
Eur. Phys. J. C (2019) 79:873
https://doi.org/10.1140/epjc/s10052-019-7397-9

Regular Article - Theoretical Physics

Minimal geometric deformation in a Reissner–Nordström
background

Ángel Rincón1,a , Luciano Gabbanelli2,b, Ernesto Contreras3,c, Francisco Tello-Ortiz4,d

1 Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Casilla 4059, Valparaiso, Chile
2 Deptartament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Martí i Franquès 1,

08028 Barcelona, Spain
3 School of Physical Sciences and Nanotechnology, Yachay Tech University, 100119 Urcuquí, Ecuador
4 Departamento de Física, Facultad de ciencias básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile

Received: 18 September 2019 / Accepted: 12 October 2019 / Published online: 23 October 2019
© The Author(s) 2019

Abstract This article is devoted to the study of new
exact analytical solutions in the background of Reissner–
Nordström space-time by using gravitational decoupling via
minimal geometric deformation approach. To do so, we
impose the most general equation of state, relating the com-
ponents of the θ -sector in order to obtain the new material
contributions and the decoupler function f (r). Besides, we
obtain the bounds on the free parameters of the extended
solution to avoid new singularities. Furthermore, we show
the finitude of all thermodynamic parameters of the solution
such as the effective density ρ̃, radial p̃r and tangential p̃t
pressure for different values of parameter α and the total elec-
tric charge Q. Finally, the behavior of some scalar invariants,
namely the Ricci R and Kretshmann RμνωεRμνωε scalars are
analyzed. It is also remarkable that, after an appropriate limit,
the deformed Schwarzschild black hole solution always can
be recovered.

1 Introduction

Black hole idea has a long history. At first, Newton’s univer-
sal gravitation theory was used to investigate the existence of
dark stars. Nonetheless, the starting point to corroborate the
existence and understanding of the behavior of these peculiar
structures dates back to 1916, one year after Albert Einstein
made known his famous general theory of relativity (GR),
when Schwarzschild reported a vacuum solution to Einstein’s
field equations [1]. This solution describes a spherically sym-
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metrical and static object without electric charge (it is the
only known vacuum solution of Einstein’s field equations), a
super-dense region of space-time that exhibits a strong grav-
itational field where nothing can escape (matter, not even the
light). The formation of these structures in the Universe is
due to the gravitational collapse of massive stars (20 times
more than the mass of the Sun). These black holes are called
stellar black holes, while those formed by the collapse of
stars much more massive than 20M� are called supermas-
sive black holes (106 times the mass of the sun or even more
massive). For a black hole to be created, the inner part of the
collapsed star will shrink down to an infinitely dense point
called a singularity. This singularity is a region of the space-
time where the laws of physics are no longer valid. Due to
the cosmic censorship hypothesis, all singularities should be
covered by a line called the event horizon. It means that naked
singularities are forbidden.

Notably, the well known Schwarzschild black hole has an
essential singularity at r = 0 protected by an event horizon at
r = 2M (where M is the total mass). Furthermore, the more
general solution for these impressive structures are character-
ized by three conserved charges: (i) the mass M , (ii) the elec-
tric charge Q and (iii) the angular momentum J . Although
the above is also true, the Schwarzschild solution is described
only by the mass M parameter, the Reissner–Nordström solu-
tion [2,3] is characterized by mass M and electric charge Q,
whereas the Kerr space-time [4] is painted by mass M and
angular momentum J charges. Moreover, the most general
solution of this type is the Kerr–Newman space-time [5] char-
acterized by mass M , electric charge Q, and angular momen-
tum J . The existence of these conserved charges is supported
by the non-hair conjecture [6], which states that these solu-
tions should not carry any other charges. Nonetheless, inter-
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nal gauge symmetries and extra fields could introduce new
conserved charges, such as soft quantum hair [7].

Form the theoretical point of view, these exciting objects
have been extensively studied and classified [8]. On the other
hand, the existence of these intriguing objects was observa-
tionally corroborated in 2016 by LIGO, Virgo, and GEO600
collaborations. This announced was the first detection of
gravitational waves produced by the fusion of two black
holes [9–11]. This observational evidence called GW150914
was an unprecedented event that gave further support to
Einstein’s theory. Notwithstanding, theoretically speaking,
there are many questions to answer about these fascinat-
ing celestial bodies. Despite its mathematical beauty, han-
dling problems of physical relevance in GR is usually a
formidable task. Since it is a highly non-linear theory, the
principle of superposition valid in linear differential equa-
tions does not apply here and finding exact solutions has
always been a challenge. Even more, black hole solutions
have been analyzed in several dimensions. Besides, they have
been studied classically and after that, under a quantum point
of view. The solutions mentioned above (Schwarzschild,
Reissner–Nordström and Kerr–Newman) include classical
effects only, but new and exciting effects can be included
when we relax some of the usual assumptions made in
GR. For instance, the well-known RG-improvement tech-
nique also incorporates quantum features into classical solu-
tions [12–16]. Following similar ideas, the so-called scale-
dependent scenario (which is asymptotic safety inspired)
accounts quantum effects via the running of the gravitational
coupling [17–34]. Both methods modify the classical BH
solutions assuming that the coupling parameters are not con-
stants anymore. This assumption can also be interpreted as
an anisotropic energy–momentum coming from the quantum
sector. Thus, anisotropic solutions could appear when quan-
tum features are present. Alternatively, the main features of
black holes have been recently associated to coherent collec-
tive effects of their “constituents”. Intriguing proposals on
corpuscular structure for such objects has been recently pro-
ducing new insights questioning the mere structures of black
holes (see [35] for a nice review). Particularly, following this
bridge between quantum information, condense matter for-
malism and effective field approximations, new solutions for
Schwarzschild [36] or Reissner–Nöstrom metrics has been
derived [37]. The study of anisotropic solutions in black
holes is two folds: firstly, to get insights about the underly-
ing physics in anisotropic black hole solutions, and second,
to establish, if this exists, a connection between anisotropies
and physics beyond Einstein gravity.

In order to generate anisotropic solutions, a new and ele-
gant method that allows us to obtain new exact solutions
starting from a known one has received considerable atten-
tion recently [38,39]. The so-called gravitational decoupling
through Minimal Geometric Deformation (MGD henceforth)

approach, was developed to deform Schwarzschild space-
time [40,41] in the Randall–Sundrum brane-world [42,43].
Basically, this grasp works by extending simple solutions
into more complex domains, which serve up to explore new
insights in diverse areas. The full history of how this method-
ology was developed and how it works can be found in the
following references [44–50].

In recent years, there has been a growing interest in
using this machinery to explore the behavior of collapsed
structures, such as neutron stars and black holes in the
presence of anisotropic matter distributions. Particularly,
models representing perfect fluid spheres without electric
charge/with electric charge have been extended to anisotropic
domains [51–62]. Besides, black hole solutions have also
been addressed within the MGD arena; specifically, the
Schwarzschild space-time [63], BTZ manifold [64] and AdS
geometry [65] have been worked. Also the inverse prob-
lem was addressed in 3 + 1 dimensions [66] and 2 + 1
dimensions including cosmological constant [67]. Besides,
a cloud of string [68] and Klein–Gordon scalar fields as an
extra matter content [69] were treated. Although the method
was developed for spherically symmetric geometries, it was
spread out to be used in isotropic coordinates [70]. More-
over, the existence of exotic structures such as ultra-compact
Schwarzschild star, or gravastar [71] was investigated.

As well, in a broader context, the extension of the method,
including geometric deformations on both metric potentials
was reported at [72,73]; it was called the extended-MGD
scheme. On the other hand, given the abundance of modified
gravity theories and treatments of the gravitational interac-
tion in the regime of extra dimensions, the extension of the
method in these scenarios is completely natural. As far as this
is concerned, neutron stars have been studied very recently
considering extra dimensions [74] and in the background
of Pure Lovelock gravity [75], f(R,T ) gravity theory [76],
cosmological scenario [77], Rastall gravity [78] and Brane-
worlds [79].

Following the same spirit of these good antecedents in this
work, we investigate how the contributions introduced by
gravitational decoupling through MGD modify the material
content and geometry of the well known Reissner–Nordström
space-time. What is more, we follow the same procedure as
was done in [63]. Precisely, in order to obtain the decou-
pler function f (r) the most general equation of state relating
the components of the θ -sector is imposed. It is worth men-
tioning that this scheme work preserves the critical point
of the original solution ı.e, its essential singularities, inner
and outer event horizons, however, introduces new ones.
These new critical points could be interpreted as new event
horizons or new charges (hair) coming from the anisotropic
behavior inserted by the θ -sector. Besides, we explore the
behavior of the salient energy–momentum tensor via energy
conditions. In our case, the energy–momentum tensor cor-
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responds to an anisotropic charged one. The deportment of
some scalar invariants such as Ricci and Kretschmann scalar
are analyzed. As was pointed out earlier, the existence of
new fundamental fields, which yields to hairy black hole
solutions, in the background of Reissner–Nordström space-
time is precisely the focus under study in this paper. So, the
present manuscript is organized as follows: in Sect. 2 gravi-
tational decoupling field equations and MGD procedure are
presented, Sect. 3 the θ -sector in solved by imposing the most
general equation of state, and the new solution is depicted
analyzing the behavior of the main salient thermodynamic
functions and some scalar invariants. Finally, Sect. 5 sum-
marizes and concludes the reported study. We adopt the most
negative metric signature, (+,−,−,−).

2 Field equations and minimal geometric deformation

2.1 Einstein field equations

In curvature coordinates, a spherically symmetric and static
geometry is described by the following line element

ds2 = eξ(r) dt2 − eλ(r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
, (1)

where the metric functions, namely ξ = ξ(r) and λ = λ(r)
are purely radial functions. With this geometry in hand and
Einstein field equations

Rμν − 1

2
gμνR = −κ T̃μν, (2)

one obtains the following set of equations

κρ̃ = 1

r2 − e−λ

(
1

r2 − λ′

r

)
, (3)

−κ p̃r = 1

r2 − e−λ

(
1

r2 + ξ ′

r

)
, (4)

−κ p̃t = −1

4
e−λ

(
2 ξ ′′ + ξ ′2 − λ′ ξ ′ + 2

ξ ′ − λ′

r

)
. (5)

In the above system of equations the quantities ρ̃, p̃r and
p̃t are the thermodynamic functions that characterize the
energy–momentum tensor T̃μν in Eq. (2). These quantities are
referred as the energy-density, the radial, and the transverse
pressure, respectively. The overall constant is κ ≡ 8πG/c2;
for the sake of simplicity, we shall use κ = 8π in explicit
computations.

Please, note that the linear combination of Eqs. (3)–
(5) invokes the conservation law (Bianchi’s identity) of the
energy–momentum tensor, given by

∇ν T̃μν = 0. (6)

We should remark that throughout this article we will separate
the energy–momentum tensor as follows

T̃μν ≡ Mμν + αθμν, (7)

where the first term Mμν encodes a known source, which, is
a solution of the Einstein field equations with metric given
by (1) and could be in principle anything ı.e, isotropic (with
or without electric charge), anisotropic, electrically charged
only. In our case the known solution is taken to be the
Reissner–Nordström space-time, hence Mμν corresponds to
the electromagnetic stress-energy tensor, given as follow [80]

Mμν = 1

4π

(
Fβ

μFνβ + 1

4
gμν FσαF

σα

)
. (8)

The Reissner–Nöstrom metric potentials characterizing this
manifold are well known

eξ = e−λ = 1 − 2
M

r
+ Q2

r2 , (9)

being M the mass of the object and Q the total electric charge.
Consequently, Eq. (8) becomes

Mμν = diag

(
E2

8π
,− E2

8π
,
E2

8π
,
E2

8π

)
. (10)

As should be noted the pure electromagnetic energy–
momentum tensor (10) is anisotropic in nature because pr �=
pt . Of course pr = −pt = E2/8π . Furthermore, the elec-
tric field E established a privileged direction which breaks
down the isotropy. Also, the second term θμν parametrizes
any additional unknown source which is coupled to gravity
via the dimensionless α parameter. So, the conservation Eq.
(6) produces

∇ν T̃μν = ∇νMμν + α∇νθμν = 0. (11)

We should remark that Fμν is the well known skew-
symmetric Faraday–Maxwell electromagnetic tensor defined
as Fμν = ∂μAν − ∂ν Aμ with Aμ = (A0, 0, 0, 0) the four-
vector potential (as we shall consider a static configuration
then Ai = 0). Moreover, the electromagnetic tensor Fμν sat-
isfies the covariant Maxwell’s equations

∂μ

[√−gFνμ
] = 4π

√−gJ ν, (12)

∂αFβσ + ∂βFσα + ∂σ Fαβ = 0, (13)

where J ν is the electromagnetic four-current vector defined
as

J ν = σuν, (14)
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representing σ = eξ/2 J 0(r) the charge density. Concretely
(11) leads to

qq ′

4πr4 + α

[
(θ1

1)′ + ξ ′

2
(θ1

1 − θ0
0) + 2

r

(
θ1

1 − θ2
2
)]

= 0,

(15)

with q(r) ≡ E(r)r2. At this point, we remark that in the
present case the only non-vanishing component of the elec-
tromagnetic tensor is the electric field E(r) = F01 = −F10.
So, by simple inspection of the field Eqs. (3)–(5), we can
identify an effective density and two effective pressures, the
first one p̃r is the radial pressure, whereas the second p̃t is
the tangential pressure:

ρ̃ = E2

8π
+ α θ 0

0 , (16)

p̃r = − E2

8π
− α θ 1

1 , (17)

p̃t = E2

8π
− α θ 2

2 . (18)

This clearly illustrates that the source θμν modifies the
anisotropy

Δ ≡ p̃t − p̃r = E2

4π
− α(θ2

2 − θ1
1 ). (19)

As can be seen, the system of Eqs. (3)–(5) contains five
unknown functions, namely, three physical variables, the
density ρ̃(r), the radial pressure p̃r (r) and the tangential pres-
sure p̃t (r), and two geometric functions: the temporal metric
function ξ(r) and the radial metric function μ(r). Therefore
these equations form an indefinite system. In the following
subsection we will face it by employing gravitational decou-
pling via MGD grasp as was mentioned above.

2.2 Gravitational decoupling by MGD

At the end of the previous section we agreed on separate
the components of the energy–momentum tensor in a well-
known matter sector and an extra unknown source θμν , which
may contain scalar, vector or tensor fields. The next step, con-
sist in to introduce a geometrical deformation which allows
to decouple the equations associated to the complex source
T̃μν in a set of Einstein’s equations sourced by a well known
matter sector with metric functions {ξ, μ} and another fulfill-
ing “pseudo” Einstein’s equation sourced by θμν with metric
functions {g, f }. The main goal is to use the known sector
as a seed to solve the system {g, f, θμν}. Finally, the strategy
is to combine the results to obtain a solution for Eq. (2). Of
course, give the non-linearity of the Einstein equations, the
above protocol looks like a naive strategy. However, in the
framework of MGD, the separation can be done in static and

spherically symmetric space-times. If we consider the metric

ds2 = eξdt2 − 1

μ
dr2 − r2(dθ2 + sin2 θdφ2), (20)

as a solution of the Einstein field equations sourced by a well
known matter content, the most general geometric deforma-
tion that can be proposed reads

ξ → ξ + αg, (21)

μ → e−λ = μ + α f. (22)

In this work, we are interested in the particular case g = 0,
such that all the sectors have the same gtt component. Now
let us plug the decomposition in Eq. (21) in the Einstein
Eqs. (3)–(5). When we are dealing with generic sources
described by a covariantly conserved stress tensor θμν , mean-
ing that it gravitates but does not interact with the charged
black hole solution, the system can be separated in two
sets: (i) having the standard Einstein field equations for
an anisotropic fluid (α = 0) of density ρ, radial pres-
sure pr , tangential pressure pt , temporal metric component
gtt = eξ and radial metric component grr = −μ−1 given
by

− κρ = − 1

r2 + μ

r2 + μ′

r
, (23)

−κ (−pr ) = − 1

r2 + μ

(
1

r2 + ξ ′

r

)
, (24)

−κ (−pt ) = μ

4

(
2ξ ′′ + ξ ′2 + 2ξ ′

r

)
+ μ′

4

(
ξ ′ + 2

r

)
, (25)

with the conservation equation yielding

qq ′

4π
= 0, (26)

which is a linear combination of Eqs. (23)–(25); and (ii) for
the source θμν , which reads

− κ θ 0
0 = f

r2 + f ′

r
, (27)

−κ θ 1
1 = f

(
1

r2 + ξ ′

r

)
, (28)

−κ θ 2
2 = f

4

(
2ξ ′′ + ξ ′2 + 2

ξ ′

r

)
+ f ′

4

(
ξ ′ + 2

r

)
. (29)

It is essential to point out that, although the above system
of differential equations looks quite similar to the usual set
of Einstein fields equations, we can not identify the spher-
ically symmetric Einstein field equations with radial met-
ric component f (r) given that the prefactor 1/r2 is absent
in the right-hand sides in Eqs. (27) and (28). In this sense,
the above system is claimed to be to a quasi-Einstein sys-
tem as was previously introduced by Ovalle and collabora-
tors [38]. The conservation equation ∇ν θμν = 0 explicitly
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reads
(
θ 1

1

)′ − 1

2
ξ ′ (θ 0

0 − θ 1
1

)
− 2

r

(
θ 2

2 − θ 1
1

)
= 0, (30)

which is a linear combination of Eqs. (27)–(29). Under
these conditions, there is no exchange of energy–momentum
between the perfect fluid and the source θμν ; their interaction
is purely gravitational.

3 New exact solution in Reissner–Nordström
background

3.1 General constraint

In order to obtain an analytical solution, we need to determine
the deformation function f (r). To do that, we will assume
a particular condition between the components of the addi-
tional anisotropy θ

μ
ν . Following [63], we will impose the

constraint

θ0
0 = aθ1

1 + bθ2
2 , (31)

with two arbitrary constant parameters a, b. The above con-
dition could also be considered as an equation of state for the
corresponding anisotropic sector. At this level, it is essen-
tial to point out that, although the physics that supports the
inclusion of the anisotropic sector could have different ori-
gins (the Lovelock’s theory of gravity, for instance), one of
the most natural justifications for the θ -sector in the present
context is the well-known dark matter. To be more precise,
as was previously remarked in [81], the MGD approach
produces naturally a gravitational interaction between the
original solution of GR (in our case the RN solution)
and the new θ -sector. As mentioned before, the θ -sector
predicted by the theory gravitates with no interchange of
energy momentum. This scenario has a strong similarity
with dark matter in the surroundings of black holes; between
them the interaction is supposed to be only of gravitational
nature.

Using the previous parametrization (31), we will use the
equations satisfied by the deformation function, we obtain
an ordinary differential equation of first order for f (r) of the
form
d f

dr
= −β

α̃
f, (32)

where the functions α̃ ≡ α̃(r), β ≡ β(r) are found to
be

α̃ = 1

4
bξ ′ + b

2r
− 1

r
, (33)

β = a

r2

(
1 + rξ ′) + 1

2
bξ ′′ + 1

4
b(ξ ′)2 + b

2r
ξ ′ − 1

r2 , (34)

The equation above can be integrated directly and we
obtain for the deformation function the expression

f (r) =
[

1 − 2M

r
+ Q2

r2

] [
1 − BM

r
+ CQ2

r2

]A

×
[

1 − ( 1
2 + 1

2 R̄
) BM

r

1 + (− 1
2 + 1

2 R̄
) BM

r

]E ( r

L

)F
,

(35)

where we have defined the following parameters:

A = a(b − 4) − b2 + b + 4

2(b − 2)
, (36)

B = b − 4

b − 2
, (37)

C = − 2

b − 2
, (38)

R̄ =
√

1 − 4
C

B2

(
Q

M

)2

, (39)

E = b(−a + b − 1)

2(b − 2)R̄
, (40)

F = −2(a − 1)

b − 2
. (41)

Please, notice that we have a first order differential equation
for f , which means that we only have an integration constant
L . It is remarkable that, after demands Q → 0, we recover
the general expression previously obtained in [63] for the
Schwarzschild vacuum solution, namely

f (r) =
(

1 − 2M

r

)(
L

r − BM

) 2(a−1)
b−2

. (42)

From Eq. (21), it is straightforward to show that the grr com-
ponent of the total solution can be written as

e−λ =
[

1 − 2M

r
+ Q2

r2

]
G(r), (43)

where

G(r) = 1 + α

[
1 − BM

r
+ CQ2

r2

]A

×
[

1 − ( 1
2 + 1

2 R̄
) BM

r

1 + (− 1
2 + 1

2 R̄
) BM

r

]E ( r

L

)F
.

(44)

Please, be careful with the adequate selection of the parame-
ters {a, b}. Although we can naively take arbitrary values
of them, it could be better to analyze the critical points
to be aware of them. It is noticeable that the horizons of
the extended solution coincide with those of the Reissner–
Nordström background. However, in order to avoid the
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apparition of extra singularities, an analysis on the criti-
cal points of the auxiliary function, G is mandatory. To be
more precise, we need to explore the conditions to ensure
that G is positive and finite everywhere. For example, note
that in the case E > 0 a critical point appears when
1 + (− 1

2 + 1
2 R̄) BMr = 0, which leads to

rc = −1

2
BM(R̄ − 1). (45)

In order to avoid such a critical point, we could impose rc <

0, or, more precisely

− (b − 4)M

2(b − 2)

⎛
⎝

√
1 − 4(b − 2)2CQ2

(b − 4)2M2 − 1

⎞
⎠ < 0, (46)

which can be satisfied in the following cases

b < 2 and C < 0, (47)

2 < b < 4 and 0 < C ≤ (b − 4)2M2

4(b − 2)2Q2 , (48)

b > 4 and C < 0. (49)

Furthermore, the above requirements must be complemented
with the extra condition A > 0, to avoid singularities in the

cases that the term 1 − BM
r + CQ2

r2 has real roots. In this
respect, A > 0 leads to the following constraints

b < 2 and a >
b2 − b − 4

b − 4
, (50)

2 < b < 4 and a <
b2 − b − 4

b − 4
, (51)

b > 4 and a >
b2 − b − 4

b − 4
. (52)

It is worth mentioning that with above constraints, the con-
dition G > 0 is automatically satisfied.

In the following subsections we will consider a few con-
crete examples, although we still can get insights about the
underlying physics at this level. First, the geometric defor-
mation (21) is proportional to the usual RN solution which is
common feature of this formalism. Second, the present solu-
tion is based on the classical anisotripic case, i.e. the den-
sity and pressure (radial and tangential) are different from
zero. The corresponding effective parameters are attributes
to the anisotropic effect induced again by the method (Fig.
1). Finally, we observe an unexpected feature: the solution is
absent of new singularities just for certain concrete values of
the free parameters {a, b}.

In what follows, we will take a few concrete cases to exem-
plify the details of this method.

Fig. 1 Spherical symmetric space-time covered with two contribu-
tions: (i) the Reissner–Nordström background and (ii) the source θν

μ.
Of course, the case θμν → 0 yields the anisotropic black hole solution

3.2 Particular constraint # 1

First, let us assume that θ0
0 = θ2

2 , which corresponds to a = 0
and b = 1. In this case the deformation function takes the
form

f (r) =
(
L

r

)2 [
1 − 3M

r
+ 2Q2

r2

]−2

eξ(r), (53)

and therefore the metric function is computed to be

e−λ =
[

1 + α

(
L

r

)2 [
1 − 3M

r
+ 2Q2

r2

]−2
]
eξ(r). (54)

The components of θμν can be easily computed to obtain

κθ0
0 =

(
L

r2

)2
(
Q2

r2

(
5M
r − 3

)
+ (

1 − M
r

) − 2Q4

r4

)

(
− 3M

r + 2Q2

r2 + 1
)3 , (55)

κθ1
1 =

(
L

r2

)2
(
Q
r − 1

) (
Q
r + 1

)

(
− 3M

r + 2Q2

r2 + 1
)2 . (56)

Moreover, it is easy to verify that the above solution satisfies
the condition of energy conservation (30), as it should be. The
fluid parameters can be computed using the Eqs. (16), (17)
and (18) or simply by replace the deformed potential into the
Einstein field equations. Thus, the corresponding effective
quantities are given by (taking κ = 1)

ρ̃ = Q2

r4 + αθ0
0 , (57)

p̃r = −Q2

r4 − αθ1
1 , (58)
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p̃t = Q2

r4 − αθ0
0 . (59)

At this level, we can verify by simple inspection that an addi-
tional anisotropic term naturally emerges. In particular, in
light of the MGD approach, the anisotropy can always be
written as

Δ ≡ Δ0 + αΔ1, (60)

where Δ0 encode the usual RN anisotropy, and Δ1 is directly
linked to the MGD method. So, for this particular example,
we have

Δ = 2Q2

r4 − 2α

(
L

r2

)2
(

1 − 2Q2

r2

)

(
− 3M

r + 2Q2

r2 + 1
)3 eξ(r). (61)

It is crucial to point out that when α → 0 the RN anisotropy
is recovered. Finally, to check for potential singularities, we
compute the Ricci scalar as well as the Kretschmann scalar,
which are found to be

R = R0 − 2α

(
L

r2

)2
(
Q2

r2

( 6M
r − 5

) − 2Q4

r4 + 1
)

(
− 3M

r + 2Q2

r2 + 1
)3 , (62)

K ≈ K0 + 8α

(
L

r3

)2

⎡
⎢⎣

17Q4

r4

(
1 − 4M

r

) + 18Q6

r6(
− 3M

r + 2Q2

r2 + 1
)3

+
Q2

r2

(
84M2

r2 − 38M
r + 3

)
− 4M

r

(
1 − 3M

r

)2

(
− 3M

r + 2Q2

r2 + 1
)3

⎤
⎥⎦ , (63)

where the classical value of the Ricci scalar is precisely R0 =
0 and K0 is then

K0 ≡ 8

r4

(
6M2

r2 − 12MQ2

r3 + 7Q4

r4

)
. (64)

At this level, some comments are in order. Firstly, as the Ricci
scalar is zero in the classical case, only a relevant contribu-
tion appears when we turn α on. Thus, the MGD approach
introduces a non-trivial deviation absent in the classical coun-
terpart. Second, the Kretschmann scalar is present in the clas-
sical solution and becomes more complicated when α �= 0.
Although an exact expression is available, we only focus on
the first terms in α to verify the impact of the deformation.
Additionally, we quickly check that when α = 0 and Q → 0
we recover the well-known solutions for the Schwarzschild
black hole case. Finally, it is worth noticing that two critical

points arise when considering a = 0 and b = 1, namely,

rce = 3

2
M +

√
M2 − 8

9
Q2, (65)

rci = 3

2
M −

√
M2 − 8

9
Q2. (66)

As can be checked from Eqs. (62) and (63), the Ricci and
Kretschmann scalars blow up at these points which means
that these two points correspond to singularities located at
r > 0. Furthermore, it can be shown that rce results to
be greater than the event horizon located at r+ = M +√
M2 − Q2, which means that, rce is a naked singularity.

In this sense, the solution obtained here for a = 0 and b = 1
must be considered as an exterior solution of a compact star
with radius R > rc

3.3 Particular constraint # 2

Now we will assume the traceless condition for the corre-
sponding anisotropies. The above is a reasonable considera-
tion because of the electromagnetic theory in 3 + 1 dimen-
sions satisfy the same condition for Fμν . In term of the
general solution, we reproduce the traceless condition when
a = −1 and b = −2. Thus, in term of the θ -components we
have:

2θ2
2 = −θ0

0 − θ1
1 , (67)

where the corresponding solution is

f (r) = −
(
L

r

) [
M0−3M+4r
M0+3M−4r

] 3M
2M0

[
−4 + 6M

r − 2Q2

r2

] 1
2

eξ(r), (68)

where we have defined the auxiliary parameter as

M0 ≡
√

9M2 − 8Q2. (69)

Please, notice that M0 is a defined positive quantity which
means that 9M2 � 8Q2. Again, our solution is reduced to
the uncharged case demanding Q → 0 which produce:

lim
Q→0

f (r) ≡ r − 2M

2r − 3M

(
L

r

)
. (70)

In this case, the conformally deformed Schwarzschild exte-
rior is now

e−λ =

⎡
⎢⎢⎣1 − α

(
L

r

) [
M0−3M+4r
M0+3M−4r

] 3M
2M0

[
−4 + 6M

r − 2Q2

r2

] 1
2

⎤
⎥⎥⎦ eξ(r). (71)
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Now, the deformation function allows us to obtain the effec-
tive density and pressures. Such inclusion is, however, not
necessary due to the complexity of the expressions involved.
In order to check if a new singularity appears, we will show
the Ricci as well as the Kretschmann scalars. Surprisingly,
the Ricci scalar is identically zero. Thus, the inclusion of an
additional anisotropy does not introduce new singularities at
this level. On the other hand, as was reviewed in the analysis
of Sect. 3.2, the Kretschmann scalar is different to zero in the
RN solution, and the expression becomes more complicated
in the presence of additional anisotropies. In light of this, we
will only focus on the first-order term in α (although an exact
expression is available). So, the scalars are given by:

R = R0 + αR1, (72)

K ≈ K0 + αK1, (73)

where, as we previously said, R0 and R1 are zero, K0 is given
by Eq. 64 and K1 is found to be

K1 = 16α f (r)e−ξ(r)

r4
[
2 − 3M

r + Q2

r2

]
[(

17 − 33M

r

)
Q4

r4

+
(

21M2

r2 − 16M

r
+ 1

)
2Q2

r2 + 7Q6

r6

−
(

6M2

r2 − 6M

r
+ 1

)
3M

r

]
.

(74)

From the above expression, it is clear that the Kretschmann
scalar has two extra critical points located at

rce = 3M

4
+

√
9M2

16
− Q2

2
, (75)

rci = 3M

4
−

√
9M2

16
− Q2

2
. (76)

It is worth noticing that, in contrast to the discussed in the pre-
vious section, in this case, the external critical point lies inside
the event horizon, namely rce < r+. However, rce is greater
than the Cauchy horizon of the Reissner–Nordström located
at r− = M − √

M2 − Q2 and, as a consequence, the solu-
tion could be interpreted as a black hole with a singularity at
r > 0 and an event horizon given by r+ = M −√

M2 + Q2.
Alternatively, as in the previous section, the solution could
be interpreted as an exterior solution of a star with a radius
R > r+.

3.4 Particular constraint # 3

Finally, we will show a new solution without extra singular-
ities. As we previously commented, the crucial point relies
on the correct choice of the free parameters {a, b}. Following

the constraint (50), we will take a = 2 and b = 0, i.e.

θ0
0 = 2θ1

1 , (77)

and solving it, we obtain the corresponding deformation
function, which is

f (r) =
(
r

L

) [
1 − 2M

r
+ Q2

r2

]2

, (78)

and the deformed metric potential is then given by

e−λ =
[

1 + α

(
r

L

)[
1 − 2M

r
+ Q2

r2

]]
eξ(r). (79)

As this concrete example is free of singularities, we will com-
pute the complete set of functions, i.e., the thermodynamics
functions (density and pressures) as well as the correspond-
ing anisotropies. The components of the anisotropic tensor
are

κθ0
0 = 2

Lr

(
Q

r
− 1

) (
Q

r
+ 1

)
eξ(r), (80)

κθ1
1 = 1

Lr

(
Q

r
− 1

) (
Q

r
+ 1

)
eξ(r), (81)

κθ2
2 = 1

2Lr

(
−3MQ2

r3 − M

r
+ 2Q4

r4 + Q2

r2 + 1

)
, (82)

whereas the fluid parameters are (taking κ = 1)

ρ̃ = Q2

r4 + αθ0
0 , (83)

p̃r = −Q2

r4 − 1

2
αθ0

0 , (84)

p̃t = Q2

r4 − αθ2
2 , (85)

and as always, the anisotropic term is

Δ = 2Q2

r4 + α

2Lr

[
Q2

r2

(
1 − 7M

r

)
+ 3M

r
+ 4Q4

r4 − 1

]
,

(86)

In Fig. 2 the behaviour of the density, ρ̃, the radial pressure,
p̃r , and tangential pressure, p̃t , is shown for different values
of the MGD parameter, α. As can be notice, we only consid-
ered negatives values of α in order avoid the appearance of
exotic matter content. Indeed, it can be shown that for α > 0,
the density reach negatives values. It is worth noticing that the
extra anisotropy induced by the θμν sector, slightly modifies
the profiles of the original RN matter sector (α = 0). We also
noticed that when r ∼ rH the deformation introduced by the
MGD formalism is practically indistinguishable. Conversely,
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Fig. 2 The figures show the evolution of the parameters {ρ̃, p̃r , p̃t }
versus the radial coordinate for the third model. We have added the RN
case for comparison. To show the impact of the parameter α, we eval-
uate the functions for three different values of the anisotropic coupling
α plus the RN solution i.e.: (i) α = 0 for the RN solution (solid black

line), (ii) α = −0.025 (dashed blue line), (iii) α = −0.050 (dotted red
line) and finally (iv) α = −0.075 (dot-dashed orange line). The first,
second and third column correspond to Q = 1, Q = 0.75 and Q = 0.5
respectively. The rest of the parameters are taken to be one

when r >> rH the effects of the additional anisotropies are
dominant.

4 Energy conditions

This final section is devoted to investigate the corresponding
energy conditions for the third model. The energy conditions
are usually defined as follow:

NEC: ρ̃ > 0, (87)

SEC: ρ̃ + p̃r + 2 p̃t ≥ 0, (88)

WEC: ρ̃ + p̃r ≥ 0, and ρ̃ + p̃t ≥ 0, (89)

DEC: ρ̃ − p̃r ≥ 0, and ρ̃ − p̃t ≥ 0. (90)

In Fig. 3 we show the energy conditions of the solution
including the RN case which corresponds to α = 0. It
is remarkable that, as occurs in the RN solution , all the
energy conditions are satisfied for all the values of the MGD-
parameter, α, here considered. However, we have to men-

tion that the extra anisotropy induce a clear deviation respect
to the unperturbed case. To be more precise, the conditions
ρ̃ + p̃r ≥ 0 and ρ̃ − p̃t ≥ 0 are saturated by in the RN BH
but is strictly positive in the MGD–deformed solution.

5 Conclusions

To summarize, in the present work we have obtained
new exact analytical solutions using the Minimal Geomet-
ric Deformation approach on a Reissner–Nordström back-
ground. Three concrete examples are presented in detail,
where the Ricci and Kretschmann scalars are computed too,
and the impact of the coupling constant on the solution is
investigated. We find that the horizons of the extended solu-
tions coincide with those of the Reissner–Nordström geom-
etry and the apparition of new horizons or singularities can
be avoided by demanding particular constraints on the free
parameters appearing in the solutions. However, it is worth
mentioning that the particular equations of states considered
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Fig. 3 The figures show the evolution of energy conditions versus the
radial coordinate for the third model. We have added the RN case for
comparison. To show the impact of the parameter α, we evaluate the
functions for three different values of the anisotropic coupling α plus

the RN solution i.e.: (i) α = 0 for the RN solution (solid black line),
(ii) α = −0.025 (dashed blue line), (iii) α = −0.050 (dotted red line)
and finally iv) α = −0.075 (dot-dashed orange line). The rest of the
parameters are taken to be one

in Sect. 3 could present some extra critical points. Neverthe-
less, depending on the choice of the parameters involved, this
new critical radius may lie inside the Reissner–Nordström
horizons, otherwise, the solution could present naked singu-
larities. Notwithstanding, even in this case, we can still use
the cases as valid solutions but considering it as an exterior
geometry surrounding a self-gravitating object with a radius
greater than any of the critical points.
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