super-torsion constraint (Fa = 0). Moreover,
using Eq. (36) and transforming the tangent indices to world
space-time indices, one can show that the generalized Ein-
stein field equations can be written as follows,

Rμ
α − 1

2
δμ
α R = T (ψ)μα − κφ−2

{
T (φ)μα + 1

2
T ( f )μα

}
,

(41)

where,

T (ψ)μα = ψ̄νγαγ5D[ρψσ ]εμνρσ ,

T (φ)μα = λ

4
δμ
α φ4,

T ( f )μα = fβα f μβ + 1

4
δμ
α f γ δ fγ δ. (42)

Here, as we mention before, we want to note that the addi-
tional spinorial field ξα (x) does not a new gravitino field
because it contributes to neither the spacetime coordinate
nor to the equations of motion. It only contributes to the
boundary term.

Let us analyze the constraint Dφ = dφ − χφ = 0 which
was proposed above to keep the scale invariance of the total
action. This constraint gives a relation between the scalar
compensating field and the dilatation gauge field as,

χ (x) = d ln φ (x) . (43)

Taking the exterior differential of the last equation, we find
the dilatation curvature to be zero (i.e., f = dχ = 0). This is
another way of expressing the inverse Higgs effect [51,52].
Clearly, this also shows the equivalence of the inverse Higgs
constraint to equations of motion. From this constraint, the
dilatation gauge field can be alternatively written as χ (x) =
dα (x), where α (x) is a coordinate dependent field. There-
fore, the scalar field can be described as a function of α (x),

φ (x) = eα(x) (44)

Since f = 0, the expression T ( f )μα goes to zero. As a result,
Eq. (41) reduces to,

Rμ
α − 1

2
δμ
α R + �δμ

α = T (ψ)μα , (45)

where the cosmological term emerged as a function of the
field α (x) as follows,

�(x) = κλ

4
e2α(x). (46)

5 Conclusion

In this paper, we proposed an alternative way to obtain
D = 4,N = 1 supergravity lagrangian including scale trans-
formations by using the Maxwell-Weyl superalgebra. This
superalgebra contains two fermionic generators Qα and �α ,
where the first one is the standardN = 1 fermionic generator
and the other is required for the supersymmetrization of the
Maxwell generator Zab [21]. The new additional fermionic
generators �α were originally introduced by Green [12] in
the context of superstring theory (see also [53]). Therefore,
the Maxwell superalgebras can be considered as an extension
of the Green algebra by adding the tensorial charges Zab.

We constructed the gauge theory of gravity based on
sMW algebra. In this framework, we obtained the transfor-
mation of gauge fields, curvatures and the Bianchi identities
of sMW algebra. The corresponding four-form lagrangian
was constructed with bilinear of the curvatures together with
a compensating scalar field. Our result can be considered as
the Weyl enlargement of the paper [17] or/and supersymmet-
ric generalization of the Maxwell-Weyl gravity [7]. Accord-
ing to Eq. (25), the Maxwell fields Bab (x), the new fermionic
fields ξα (x) and the gauge field A (x) appeared only in the
boundary term. This result shows that the mentioned fields do
not have a dynamical character, but the corresponding cur-
vatures play an essential role for constructing an invariant
action. We can say that analyzing the boundary term to find
a physical or geometrical properties of the related fields is an
open problem [54–56]. After analyzing the condition Dφ =
0, we found the curvature of dilatation field goes to zero f =
dχ = 0. This condition also represents the Maurer-Cartan
form of the dilatation field. Therefore, we have obtained an
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alternative way to express the inverse Higgs effect [51,52].
Moreover, we obtained a relation between the cosmological
constant and the dilatation gauge field in Eq. (46).

We remark that the physical interpretation of the Maxwell
symmetry and its supersymmetric extension are under
research. According to the early studies [1,2], the Maxwell
symmetry has been used to describe a particle moving in a
Minkowski spacetime filled with a constant EM background
field, parametrized by additional degrees of freedom related
to the central charges Zab. So this symmetry was considered
as the symmetry group of a particle moving in a constant
EM field [57]. Later, the Maxwell algebra was used as an
alternative way to generalize Einstein’s theory of gravity and
supergravity. In the gravitational framework, the additional
degrees of freedom represent uniform gauge field strengths
in (super)space which lead to uniform constant energy den-
sity [10]. By gauging the Maxwell (super)algebra, a gen-
eralized cosmological constant was proposed in [4,18,19].
In addition, the Maxwell gauge fields Bab (x) contributed to
the stress energy-momentum tensor Tab (B) [4–7,18,19,34].
To our knowledge, this energy-momentum term has not been
analyzed yet, but it is known that such an additional term may
be related to the dark energy [8,9]. Also, the Maxwell sym-
metry provides a geometric background to define vector infla-
tons in cosmological models [58]. This symmetry was used
to describe higher spin fields [25,26], planar dynamics of the
Landau problem [27] and it was also applied to the string the-
ory as an internal symmetry of the matter gauge fields [59].
Moreover, the cosmological consequences of the Maxwell
symmetry are still an open problem. So, these results show
the importance of the Maxwell symmetry.

Finally, considering the results in [17–19,29,30] plus our
findings, it is shown that the Maxwell superalgebras provide
an effective geometric framework to construct supergravity
lagrangians by using its curvatures.

6 Notations and conventions

Here, we summarize our notation and conventions in D = 4.
The Dirac gamma matrices are defined by the well-known
expression

{
γ a, γ b

} = 2ηab where ηab is the (mostly minus)
Minkowski metric and these matrices obey the following
relations,

γ 5 = γ5 = iγ 0γ 1γ 2γ 3,
(
γ 5

)2 = 1, (γ5)
† = γ5,

(47)

σ ab = i

2

[
γ a, γ b

]
, γ5σab = i

2
εabcdσ

cd , (48)
{
γ a, γ 5

}
= 0,

[
σ ab, γ 5

]
= 0, (49)

[
σ ab, γ c

]
= 2i

(
η[b|cγ a]) ,

{
σ ab, γ c

}
= 2εabcdγ5γd ,

(50)

[
σ ab, γ 5γ c

]
= 2iγ 5

(
η[b|cγ a]) ,

{
σ ab, γ 5γ c

}
= 2εabcdγd ,

(51)
[
σ ab, σ cd

]
= i

(
ηa[dσ b|c] + ηb[cσ a|d]) ,

(52)
{
σ ab, σ cd

}
= 2

(
ηa[cηb|d] + iεabcdγ 5

)
, (53)

where σ ab = −σ ba are O (3, 1) Lorentz generators and the
antisymmetrization is defined by A[cBd] = AcBd − Ad Bc.
Moreover, we have,

γaσ
ab = 3iγ b, σ abσab = 12, (54)

γcσ
abγ c = 0, σabγcσ

ab = 0, (55)

σabσcdσ
ab = 0, εabcdσ

cd = −2iγ 5σab. (56)

In this work, we use the Majorana spinors which satisfy
ψ̄ = ψTC . Here, C = γ0 represents the charge conjugation
matrix and satisfies the following relations,

CT = C−1 = −C, C2 = −1, (57)

(Cγa)
T = (Cγa) , (Cσab)

T = (Cσab) , (58)

(Cγ5)
T = − (Cγ5) , (Cγaγ5)

T = − (Cγaγ5) , (59)

where T denotes the transpose of the corresponding matrix.
For the closure of the superalgebras, the following cyclic
identities are required,

(Cγe)(αβ

(
Cγ e)

ρσ)
= 0. (60)

The spinor variables satisfy the following relations,

ψαχβ = −χβψα, ψχ = χψ, (61)

ψ̄χ = χ̄ψ, ψ̄χ̄ = χ̄ ψ̄, (62)

ψ̄γaχ = −χ̄γaψ, ψ̄γaψ = 0, (63)

ψ̄σabχ = −χ̄σabψ, ψ̄σabψ = 0, (64)

ψ̄γ5γaχ = χ̄γ5γaψ, ψ̄γ5χ = χ̄γ5ψ. (65)

If spinors have differential form structure, we have to con-
sider the following relationships,

ψ(p)
α ∧ χ

(q)
β = − (−1)p·q χβ ∧ ψα, (66)

ψ̄(p) ∧ χ(q) = (−1)p·q χ̄ ∧ ψ. (67)

Considering a one-form spinor ψ , we have the following
Fierz identities,

ψ ∧ ψ̄ = 1

2
γaψ̄ ∧ γ aψ − 1

8
σabψ̄ ∧ σ abψ, (68)

γaψ ∧ ψ̄ ∧ γ aψ = σabψ ∧ ψ̄ ∧ σ abψ = 0. (69)
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