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Abstract The quantum gravity correction to the Hawking
temperature of the 2+1 dimensional spinning dilaton black
hole is studied by using the Hamilton-Jacobi approach in the
context of the Generalized Uncertainty Principle (GUP). It
is observed that the modified Hawking temperature of the
black hole depends on both black hole and the tunnelling
particle properties. Moreover, it is observed that the mass
and the angular momentum of the scalar particle have the
same effect on the Hawking temperature of the black hole,
while the mass and total angular momentum (orbital+spin)
of Dirac particle have different effect. Furthermore, the mass
and total angular momentum (orbital+spin) of vector boson
particle have a similar effect that of Dirac particle. Also,
thermodynamical stability and phase transition of the black
hole are discussed for scalar, Dirac and vector boson in the
context of GUP, respectively. And, it is observed that the
scalar particle probes the black hole as stable whereas, as for
Dirac and vector boson particles, it might undergoes second-
type phase transition to become stable while in the absence
of the quantum gravity effect all of these particle probes the
black hole as stable.

1 Introduction

The establishment of a self-consistent quantum version of
gravity is one of the most important problems of modern
physics and is still unsolved despite many important attempts.
However, the formulation of Quantum Field Theory (QFT)
in curved spacetime provide us some important clues about
a self-consistent quantum gravity. For instance, the particle
creation and the thermal radiation of a black hole are the
most spectacular of these clues. In this connection, Hawking,
using the QFT in curved spacetime, proved that a black hole
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can emit particles formed by the quantum fluctuation near its
event horizon [1–3]. Nowadays, various methods have been
proposed to calculate the temperature of a black hole known
as Hawking temperature. On the other hand, the Hamilton-
Jacobi approach is an important version of the tunnelling
method of the quantum mechanical point-like particles from
a black hole [4–20]. Adopting this approach, Hawking tem-
perature of various black holes were recovered by quantum
tunnelling method of the particles across their event hori-
zons. In all these studies, it is seen that the standard Hawking
temperature is independent of the properties of a tunneling
particle.

Besides the QFT in curved spacetime, there are some
important candidate theories of quantum gravity such as
the string theory and loop quantum gravity theory [21,22].
In these theories, unlike QFT, the elementary particles are
no longer point-like. Accordingly, it should be a minimal
length in order of Planck scale. Due to this new interpre-
tation of the elementary particles, the standard Heisenberg
uncertainty principle is modified as generalized uncertainty
principle (GUP) [23–33]. Moreover, the relativistic quan-
tum mechanical wave equations such as Klein-Gordon, Dirac
and vector boson equations are modified in the context of
the GUP. Using these modified equations, Hawking temper-
ature of many black holes was recalculated in the context of
Hamilton-Jacobi approach. It was observed that the standard
Hawking temperature is modified and it no longer depends
only on the black hole but also on the properties of the tun-
nelling particle [34–45]. It is also stated that the tunnelling
probability of the particles from a black hole is completely
different from each other and thus leads to completely dif-
ferent Hawking temperatures [40–44]. Moreover, the sta-
bility of the (2+1)-dimensional charged rotating Banados-
Teitelboim-Zanelli (CR-BTZ) black hole is investigated by
using the modified Hawking temperature. And it points out
that the black hole may undergo both first and second-type of
phase transitions in the context of GUP whereas it undergoes

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-019-7400-5&domain=pdf
mailto:ggecim@atauni.edu.tr
mailto:ysucu@akdeniz.edu.tr


882 Page 2 of 9 Eur. Phys. J. C (2019) 79 :882

only first phase transition in the absence of GUP [44]. With
this motivation, we will investigate the GUP effect on the tun-
nelling probability of the scalar, Dirac and vector boson par-
ticles, respectively, and subsequently on the Hawking tem-
perature of the 2+1-dimensional spinning dilaton black hole.
Moreover, using the modified Hawking temperatures, we will
analyze thermal stability condition of the black hole in the
presence of quantum gravity effect for all of three type par-
ticles, respectively.

The paper is organized as follows: In Sect. 2, we introduce
the 2+1 dimensional spinning dilaton black hole. In Sect. 3,
we investigate the GUP effect on the tunnelling progress of
the scalar particle from the black hole, and then, calculate the
modified Hawking temperature. In Sects. 4 and 5, we repeat
the same procedure for Dirac and vector boson particles,
respectively, as we perform for the scalar particle in Sect.
3. In Sects. 6, the modified heat capacity of the black hole is
calculated by using the modified Hawking temperatures, and
subsequently, stability/instability and phase transition of the
black hole are discussed. In the conclusion, the results are
summarized.

2 2+1 dimensional spinning dilaton black hole

A dilaton field is a kind of scalar field arise in the low-energy
string theories naturally [46,47]. There are many studies
investigate the effects of the dilaton field in both cosmologi-
cal and black hole evolutions. Hence, in this study we focus
on the 2+1 dimensional spinning dilaton black hole which is
an exact solution of the field equation of the 2+1 dimensional
low-energy string action. The black hole spacetime is given
as follows;

ds2 = f (r)dt2 − 1

H(r)
dr2 + 4r Jdtdϕ − R(r)2dϕ2, (1)

where the f (r), H(r) and R(r) are;

f (r) = 8Λr2 − r(M +
√
M2 + 32J 2Λ),

R(r)2 = r2 + r

√
M2 + 32ΛJ 2 − M

8Λ
,

H(r) = 4rΛ − M

2r
,

with Λ, M and J are the cosmological constant, the mass
and angular momentum of the black hole, respectively [47].
The angular velocity of the horizon is determined as follows:

Ωh =
⎛

⎝− gtφ
gϕϕ

−
√(

gtϕ
gϕϕ

)2

− gtt
gϕϕ

⎞

⎠

r=rh

= 16JΛ

M + √
M2 + 32J 2Λ

. (2)

The event horizon of the black hole is located at

rh = M

4Λ
, (3)

which is obtained from H(r) = 0. As can be seen from Eq.
(3), the black hole has only one event horizon that depends
on the black hole mass and the cosmological constant. On
the other hand, the event horizon does not depend on the
angular momentum of the black hole. This indicates that the
event horizons of the static and the 2+1 dimensional spinning
dilaton black holes are the same. Hence, the Ricci scalar of
the black hole is M+8rΛ

2r3 and the Ricci scalar diverges at
r = 0.

Using the dragging coordinate transformation, we can
avoid the dragging of the spacetime and matter near the event
horizon of the black hole [7,37,44,48–55]. In this context,
the metric takes the following form

ds2 = F(r)dt2 − 1

H(r)
dr2 − R(r)2dφ2, (4)

with the following abbreviation,

F(r) = 16r2Λ(4rΛ − M)

8rΛ − M + √
M2 + 32ΛJ 2

,

where the dragging coordinate transformation is carried out
in terms of Killing vectors, (∂t ) and

(
∂φ

)
, as dφ=dϕ −

2r J
R(r)2 dt .

3 Tunneling of scalar particle from spinning dilaton
black hole

We use Klein-Gordon equation that is modified in the context
of GUP to investigate the quantum gravity effects on the
tunneling process of the scalar particles from the black hole:

h̄2∂t∂
t Φ̃ + h̄2∂i∂

i Φ̃ + 2αh̄4∂i∂
i (∂i∂

i Φ̃)

+M2
0 (1 − 2αM2

0 )Φ̃ = 0, (5)

where Φ̃ and M0 are the modified wave function and mass of
the scalar particle, respectively [40,42–44]. Also α=α0/M2

p

with the M2
p and α0 are the Planck mass and dimension-

less parameter, respectively. Then, the explicit form of the
modified Klein-Gordon equation for the spinning black hole
background is

h̄2

F

∂2Φ̃

∂t2 − h̄2

R2

∂2Φ̃

∂φ2 − h̄2H
∂2Φ̃

∂r2 + 2αh̄4

R2

∂2

∂φ2

(
1

R2

∂2Φ̃

∂φ2

)

+2αh̄4H
∂2

∂r2

(
H

∂2Φ̃

∂r2

)
+ M2

0

(
1 − 2αM2

0

)
Φ̃ = 0. (6)

To reduce Eq. (6) to the Hamilton-Jacobi like equation, we
use the following ansatz for the modified wave function of
the scalar particle, Φ̃ (t, r, φ);
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Φ̃ (t, r, φ) = A exp

(
i

h̄
S (t, r, φ)

)
, (7)

where A (t, r, φ) is a function of space-time coordinates and
S(t, r, φ) is the classical action function. Setting it into the
Eq. (6) and subsequently neglecting the higher order terms of
h̄, we get the modified Hamilton-Jacobi equation as follows;

1

F

(
∂S

∂t

)2

− H

(
∂S

∂r

)2

− 1

R2

(
∂S

∂φ

)2

− M2
0

+2α

[

m2
0 − H2

(
∂S

∂r

)2

− 1

R4

(
∂S4

∂φ

)]

= 0. (8)

To solve this equation, the classical action function, S (t, r, φ),
can be separated as S (t, r, φ)=−(E− jΩh)t+ jφ+W (r)+C
by using separation of variable method. Here, C is a com-
plex constant, and E , j and W (r)=W0(r) + αW1(r) are the
particle’s energy, angular momentum, and radial trajectory,
respectively. After some calculations, the radial trajectory of
the tunneling scalar particle W±(r) is written as

W±(r) = ±
∫

√
(E − jΩh)2 − F

(
M2

0 + j2/R2
)

√
HF

× [1 + αΘ] dr, (9)

where W+(r) and W−(r) correspond to the outgoing and
incoming particle trajectories, respectively. Also, the abbre-
viation Θ is

Θ= F2
(
M4

0 − j4/R4
)− [

(E − jΩh)
2−F

(
M2

0 + j2/R2
)]2

F
[
(E − jΩh)2 − F

(
M2

0 + j2/R2
)] .

Then, the W±(rh) are computed as

W±(rh) = ±iπ
(E − jΩh)

√
M + √

M2 + 32J 2Λ

4Λ
√

2M
× [1 + αΣ] , (10)

with the abbreviation Σ is

Σ = 96Λ2 j2 + 3M2
0 M(M + √

M2 + 32J 2Λ)

2M(M + √
M2 + 32J 2Λ

.

On the other hand, the tunneling probabilities of a particle
crossing the outer horizon are given by

Pout = exp

[
− 2

h̄
ImW+(rh

]
,

Pin = exp

[
− 2

h̄
ImW−(rh

]
. (11)

Hence, the tunneling probability of a particle is

Γ = e− 2
h̄ ImS = Pout

Pin
= e

− E
TH , (12)

where E is total energy of the tunnelling particle, and TH is
Hawking temperature. Then, the modified Hawking temper-
ature of the scalar particle, T KG

H , is obtained as follows

T KG
H = TH

[1 + αΣ]
, (13)

where TH is the standard Hawking temperature of the black
hole and its explicit expression is

TH = h̄
√

2

π

√
MΛ2

M + √
M2 + 32J 2Λ

. (14)

Furthermore, neglecting the higher order α terms (since α �
1), we find the modified Hawking temperature of the black
hole as follows;

T KG
H � TH [1 − αΣ] . (15)

This result indicates that the modified Hawking tempera-
ture of the massive scalar particle is lower than the standard
Hawking temperature. Moreover, it shows that the modified
Hawking temperature depends on not only the cosmologi-
cal constant, mass and angular momentum of the black hole
but also the mass and angular momentum of the tunneling
particle.

4 Tunneling of massive Dirac particle from spinning
dilaton black hole

The modified Dirac equation is given as follows [40,42–44];

iσ 0(x)∂0Ψ̃ + iσ i (x)
(

1 − αμ2
0

)
∂i Ψ̃

−μ0

h̄

(
1 + αh̄2∂ j∂

j − αμ2
0

)
Ψ̃

+iαh̄2σ i (x)∂i
(
∂ j∂

j Ψ̃
)

−iσμ(x)Γμ

(
1 + αh̄2∂ j∂

j − αμ2
0

)
Ψ̃ = 0, (16)

where Ψ̃ is the modified Dirac spinor, μ0 is mass of the
Dirac particle, σμ(x) are the spacetime dependent Dirac
matrices, and Γμ(x) are spin affine connection for spin-1/2
particle given in the following definition in terms of metric
tensor, gμν(x), Christoffel symbols, Γ α

νμ, triads, e( j)
ν (x), and

spacetime-dependent Dirac matrices σμ(x) [56]:

Γμ(x) = 1

8
gλα(eiν,μe

α
i − Γ α

νμ)[σλ(x), σ ν(x)].
Using Eq. (4), the spinorial affine connections are derived in
terms of Pauli matrices by the following way;

Γ0 = − i

4

√
H

F
F

′
σ 3σ 1 , Γ1 = 0 ,

Γ2 = 1

2

√
H(r)R

′
σ 1σ 2 (17)

123



882 Page 4 of 9 Eur. Phys. J. C (2019) 79 :882

where the prime denotes the derivative with respect to r . To
proceed the tunneling probability of a massive Dirac parti-
cle from the black hole, we use the following ansatz for the
modified wave function;

Ψ̃ (x) = exp

(
i

h̄
S (t, r, φ)

) (
A (t, r, φ)

B (t, r, φ)

)
(18)

where the A (t, r, φ) and B (t, r, φ) are the functions of
spacetime coordinates. Setting the Eqs. (17) and (18) into
the Eq. (16), we obtain the following coupled equations for
the leading order in h̄ and α:

A

[
1√
F

(
∂S

∂t

)
+ μ0

(
1 − αμ2

0

)
+ αμ0

R2

(
∂S

∂φ

)2

+αμ0H

(
∂S

∂r

)2
]

+B

[

i
√
H

(
1 − αμ2

0

) (
∂S

∂r

)
+

(
1 − αμ2

0

)

R

(
∂S

∂φ

)

+iαH3/2
(

∂S

∂r

)3
]

+B

[

i
α
√
H

R2

(
∂S

∂r

) (
∂S

∂φ

)2

+ αH

R

(
∂S

∂φ

) (
∂S

∂r

)2

+ α

R3

(
∂S

∂φ

)3
]

= 0,

A

[

−i
√
H

(
1 − αμ2

0

) (
∂S

∂r

)
+

(
1 − αμ2

0

)

R

(
∂S

∂φ

)]

−A

[

iαH3/2
(

∂S

∂r

)3

− i
α
√
H

R2

(
∂S

∂r

) (
∂S

∂φ

)2
]

+A

[
αH

R

(
∂S

∂φ

) (
∂S

∂r

)2

+ β

R3

(
∂S

∂φ

)3
]

+B

[
1√
F

(
∂S

∂t

)
− μ0

(
1 − αμ2

0

)]

−B

[
αμ0

R2

(
∂S

∂φ

)2

− αμ0H

(
∂S

∂r

)2
]

= 0. (19)

The non-trivial solution of these equations can be obtained
when the determinant of the coefficient matrix is zero. Sub-
sequently, neglecting the terms including the higher order
of the α parameter leads to the modified Hamilton-Jacobi
equation for the massive Dirac particle:

2α

[

−2H

R2

(
∂S

∂r

)2 (
∂S

∂φ

)2

− 1

R4

(
∂S

∂φ

)4

− H2
(

∂S

∂r

)4
]

+ 1

F

(
∂S

∂t

)2

−H

(
∂S

∂r

)2

− 1

R2

(
∂S

∂φ

)2

−μ2
0+2αμ4

0 = 0.

(20)

Letting the explicit form of the classical action of the Dirac
particle, S (t, r, φ)=−(E − jΩh)t + jφ + K (r)+C , in Eqs.
(20), the radial trajectory of the particle, K±(r), is obtained
as follows:

K±(r) = ±
∫

√
(E − jΩ+)2 − F

(
μ2

0 + j2/R2
)

√
HF

× [1 + αχ ] dr,

(21)

where K+(r) and K−(r) correspond to the outgoing and
incoming particle trajectories, respectively, and the abbre-
viation χ is

χ = (E − jΩ+)2
[
2μ2

0F − (E − jΩ+)2
]

F
[
(E − jΩ+)2 − F

(
μ2

0 + j2/R2
)] .

Then, it is computed as

K±(rh) = ±iπ
(E − jΩh)

√
M + √

M2 + 32J 2Λ

4Λ
√

2M
× [1 + αΠ ] , (22)

where the abbreviation Π is

Π = −32Λ2 j2 + 3μ2
0M(M + √

M2 + 32J 2Λ)

2M(M + √
M2 + 32J 2Λ

.

Accordingly, inserting Eq. (22) in Eqs. (11) and (12), the
modified Hawking temperature of the massive Dirac particle,
T D
H , is obtained as

T D
H = TH

[1 + αΠ ]
, (23)

or

T D
H � TH [1 − αΠ ] . (24)

where TH is the standard Hawking temperature of the black
hole given in Eq. (14). This result shows that the modified
Hawking temperature of the massive Dirac particle is lower
than the standard Hawking temperature. Moreover, similarly
that of scalar particle, it shows that the mass and angular
momentum of the tunneling Dirac particle play important role
in the thermodynamical evolution of the black hole. Another
important result is the tunnelling probability and the modified
Hawking temperature of the Dirac particle are completely
different from that of scalar particle in the presence of the
quantum gravity effect.

5 Tunneling of massive vector boson from spinning
dilaton black hole

In this section, we performing the quantum gravity effect on
the tunnelling process of the massive vector boson particle
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from the black hole. To do this, we are using the modified
massive vector boson equation given as follows:

iβ0(x)∂0Ψ̃ + iβ i (x)
(

1 − αm2
0

)
∂i Ψ̃

+iαh̄2β i (x)∂i
(
∂ j∂

j Ψ̃
)

−m0

h̄

(
1 + αh̄2∂ j∂

j − αm2
0

)
Ψ̃

−iβμ(x)Σμ

(
1 + αh̄2∂ j∂

j − αm2
0

)
Ψ̃ = 0, (25)

where μ0 is mass of the vector boson and Ψ̃ is the modified
wave function [41]. Also, βμ(x) and Σμ are the Kemmer
matrices and spin connection coefficients for the vector boson
with the following their expressions;

βμ(x) = σμ(x) ⊗ I + I ⊗ σμ(x),

Σμ (x) = Γμ(x) ⊗ I + I ⊗ Γμ(x), (26)

respectively [57,58]. To calculate the quantum gravity effect
on the tunnelling probability of the massive vector boson
from the black hole, we use the following ansatz for the mod-
ified wave function [41,57,58],

Ψ̃ (x) = exp

(
i

h̄
S (t, r, φ)

)
⎛

⎜⎜
⎝

A (t, r, φ)

B (t, r, φ)

B (t, r, φ)

D (t, r, φ)

⎞

⎟⎟
⎠ . (27)

Accordingly, setting Eqs. (17) and (26) in Eq. (27), we obtain
the following differential equations set:

B

[
1

R

(
∂S

∂φ

)
+iα

√
H

R2

(
∂S

∂φ

)2 (
∂S

∂r

)
−iαm2

0

√
H

(
∂S

∂r

)]

+B

[

i
√
H

(
∂S

∂r

)
+ iαH

√
H

(
∂S

∂r

)3

− α
m2

0

R

(
∂S

∂φ

)]

+B

[

+α
1

R3

(
∂S

∂φ

)3

+ α
H

R

(
∂S

∂φ

) (
∂S

∂r

)2
]

+A

[
1√
F

(
∂S

∂t

)
+ m0

(
1 − αm2

0

)

2

]

+A

[

α
m0

2R2

(
∂S

∂φ

)2

+ α
m0H

2

(
∂S

∂r

)2
]

= 0

A

[

−i
√
H

(
∂S

∂r

)
+ α

H

R

(
∂S

∂φ

)(
∂S

∂r

)2
]

−A

[

α
m2

0

R

(
∂S

∂φ

)
− iαH

√
H

(
∂S

∂r

)3
]

+A

[
α

R3

(
∂S

∂φ

)3

+ 1

R

(
∂S

∂φ

)]

−A

[

iα

√
H

R2

(
∂S

∂φ

)2 (
∂S

∂r

)
+ iαm2

0

√
H

(
∂S

∂r

)]

+B

[

−m0 (1 − αm0) − αm0H

(
∂S

∂r

)2

− α
m0

R2

(
∂S

∂φ

)2
]

+D

[

− 1

R

(
∂S

∂φ

)
+ α

m2
0

R

(
∂S

∂φ

)]

−D

[

α
H

R

(
∂S

∂φ

)(
∂S

∂r

)2

− i
√
H

(
∂S

∂r

)]

+D

[

iαm2
0

√
H

(
∂S

∂r

)
− α

R3

(
∂S

∂φ

)3
]

−D

[

iα

√
H

R2

(
∂S

∂φ

)2 (
∂S

∂r

)
− iαH

√
H

(
∂S

∂r

)3
]

= 0

B

[

−i
√
H

(
∂S

∂r

)
+ 1

R

(
∂S

∂φ

)
− iα

√
H

R2

(
∂S

∂φ

)2 (
∂S

∂r

)]

+B

[
α

R3

(
∂S

∂φ

)3

+ α
H

R

(
∂S

∂φ

)(
∂S

∂r

)2

− α
m2

0

R

(
∂S

∂φ

)]

+B

[

iαm2
0

√
H

(
∂S

∂r

)
− iαH

√
H

(
∂S

∂r

)3
]

+D

[
1√
F

(
∂S

∂t

)
− m0

(
1 − αm2

0

)

2

]

−D

[

α
m0

2R2

(
∂S

∂φ

)2

− α
m0H

2

(
∂S

∂r

)2
]

= 0, (28)

where the terms with h̄ are omited. Afterwards, the modified
Hamilton-Jacobi equation for the massive vector boson par-
ticle is derived by setting the determinant of the coefficients
matrix of A (t, r, φ), B (t, r, φ) and D (t, r, φ) to zero;

1

F

(
∂S

∂t

)2

− 1

R2

(
∂S

∂φ

)2

− H

(
∂S

∂r

)2

− m2
0

4

+α

[
9m2

0H

4

(
∂S

∂r

)2

− 3

R4

(
∂S

∂φ

)4
]

+α

[

−6H

R2

(
∂S

∂r

)2 (
∂S

∂φ

)2

+ 9m2
0

4R2

(
∂S

∂φ

)2
]

+α

[
1

R2F

(
∂S

∂t

)2 (
∂S

∂φ

)2

− m2
0

F

(
∂S

∂t

)2
]

+α

[
3m4

0

4
− 3H2

(
∂S

∂r

)4

+ H

F

(
∂S

∂t

)2 (
∂S

∂r

)2
]

= 0.

(29)

The radial trajectory of the vector particle across the event
horizon, K± (r), is obtained by substituting the explicit form
of S (t, r, φ) in Eq. (29):

K±(r) = ±
∫

√
(E − jΩ+)2 − F

(
m2

0/4 + j2/R2
)

√
HF
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× [1 + αΥ ] dr (30)

where Υ is is an abbreviation as

Υ = (E − jΩ+)2
[
5m2

0F − 4(E − jΩ+)2
]

4F
[
(E − jΩ+)2 − F

(
m2

0/4 + j2/R2
)] .

Finally, the integration in Eq. (30) are calculated as

K±(rh) = ±iπ
(E − jΩh)

√
M + √

M2 + 32J 2Λ

4Λ
√

2M
× [1 + αΔ] . (31)

where the abbreviation Δ is

Δ = −128Λ2 j2 + 9m2
0M(M + √

M2 + 32J 2Λ)

8M(M + √
M2 + 32J 2Λ)

.

Accordingly, the modified Hawking temperature of the mas-
sive vector boson particle becomes as follows:

T
′
H = TH

[1 + αΔ]
, (32)

or

T
′
H = TH [1 − αΔ] (33)

with the standard Hawking temperature, TH , given in the Eq.
(14). As can be seen from Eq. (33), the modified Hawking
temperature of the vector boson particle is lower than the
standard one. It is also different from both that of Dirac and
scalar particles.

6 Quantum gravity correction to the Stability of the
black hole

The heat capacity of a black hole provides important informa-
tion about both the thermodynamic local stability and phase
transitions of that black hole. Whether a black hole is ther-
mally local stable is determined by whether its heat capacity
is positive or negative. On the other hand, the phase transi-
tions take place when the system is moving from an unstable
state to a stable state. The phase transition points correspond
to roots where the heat capacity vanishes or diverges. That
the roots make the heat capacity vanish it corresponds to the
first-type phase transition, whereas the roots where the heat
capacity is divergent it corresponds to the second-type phase
transition. The heat capacity expression at constant angular
momentum, J , in term of mass, M , and modified Hawking
temperature, TH , of the black hole is given as follows:

CJ =
(

∂M

∂TH

)

J
(34)

In this context, to determine the thermal stability condition,
and hence, the phase transition of the black hole under the

quantum gravity effect, we will consider the modified Hawk-
ing temperatures of the scalar, Dirac, and vector boson parti-
cles calculated in the presence of GUP, separately. Therefore,
using the modified Hawking temperatures of the scalar in Eq.
(13), Dirac in Eq. (23), and vector boson in Eq. (32), particles
with Eq. (3), respectively, the modified heat capacity of the
black hole is obtained as follows:

C
Scalar

J = 3πΛ2ξX

4h̄rhΛ3Y
, (35)

C
Dirac

J = 9πΛ2ξA

4h̄rhΛ3B
, (36)

C
Vector

J = 1521πΛ2ξC

256h̄rhΛ3D
, (37)

where X , Y , A , B, C and D are abbreviations (see
Appendix) and ξ is

ξ =
√

2rh
(
Λr2

h + 2J 2
) (

Λrh +
√

Λ
(
Λr2

h + 2J 2
))

.

To analyse the local stability properties of the black hole
under quantum tunnelling process of the relativistic particles
in the presence of GUP, we plot the heat capacities for special
values of Λ, α, j , h̄, J , and m. According to Eq. (35), the
modified heat capacity of the spinning dilatonic black hole is
always positive, hence, the black hole always stable accord-
ing to the tunnelling process of a scalar particle in the context
of GUP (red line in Fig. 1). In this case, there is no any phase
transition. On the other hand, according to the tunnelling
process of Dirac particle, the modified heat capacity given
in Eq. (36) is negative for the region 0 < rh < 0.2 while
it is positive for the region 0.2 < rh . Therefore, the black
hole is unstable in the region 0 < rh < 0.2 while it is stable
in the region 0.2 < rh . The modified heat capacity diverges
at point rh = 0.2, hence this point corresponds to the phase
transition point known as second-type phase transition (red
line in Fig. 2). Similarly, in view of the tunneling process
of vector boson particle, the modified heat capacity given in
Eq. (37) is negative for the region 0 < rh < 1.13 while it is
positive for the region 1.13 < rh (red line in Fig. 3). There-
fore, the stability/instability and phase transition situations
of the black hole according to the tunnelling of vector boson
particle are similar that of the Dirac particle.

In the absence of the quantum gravity effect, i.e. α=0, the
modified heat capacity reduced to the standard one given as
follow:

CJ =
4π

√
2rh

(
Λr2

h + 2J 2
) (

Λrh +
√

Λ
(
Λr2

h + 2J 2
))

h̄

(√
Λ(Λr2

h + 2J 2) − Λrh

)

,(38)
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CScalar

Fig. 1 CScalar -rh curve. The blue and red lines are correspond to the
standard and the modified heat capacities of the spinning dilaton black
hole, respectively. We set Λ = 1, α = 10−2, j = 3, h̄ = J = m = 1

0.2 0.4 0.6 0.8 1.0
rh

50

50

100

CDirac

Fig. 2 CDirac-rh curve. The blue and red lines are correspond to the
standard and the modified heat capacities of the spinning dilaton black
hole, respectively. We set Λ = 1, α = 10−2, j = 3, h̄ = J = m = 1

Due to the fact that
√

Λ(Λr2
h + 2J 2) > Λrh , the standard

heat capacity is always positive. Therefore, thermodynami-
cally, the black hole is always stable in the absence of quan-
tum gravity effect (blue lines in Figs. 1, 2, 3).

7 Concluding remarks

Recent observational developments in black hole physics
have demonstrated the importance of theoretical studies in
this area. In this context, it is important to calculate the ther-
modynamics properties of a black hole by tunneling vari-
ous relativistic quantum mechanical particles. Such studies
can provide important clues about the evaporation process
of a black hole. In this work, the impact of the GUP on
the Hawking temperature of the 2+1 dimensional spinning
dilaton black hole and its local stability/instabity and phase
transition are investigated via quantum tunnelling process of
the massive scalar, Dirac and vector boson particles, respec-

1 2 3 4
rh

3000

2000

1000

1000

2000

3000

CVector

Fig. 3 CVector -rh curve. The blue and red lines are correspond to the
standard and the modified heat capacities of the spinning dilaton black
hole, respectively. We set Λ = 1, α = 10−2, j = 3, h̄ = J = m = 1

tively, in the context of the Hamilton-Jacobi approach. For
this purpose, the modified Klein-Gordon, Dirac and vector
boson equations is used. Some important outcomes can be
listed as follows:

– In the absence of GUP effect, Hawking temperatures of
the three different types of particles are the same and
depend only on the properties of the black hole, i.e. they
are not related to the particles properties.

– In contrast to the standard results, our results demonstrate
that the modified Hawking temperature depends not only
on the black hole properties but also on GUP parameter,
α, and hence on the properties of the tunneling particles.
Furthermore, it is observed that the modified Hawking
temperature is lower than that of the standard one.

– In the presence of the GUP effect, tunnelling processes
of the three different particles are completely different
from each other, and hence their Hawking temperatures
are completely different, as well.

– According to Eq. (15), the modified Hawking tempera-
ture of the black hole is decreases via angular momentum
of the scalar particle. However, according to Eq. (24), the
total angular momentum (orbital+spin) of Dirac particle
has an increasing effect on the Hawking temperature of
the black hole. Moreover, the total angular momentum
(orbital+spin) of the vector boson particle has a simi-
lar impact that of Dirac particle (see Eq. (33)). This case
indicates that the total angular momentum (orbital+spin)-
spacetime geometry interaction depends on the particle
type in the presence of quantum gravity correction term.
On the other hand, in the absence of this term, all types
of particles interact with spacetime geometry in the same
way.

– In the case of the all three particles, the modified Hawking
temperature decreases with mass of the tunneling particle
(see Eqs. (15), (24) and (33)).
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– Thermodynamical local stability of the black hole is ana-
lyzed by using the modified Hawking temperatures of
scalar, Dirac and vector boson particles for special val-
ues of Λ, α, j , h̄, J , and m.

– The black hole is always locally stable according to the
scalar particle tunnelling in the presence of quantum
gravity effect. Therefore, we can say that tunnelling of
a scalar particle does not affect the local stability of the
black hole (red line in Fig. 1).

– On the other hand, according to the tunneling process of
both Dirac and vector boson particles, the modified heat
capacities given in Eqs. (36) and (37 diverge. Hence, the
black hole may undergoes second-type of phase transi-
tions in order to become stable in the presence of the
quantum gravity effect (red lines in Figs. 2, 3). Also, for
same values of Λ, α, j , h̄, J , and m, the unstable region
in the context of vector boson particle tunneling is wider
than that of Dirac particle. This shows that, in the con-
text of tunneling of the Dirac particle, the black hole may
undergo stable earlier than that of the vector particle par-
ticle.

– In the absence of GUP effect, all of the three modified
heat capacities reduce to standard one (Eq. (38)), and in
this situation, the black hole is always stable (blue lines
in Figs. 1, 2, 3).

Finally, it is important to point out that the spin of the
tunnelling particle may play an important role that can not
be neglected during the evaporation of the spinning dilatonic
black hole in the context of quantum gravity.
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Appendix

Explicit forms of the abbreviations in the Eqs. (35)–(37)

The constants in Eqs. (35)–(37) are given as follows;

X =
[
rh

(
αm2 + 2/3

) √
Λ

(
Λr2

h + 2J 2
)

+Λ
(

2α j2 + r2
h

(
2/3 + αm2

))]2

Y =
{

rh
√

Λ
(
Λr2

h + 2J 2
)
(

αΛ j2 +
(
αm2 + 2/3

)
J 2

4

)

+Λ

(
3α j2 J 2

2
+ r2

h

(

αΛ j2 +
(
αm2 + 2/3

)
J 2

4

))}

A =
[
rh

(
αm2 + 2/3

) √
Λ

(
Λr2

h + 2J 2
)

+Λ
(
r2
h

(
2 + 3αm2

) − α j2
)

3

]2

B =
{

rh
√

Λ
(
Λr2

h + 2J 2
)
((

3αm2 + 2
)
J 2

4
− αΛ j2

)

+Λ

(

r2
h

((
3αm2 + 2

)
J 2

4
− αΛ j2

)

− 3α j2 J 2

2

)}

C =
[
rh

(
αm2 + 8

39

) √
Λ

(
Λr2

h + 2J 2
)

+Λ
(
r2
h (8 + 39αm2) − 32α j2

)

39

]2

D =
{

rh
√

Λ
(
Λr2

h + 2J 2
)
((

39αm2 + 8
)
J 2

64
− αΛ j2

)

+Λ

(

r2
h

((
39αm2 + 8

)
J 2

64
− αΛ j2

)

− 3α j2 J 2

2

)}
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