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Abstract A Weyl structure is usually defined by an equiv-
alence class of pairs (g,ω) related by Weyl transformations,
which preserve the relation ∇g = ω ⊗ g, where g and ω

denote the metric tensor and a 1-form field. An equivalent
way of defining such a structure is as an equivalence class
of conformally related metrics with a unique affine connec-
tion �(ω), which is invariant under Weyl transformations. In
a standard Weyl structure, this unique connection is assumed
to be torsion-free and have vectorial non-metricity. This sec-
ond view allows us to present two different generalizations
of standard Weyl structures. The first one relies on confor-
mal symmetry while allowing for a general non-metricity
tensor, and the other comes from extending the symmetry to
arbitrary (disformal) transformations of the metric.

1 Introduction

General relativity and a major part of alternative theories of
gravity are constructed on the assumption that spacetime is a
differential manifold endowed with a metric and a Rieman-
nian connection, i.e., a metric-compatible connection. This
construction is fundamentally important in order to define
scalars and a dynamics (from the notion of a derivative) that
is manifestly covariant under general coordinate transforma-
tions, which encompasses the main symmetry presented in
gravitational theories in the past 100 years.

However, as already noticed by Weyl in [1], Riemannian
geometry is characterized by the invariance of lengths under
parallel displacement. Although the direction of vectors may
get modified under parallel displacement due to a non-trivial
curvature tensor, vector lengths are still preserved. Then, he
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demonstrated that indeed this was an assumption that, in prin-
ciple, could be avoided when constructing a true infinitesimal
geometry. Another key point for Weyl was that scalar prod-
ucts should be determined up to an arbitrary positive propor-
tionality factor, i.e., the physics should be invariant up to a
conformal transformation of the metric and only ratios would
have physical meaning (angles are also naturally invariant).
Also, if one uses only light signals to define coordinates of the
spacetime manifold, such invariance would also be present
since the line element is conformally invariant (as also noted
by ’t Hooft in [2]).

Weyl presents two axioms for this geometry, the first one
states that parallel displacement of vectors defines what he
calls a similarity map, i.e., a linear map that induces a confor-
mal transformation in the inner product of any two vectors.
This axiom implies that for a given vector that is parallel dis-
placed along any curve, the derivative of the vector’s norm
is proportional to the norm itself, and the proportionality
function is given by some 1-form calculated along the curve,
which is equivalent to require vectorial non-metricity of the
form1 Q = ω ⊗g. The second axiom consists in the require-
ment of a torsion-free connection.

It can be seen that a gauge transformation of this 1-form
field can always compensate any conformal transformation
of the metric. However, as it follows from the above consid-
erations, the particular form of the non-metricity condition
given by the first axiom is conceptually independent of the
invariance of the physics under conformal transformations
of the metric. This axiom for the non-metricity condition is
just a matter of convenience, in which the rule that governs
the norm of parallel displacement coincides with a conformal
map of the norm.

The reason for the conformal transformation of the met-
ric has a strong motivation in Mach’s principle. In fact,
other authors refer to such physical invariance as a guidance

1 The usual definition of the non-metricity tensor is Q = ∇g.
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towards deeper formulations of gravity, even in a Riemannian
setting (see for instance [2–6]).

In this paper, we demonstrate that indeed it is possible to
construct a geometry that is intrinsically invariant under a
conformal transformation of the metric, with a gauge invari-
ant connection for an arbitrary non-metricity, which naturally
generalizes Weyl’s construction. We also study the geomet-
rical properties of a more general class of transformations,
called disformal transformations, of which conformal trans-
formations are just a subclass. This kind of transformation
has been extensively studied in several gravitational theo-
ries, for instance, in the original Bekenstein’s approach [7,8]
and TeVeS formalism [9] (which recovers MOND [10] in the
nonrelativistic limit), scalar [11] and scalar-tensor theories of
gravity [12–15] (like Horndeski’s [16–18] and Mimetic [19–
23] approaches), bimetric theories [24], analogue models
[25,26], k-essence [27], cosmology [28–31], metric-affine
gravity [32–34] and quantum gravity phenomenology [35].

The paper is organized as follows: in Sect. 2 we review the
basic concepts of Weyl geometry. In Sect. 3 we give a gen-
eralization of a Weyl structure for general non-metricity ten-
sors while maintaining conformal symmetry. We also present
another possible generalization by extending conformal sym-
metry to the disformal case, which requires a completely
general non-metricity tensor on its own. In Sect. 4 we revisit
the fundamental physical meanings of these transformations
and demonstrate how the use of non-Riemannian geometries
allows one to extend the usual diffeomorphism invariance to
diffeomorphism + conformal/disformal symmetry providing
explicit examples. We conclude in Sect. 5.

2 Revisiting Weyl geometry

In his seminal paper [1], Weyl proposed two axioms for the
geometrical setting that now goes under his name. They can
be stated in a modern language by the following conditions:

Definition 1 Let M be a differentiable manifold endowed
with an affine connection �, a metric tensor g, and a one-form
field ω, called a Weyl field. It is said that � is compatible (ω-
compatible) with g if for any vector fields u, v, w ∈ T (M),
we have

∇v [g(u, w)] = g(∇vu, w) + g(u,∇vw) + ω(v)g(u, w).

(1)

Besides that, for any u, v ∈ T (M) the following condition
holds:

∇vu − ∇uv = [v, u]. (2)

We write �ω for an ω-compatible connection.

The first condition given by Eq. (1) is the ω-compatibility
condition and determines the non-metricity tensor to be of the

form Q = ω ⊗ g. The second condition, given by (2) states
that the connection should be torsionless or symmetric.

Weyl then realized that if one simultaneously performs a
conformal transformation of the metric and a gauge transfor-
mation of the 1-form field of the form

g̃ = eφg and ω̃ = ω + dφ, (3)

the compatibility condition remains invariant for any scalar
function φ. Such a pair of transformations of the metric and
the 1-form field will be called Weyl transformation Wφ . To
verify the invariance of the compatibility condition under
Wφ , let us use the expression of the covariant derivative of
the metric that can be deduced from the previous postulate:
∇g = ω ⊗ g. This way, it becomes straightforward to check
that Wφ

[∇g ⊗ ω
] = ∇g̃⊗ ω̃. Thus, the equivalence class of

pairs (g,ω) related by a Weyl transformation define a Weyl
structure on M .

However, the invariance of the compatibility condition
suggests that the affine connection remains invariant under a
Weyl transformation. In order to verify this, let us point out
that in any manifold with a metric g and an affine connection
�, we can always make a decomposition of the connection
symbols in a coordinate basis {∂μ} as

�α
μν = {

α
μν

}
(g) − 1

2

(
Qμ

α
ν + Qν

α
μ − Qα

μν

) + K α
μν,

(4)

where
{
α
μν

}
(g) are the Christoffel symbols of g (which define

the usual Levi–Civita connection of g), K α
μν is the contor-

tion tensor, which vanishes in the absence of torsion [37],
and Qαμν = ∇αgμν are the components of the non-metricity
tensor. Within this generic decomposition, since the compat-
ibility condition (1) implies a non-metricity tensor given by
Q = ω⊗g, the connection symbols of the unique affine con-
nection defined by a Weyl structure in a coordinate basis read

�(ω)
α

μν = {
α
μν

}
(g) − 1

2

(
ωμδα

ν + ωνδ
α

μ − ωαgμν

)
. (5)

This decomposition points to the fact that the 1-form, rather
than being a fundamental object in a Weyl space, is a piece of
its affine connection �ω. Since the metric and the affine con-
nection are two equally fundamental and independent geo-
metrical entities, transformations of the metric (for instance,
a conformal transformation) should leave the connection
unchanged. Therefore, in view of (5) , requiring the invari-
ance of �(ω)

α
μν under a conformal transformation g �→ eφg

implies the following condition

δ�(ω)
α

μν = (
∂μφ δα

ν + ∂νφ δα
μ − ∂αφ gμν

)

− (
δωμ δα

ν + δων δα
μ − δωα gμν

) = 0,

where δωμ is the change induced in ωμ by the conformal
transformation. This has a unique solution given by δω = dφ,
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which leads to the familiar gauge transformation of ω written
in (3).

We have just seen that the independence between met-
ric and connection is what ultimately allows us to recover
the usual prescription for the change of ω under a confor-
mal rescaling of the metric. In this light, a Weyl structure
is an equivalence class of conformally related metrics in
an affinely-connected manifold with the condition of having
the non-metricity given by the one-form ω. Its fundamental
objects are, therefore, the conformal class of metrics [g] and
the unique affine connection �ω defined by the one-form of
the non-metricity condition. We can sum these conclusions
up by giving a fundamental role to the conformal symmetry
and the affine connection in the definition of a Weyl structure:

Definition 2 A Weyl structure is a differentiable manifold
M endowed with a unique torsion-free affine connection �ω

and a conformally related equivalence class of metric tensors
[g], such that the non-metricity tensor is given byQ = ω⊗g,
where ω is any 1-form field and g is a representative of the
class.

Notice that this definition gives more emphasis to the confor-
mal symmetry satisfied by the Weyl structure and the invari-
ant elements within.

Historically, the Weyl structure was related to the first
attempt to define a unified field theory, in which gravity and
electromagnetism (the forces known at the time) would be
described by a single geometrical entity. In this case, the elec-
tromagnetic potential was intended to be the Weyl field due
to its gauge symmetry, which is probably the reason why the
1-form field has been seen as a fundamental piece of Weyl
structures, to the detriment of the invariant affine connec-
tion. In this unified picture of Weyl, electro-gravitational field
equations would be derived from a

√−gR2 action, where R
is the curvature scalar of �ω. This action is indeed invariant
under the set of transformations (3) and represents one of the
first proposals for a metric-affine f (R) model.

Such unified formulation of gravity and electromagnetism
was promptly criticized by Einstein in a postscript attached
to the debut paper ([1]), which received a subsequent reply
by Weyl (which can also be found in [1]), in which it is
made clear that the behaviour of clocks and rods as stated
by Einstein would need to be revisited in face of a more
fundamental theory.

A renewed interest in alternative formulations of gravity
in non-Riemannian geometries has emerged in recent years.
These new theories do not pursue the idea of unifying gravity
and other forces (which would require a satisfactory under-
standing of the quantum nature of the gravitational field, see
for instance [36–44]). In the next section we will discuss how
Weyl structures can be generalized for the case of a general
non-metricity tensor.

3 Conformal generalization of a Weyl structure

In the perspective outlined above, a Weyl structure has two
main ingredients: conformal symmetry and vectorial non-
metricity. In this sense, Weyl symmetry is nothing but confor-
mal symmetry in an affinely connected space-time with vec-
torial non-metricity. Therefore, there are two ways of gener-
alizing this structure: (1) dropping the vectorial non-metricity
postulate or (2) changing the symmetry on which the struc-
ture is based. In this section we will generalize the standard
Weyl structure by relaxing the vectorial non-metricity con-
straint while maintaining conformal symmetry. To that end,
let us generalize the argument in (2) without the vectorial
non-metricity restriction.

Consider a manifold with a conformally related equiva-
lence class of metrics [g] and a unique affine connection �,
which can always be decomposed as in (4), where g is a
representative of the class. For simplicity, let us impose the
torsion-free condition so that K α

μν = 0 in the decomposi-
tion. Now from invariance of the affine connection under a
conformal transformation g �→ eφg, it follows that

δ�α
μν = (

∂μφ δα
ν + ∂νφ δα

μ − ∂αφ gμν

)

− (
δQμ

α
ν + δQν

α
μ − δQα

μν

) = 0,

which has as a unique solution δQμ
α

ν = ∂μφδα
ν . This leads

to a transformed non-metricity tensor that must be

Q̃ = eφ (Q + dφ ⊗ g) . (6)

Notice that the trace corresponding to the Weyl non-metricity
transforms as Q̃μα

α = Qμα
α +N∂μφ, where N is the space-

time dimension, recovering the standard gauge transforma-
tion for Qμα

α = Nωμ. The fact that a conformal transfor-
mation of the metric can be absorbed in one of the traces of
the non-metricity tensor as a gauge transformation justifies
Weyl’s interpretation of the 1-form ωμ as the photon field.
However, from the above analysis, we can see that the vec-
torial non-metricity condition is an ad-hoc condition that we
have no physical reason to assume. Dropping the postulate
of vectorial non-metricity from Definition 2, we are led to
define the following generalized Weyl structure

Definition 3 A conformally generalized Weyl structure is a
differentiable manifold M endowed with a unique torsion-
free affine connection � and a conformally related equiva-
lence class of metric tensors [g].

Since this generalized Weyl structure is grounded on confor-
mal symmetry, it will be useful to describe space-times with
a non-Riemannian connection that exhibit conformal sym-
metry. The corresponding generalized Weyl transformation
is actually nothing but a conformal transformation (as in the
standard Weyl case). However, if we want to split the connec-
tion and view Weyl transformations in the traditional sense of
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conformal transformations of the metric plus a gauge trans-
formations of some 1-form, we end up with the following
generalized Weyl transformations

g̃ = eφg and Q̃ = eφ (Q + dφ ⊗ g) . (7)

We see that analogously to the gauge transformation of ω, the
generalization to arbitrary non-metricity is standard, imply-
ing only a conformal transformation of the non-metricity ten-
sor plus a gauge transformation of the corresponding trace.

3.1 On the physical equivalence of conformal frames

The issue raised by Weyl about the physical equivalence of
conformal metrics has been explicitly discussed in Brans–
Dicke theory of gravity [3]. This theory is one of the most
fruitful attempts to extend general relativity by introducing a
non-minimal coupling between a scalar field and the curva-
ture. This construction allowes a conformal transformation of
the metric to be compensated by a redefinition of this scalar
field. This mapps a field theory with non-minimal coupling,
but with a variable (effective) gravitational “constant” (the
Jordan frame) to a theory that resembles general relativity
with a scalar field but with the non-minimal coupling trans-
ferred to the matter sector.

Specifically, this property was originally discussed in [4],
where Dicke described how his scalar-tensor theory could
incorporate an invariance under transformation of units,
besides the usual coordinate invariance. In that paper, Dicke
specifically stated that he would only analyze conformal
transformations as a particular case of such “transformation
of units”, but that in principle a more general case could be
considered.

Brans–Dicke theory was originally intended to be a gravi-
tational theory closer to Mach’s principle than general relativ-
ity. In fact the Machian nature of this theory manifests itself
by the existence of this functional dependence of the gravita-
tional “constant” (G), which means that the coupling param-
eter that governs the gravitational interaction would depend
on the mass distribution in the universe. As said above, it turns
out that it was also realized the important role of the confor-
mal symmetry, since this formalism allowed one to expand
the symmetry principle of gravitational theories beyond the
usual coordinate transformation in such a way that it is always
possible to move from a frame in which G is variable to one
in which G is a true constant.

Complementarily, Mach’s principle has been reformu-
lated in order to include the conformal symmetry in recent
years [6]. Therefore, since in Brans–Dicke theory it is always
possible to have G constant in a frame, the Machian charac-
ter of this theory seems to be more transparently manifest by
the conformal symmetry rather than by the variable-G.

On the other hand, it has been discussed in the literature
that Brans–Dicke theory finds a natural language in Weyl

geometry [45–48], since Weyl’s non-metricity has always
been regarded as the one in which conformal symmetry is
naturally incorporated. As we have shown that for arbitrary
non-metricity tensors it is also possible to formulate a confor-
mal invariance principle, the existing link between the Brans–
Dicke theory and Weyl geometry means that it is possible to
generalize Brans–Dicke theory without loosing its Machian
motivation by considering more general non-metricity ten-
sors, which is a nontrivial result that follows from our anal-
ysis.

As an example, consider the action

S =
∫

d4x
√−g

[
α

(
gμνRμν

)2 + βRμνRμν

]
, (8)

in which metric and connection are regarded as independent
fields, Rμν = Rμν(�), and α and β are constants. It is easy to
verify that this theory is conformally invariant. The addition
of matter could be done in a non-invariant way by means of
a matter Lagrangian defined by the usual minimal coupling,
i.e., by promoting the Minkowski metric to a general curved
metric and partial derivatives to covariant ones. This is what
is done in Brans–Dicke gravity, which formally breaks the
conformal invariance, but raises a discussion about the physi-
cal equivalence of the different conformal frames (like Jordan
and Einstein ones) [45]. The point of view that treats these
frames as equivalent argues that although the forms of the
field equations are different, a conformal transformation in
the metric would not modify physical observables, since they
are defined by ratios and angles. Another possibility consists
in following a procedure similar to what is done in [49] in
the context of a Geometrical Brans–Dicke theory, in which
the matter coupling is done with a symmetric (0, 2)-tensor
(an effective metric) that is invariant under Weyl transforma-
tions. In this case, one defines the matter Lagrangian with the
effective metric γμν = e−φgμν (where φ plays the role of the
Brans–Dicke or Weyl field) and the energy-momentum ten-
sor from a variation with respect to γμν . This way, the matter
sector becomes naturally invariant under Weyl transforma-
tions. For the case of a general non-metricity, one could use
a function with a −1 conformal weight

h(e f g, �) = e− f h(g, �), (9)

in order to define an effective metric γμν = h(g, �)gμν .
For example, a function like h(g, �) = R(g, �)/�2,

where R(g, �) is the curvature scalar and � is a constant
that defines an energy-scale, might serve our purposes. A
natural consequence of this coupling is that particles would
follow Riemannian geodesics of the effective metric γμν in
any conformal gauge, thus assuring the invariance princi-
ple discussed throughout this paper. A similar non-minimal
coupling was also proposed in [50] in the context of Weyl
gravity.
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4 Disformal generalization of a Weyl structure

As explained above, besides dropping the vectorial non-
metricity condition, another possible generalization of a
Weyl structure goes by changing the underlying symmetry
principle. The most conservative generalization in this direc-
tion would be to extend the symmetry group while keep-
ing the vectorial non-metricity postulate. Therefore, the first
thing we should do in this regard is to understand whether this
can be done or, rather, if we are forced to drop the vectorial
non-metricity postulate when enhancing the symmetry.

To that end, let us find out what are the most general trans-
formations of the metric that keep the vectorial character of
non-metricity unchanged. From the definition of the non-
metricity tensor and invariance of the affine connection, if we
start with vectorial (or Weyl-like) non-metricity Q = ω ⊗ g,
after a general transformation of the metric like

g̃μν = gαβ�α
μ
β

ν, (10)

where �α
β and 
α

β are invertible, we are led to a trans-
formed non-metricity of the form

Q̃ρμν = ωρ g̃μν + gμβ∇ρ

(
�α

μ
β
ν

)
. (11)

By demanding that the transformed non-metricity be also of
a Weyl-like form, we see that there must exist a 1-form ω̃

satisfying

ω̃ρ g̃μν = ωρ g̃μν + gαβ∇ρ

(
�α

μ
β
ν

)
,

which can be satisfied only if gαβ∇ρ

(
�α

μ
β
ν

) = ξρ g̃μν

and therefore, that there exists a 1-form ξ such that

∇ρ

(
�α

μ
β
ν

) = ξρ�α
μ
β

ν.

Hence we would have

ω̃μ = ωμ + ξμ,

ξμ = 1

N

(
(�−1)αβ∇μ�β

α + (
−1)αβ∇μ
β
α

)
,

where N is the space-time dimension. As a matter of fact,
this expression can be simplified by explicitly writing the
covariant derivative of ξ in terms of its partial derivative and
the connection symbols. The contributions from contravari-
ant and covariant indices are cancelled out and we end up
with

ξμ = 1

N

(
(�−1)αβ ∂μ�β

α + (
−1)αβ ∂μ
β
α

)
. (12)

By computing dξ in terms of � and its partial derivatives
from (12) we find

∂μξν −∂νξμ

= 1

d

[
∂μ(�−1)αβ ∂ν�

β
α−∂ν(�

−1)αβ ∂μ�β
α

+ ∂μ(
−1)αβ ∂ν

β

α−∂ν(

−1)αβ ∂μ
β

α

]
. (13)

By using ∂μ

(
(�−1)αβ�β

ρ

) = 0, we can derive the follow-
ing identity: ∂μ(�−1)ασ = −(�−1)αβ

(
∂μ�β

ρ

)
(�−1)ρσ ,

and the same for the 
 term. Substituting this identity into
(13), we arrive to

∂μξν − ∂νξμ = 0, (14)

i.e, the 1-form ξ is integrable, and by the Poincaré lemma,this
means that there exists a scalar function φ such that ξ = dφ,
and therefore ∇α (�μ

ν

ρ

σ ) = (∇αφ) �μ
ν


ρ
σ . Without

adding extra structure, the only (1,1) tensor which is propor-
tional to itself under covariant differentiation is the identity
tensor δ, and therefore the solution to this equation implies
that �α

β and 
α
β must be given by

�α
β = eAδα

β and 
α
β = eBδα

β , (15)

where A and B are scalar functions satisfying A + B = φ.
This shows that the most general transformation of the metric
that leaves the connection invariant but preserves the vecto-
rial (Weyl-like) character of non-metricity is a conformal
transformation. Therefore, we can only consider a general-
ization of a Weyl structure to disformal symmetry if we also
abandon the vectorial non-metricity condition. The quick
way to understand this is as follows: given the Weyl connec-
tion (5), we cannot ask for the Weyl structure to be invariant
under more general transformations of the metric than con-
formal, since this would necessarily change the Levi-Civita
part of (5) in a way that can not be absorbed entirely in the
ω 1-form, therefore shifting away from the connection (5),
which is by construction contradictory (keep in mind that we
are only doing transformations of the metric). This signals
that the fundamental property of the standard Weyl struc-
tures, rather than the kind of non-metricity, is the symme-
try group, which makes the vectorial non-metricity postulate
seem rather artificial and further motivates us to consider the
conformal generalization to the standard Weyl structure in
Sect. 3.

4.1 Two examples of disformal Weyl structures.

Once understood that disformal generalizations of a Weyl
structure necessarily lead to abandoning the vectorial non-
metricity postulate, let us consider two possible kinds of such
generalizations: one relying on GL (N ,R) as the symmetry
group, and another kind of deformations which are present
in the so-called Ricci-Based Gravity theories (RBGs), a
broad class of metric-affine theories with projective sym-
metry recently considered in the literature [32–34,51–54].
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The first kind consists on enhancing the symmetry group
from the conformal group to GL (N ,R). The action of the
general linear group on the metric is given by [55]

g̃μν = gαβ�α
μ�β

ν, (16)

where � is a rank (1,1) tensor with non-zero determinant (i.e.
an element of the general linear group of the corresponding
tangent space). Notice that, like conformal transformations,
this is a transformation of the metric alone that does not affect
the connection. By decomposing the affine connection and
requiring invariance, we arrive at the corresponding transfor-
mation law that must be satisfied by the non-metricity tensor
after a transformation of the metric like (16), which is

Q̃ρμν = Qραβ�α
μ�β

ν + gαβ∇ρ

(
�α

μ�β
ν

)
. (17)

The second kind of disformal transformations are those
inspired by RBGs [33,34,53], in which the space-time metric
is related to an auxiliary metric associated to the independent
affine connection in the following way:

g̃μν = gμα�α
ν, (18)

where �α
ν is an invertible matrix. In analogy with RBGs,

�αβ must be symmetric when the upper index is lowered
with any of the metrics. Requiring the invariance of the affine
connection under the above transformation (18) leads to

Q̃αμν = Qαμβ�β
ν + gμβ∇α�β

ν. (19)

4.2 Examples of disformal transformations and the frame
equivalence issue

As mentioned above, disformal transformations arise nat-
urally in metric-affine gravity theories of the RBG type,
such as f (R, RμνRμν) or Born–Infeld inspired gravity the-
ories [33,35]. Recently, the non-metricity tensor induced by
such disformal transformation has been observationally con-
strained in [56].

The issue of the disformal invariance of cosmological
observables has been treated in [57] for a disformal trans-
formation of the type

�α
ν = A δα

ν + B ∂αφ∂νφ, (20)

where A = A(x), B = B(x) and φ = φ(x) are scalar func-
tions. In this case, not only the causal structure is preserved
in cosmology but also the observables are invariant.

A similar transformation is considered in [58] in the Pala-
tini formalism, in that case, there are some situations in which
the disformal vector ∂μφ is null-like [59], which implies that
gravitational waves propagate at the speed of light, thus pre-
serving the causal structure.

The issue of the disformal invariance of matter fields has
been analyzed for the scalar [60], electromagnetic [61] and

spinor [62] cases. The scalar case considers a transformation
of the kind (20), the electromagnetic one considers

�α
ν = A δα

ν + B FαβFβν, (21)

where Fαβ = ∂αAβ − ∂β Aα is the Maxwell tensor of the
electromagnetic field Aμ. For spinors, the transformation is
of the form

�α
ν = A δα

ν + B Jα Jν + C I α Iν + D J (α I ν), (22)

where Jμ .= �̄γ μ� is the Dirac current, and Iμ .= �̄γ μγ5�

is the axial current of the spinor field �. As before A, B, C
and D are scalar functions and parenthesis means sym-
metrization of indices.

The issue of the disformal invariance was discussed by
finding conditions on the scalar functions A-D such that
the Klein–Gordon, Maxwell and Dirac equations were kept
invariant under the transformations (20), (21) and (22),
assuming a Riemannian manifold.

However, as a consequence of our discussion, the use of
a non-Riemannian geometry with a connection that presents
a non-metricity tensor allows us to face this issue from a
different perspective by the introduction of new degrees of
freedom that lead to disformal invariance. To exemplify, let
us consider first the case of a massless scalar field that obeys
the Klein–Gordon equation with a non-metric connection

g̃μν∇̃μ∇̃νφ = 0. (23)

From the transformation rules (18) and (20), we can
deduce the disformal inverse metric as g̃μν = �μ

αgαν ,
where �μ

α
.= Cδ

μ
α + D∂μφ∂αφ corresponds to the same

disformal rule (20) of the covariant components of the met-
ric, according to the redefinition C = A−1 and D =
−B/A(A + wB), where w = ∂μφ∂μφ.

We demonstrated that if we make the simultaneous trans-
formation (18) and (19), the connection remains invariant,
consequently we naturally have that ∇̃μ∇̃νφ = ∇μ∇νφ.
Besides that, a straightforward calculation implies that

g̃μν∇̃μ∇̃νφ = A−1gμν∇μ∇νφ − B

A(A + wB)

×
(

1

2
∂μφ∂μw − Qμνα∂μφ∂νφ∂αφ

)
.

(24)

Therefore for a non-metricity tensor like

Qαμν = ∂βφ∂βw

2w3 ∂αφ∂μφ∂νφ, (25)

we can map g̃μν∇̃μ∇̃νφ = 0 �→ gμν∇μ∇νφ = 0. For the
massive Klein–Gordon equation, besides these considera-
tions, a usual scaling of the field’s mass like m2 �→ A−1 m2

preserves the disformal invariance. The invariance of the
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other fields is more subtle and shall require a specific analysis
elsewhere.

Another context in which the disformal symmetry could
be of use is in the formulation of purely affine theories of
gravitation (see e.g. (see e.g. [63–73]). Since it is easier to
construct kinetic terms for matter fields with the help of a
metric, purely affine theories could make use of disformal
symmetry in order to introduce a fiducial metric. Given that
disformal symmetry implies that physical observables are
invariant under arbitrary changes of the metric, this metric
would not play any physical role, but might indeed help with
the construction of the theories.

For instance, consider an action of the kind

S =
∫

d4xL(�α
μν, R

μ
αβγ , Rμν, . . .), (26)

where L is a Lagrangian density which is a function of the
connection, its curvature tensor, its Ricci tensor and possibly
other fields (for instance a Curtright field in [72]). Although
this Lagrangian does not depend on the spacetime metric, it
is possible to define a rank-two tensor density

δ

δR(μν)

S[�] .= √−ggμν, (27)

which coincides with the usual metric density if we have the
Einstein–Hilbert action. Notice that due to the invariance of
the connection, the auxiliary tensor density (27) is preserved
under the transformations that we present in this paper.

5 Summary and conclusion

Weyl geometry has been faced as a natural arena in which
conformal invariance (along with gauge invariance) can be
realized. We have seen that theories constructed with a non-
metric connection and having zero conformal weight are can-
didates of field theories that manifest such invariance. In this
paper, we have revisited Weyl’s original approach showing
how even for general non-metricity tensors, we still have an
underlying conformal symmetry principle.

Since the metric and the connection are two independent
geometrical objects, a transformation of the metric should
not affect the connection unless a rigid rule connecting them
is assumed (like for instance the Riemannian compatibil-
ity condition). Hence, a transformation of the metric alone
always introduces a corresponding transformation of the non-
metricity tensor such that the connection remains invariant.
Particularly, the Weyl group is just a special case in which
the transformation of the metric is a conformal one and the
non-metricity is vectorial.

Furthermore, we have also analyzed the more general
case of disformal transformations, and computed the change
undergone by the non-metricity tensor so that invariance of

the connection is preserved. As a corollary of this result, we
showed that without adding extra structure, the most general
kind of transformations of the metric that preserves the vec-
torial (or Weyl-like) character of non-metricity are conformal
transformations.

Finally we discussed the physical meaning of confor-
mal/disformal invariance as a symmetry property that extends
the usual diffeomorphism invariance of gravitational theo-
ries, and its effect on the disformal transformations of a
scalar field. The analysis of particular theories and physi-
cal imprints of such invariance principle will be the subject
of future work.
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