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Abstract We investigate the Casimir effect of the massless
scalar field in a cavity formed by ideal parallel plates in the
spacetime generated by a rotating axially symmetric distri-
bution of vector or scalar (tensor) unparticles, around which
the plates orbit. The presence of the unparticles is incorpo-
rated to the background by means of a correction to the Kerr
solution of the Einstein equations, in which the characteris-
tic length and the scale dimension associated to the unparti-
cle theory are taken into account. We show that the Casimir
energy density depends also on these parameters. The anal-
ysis of the “ungravity” limit for the Casimir energy density,
in which the characteristic length is very large in compari-
son to the horizon radius, is made, too. At zero temperature,
we show that such a limit implies the instability of the sys-
tem, since the Casimir energy density becomes an imaginary
quantity. The general result is compared to the current terres-
trial experiments of the Casimir effect. Thermal corrections
also are investigated and the ungravity limit again examined,
with the aforementioned instability disappearing at high tem-
peratures.

1 Introduction

The Standard Model (SM) of particles and fields seems to
have reached the limit of its extraordinary predictive capacity.
The 27-km-perimeter Large Hadron Collider (LHC) has so
far successfully confirmed this model, with relatively few
surprises revealed since its first operations started ten years
ago. There are still a plethora of data to be processed and
analyzed, which will take some time. Irrespective of this,
one must search for more information through alternative
experiments which probe other phenomena, in order to test
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theories which go beyond the SM, since there are several
opened questions that this model does not answer.

In addition to leaving out a consistent quantum descrip-
tion of gravity, other unanswered questions by the SM are
the dark matter origin and why matter survived annihilation
with antimatter in different stages after the Big Bang [1,2].
One of the proposals to explain the former involves the exis-
tence of new particles out of the SM, which includes WIMPs
(Weakly Interacting Massive Particles), axion-like particles
and sterile neutrinos [3]. On the other hand, extensions of the
SM based on Supersymmetry may explain the asymmetry
matter-antimatter by proposing the existence of new massive
particles and interactions which break the time-reversal sym-
metry, endowing, in addition, common charged leptons with
an electric dipole moment aligned with the particle’s spin [4].

Just as the breakdown of some symmetries of the SM
implies the existence of new particles, the symmetry pre-
viously restricted to the massless sector of the model—the
conformal invariance—may be extended to a new category
of microscopic objects termed unparticles, proposed some
time ago by Georgi [5,6]. These entities also could account
for both the dark matter nature and baryon asymmetry [7,8].
They have undefined mass or continuous values for it [9]
depending on the energy scale at which one detects them,
i.e., the usual energy-momentum dispersion relation for a
free particle is not longer valid, hence the name unparticle.
An usual particle only owns scale invariance if it is massless.
The unparticles, even endowed with mass, though indefinite,
enjoys that property. Beside this, the scale dimension of the
fields in the action can be fractionary, which leads to the rep-
resentation of non-integral numbers of massless particles.

The unparticle proposal was inspired in the older theory of
Bank-Zacks [10], where a conformal invariant high energy
sector near a critical (fixed) point is possible, around which
there would be fields of unknown nature weakly coupled to
those ones of the SM. However, the very weak magnitude
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of the couplings would impose serious restrictions to the
detection of the unparticles. Despite this fact, some events
in the domain of high energies could indicate their presence
[11–13] as well as in Astrophysics and Cosmology [14–20],
and also in low energies phenomena [21,22], including the
Casimir Effect [23]. In this case, the fractionary character of
the scale dimension of the fields reflects in the dimensional-
ity of the plates: It is non-integral, presenting a fractal nature,
therefore.

The Casimir effect was discovered in 1948 as the attrac-
tive force arising between two parallel and uncharged metal-
lic plates placed in vacuum, which results from the modifi-
cation of the zero point oscillations of the electromagnetic
field induced by the material boundaries [24–27]. Nowadays
there are no doubt about the existence of this effect confirmed
by many accurate experiments which have been performed
during the last twenty years. Generically, the phenomenon
also occurs when the vacuum of an arbitrary quantum field
is disturbed by the presence of boundaries with different
shapes and made of different materials, usually revealing
itself through a force that arises on or between such bound-
aries [28]. The disturbance of the quantum vacuum can arise
also on empty spaces with nontrivial topology [29,30]. This
phenomenon can still be associated to a quantum field with
arbitrary spin describing baryonic or even exotic matter [31].
The progressive increment in the precision of the Casimir
effect measurements show that they tend to be a relevant
source of tests for both high energy physics and modified
theories of gravity [32–35].

In this paper, we will investigate the Casimir effect associ-
ated to a massless scalar field in a cavity formed by two ideal
parallel plates, which are placed in the spacetime generated
by a rotating axially symmetric gravitational source based
on a distribution of vector or scalar (tensor) unparticles. This
work extends the one that studied the phenomenon in the flat
spacetime considering only scalar (tensor) unparticles [23].
Here, the computation of the Casimir energy density will fol-
low the approach contained in [36] according to which it is
made a coordinate transformation that will allow us to use
a Cartesian coordinate system associated to the rectangular
cavity. The presence of the unparticles is incorporated to the
background by taking the axially symmetric solutions of the
Einstein field equations obtained in [20]. The analysis of the
”ungravity” limit for the Casimir energy density, in which
the characteristic length of the theory is very large in com-
parison to the horizon radius [16,17], will be made, too. The
obtained result will be compared to the current experiments
about the Casimir effect. Thermal corrections also will be
investigated and the aforementioned limit again examined.

This paper is organised as follows: In Sect. 2 we review
the unparticle features in the gravitational scenario. In Sect. 3
we compute the Casimir energy density in the parallel plates

configuration. In Sect. 3.1 we analyse the thermal corrections
and, finally, in Sect. 4 we close the paper with the conclusions.

2 Unparticle static black holes

In this section we briefly review the solution for the scalar
(tensor) and vector unparticle static black holes found in Refs.
[16,17]. The action is given by S = SM + SU , where SM is
the matter action

SM ≡ −
∫

d4x
√
g ρ ( x ) gμνu

μ uν ,

ρ ( x ) ≡ M√
g

∫
dτ δ ( x − x (τ ) ) (1)

and SU is the sum of the Einstein–Hilbert action and a cor-
rection due to the unparticles, given by

SU = 1

2κ2

∫
d4x

√
g

⎡
⎢⎣ 1 + AdU

( 2dU − 1 ) sin ( π dU )

κ2∗
κ2

(
−D2

�2
U

)1−dU
⎤
⎦

−1

R. (2)

In the above expression D2 stands for the d’Alambertian and
dU is the scale dimension. The parameters AdU and κ∗ are

AdU ≡ 16π5/2

( 2π )2dU

	 ( dU + 1/2 )

	 ( dU − 1 ) 	 ( 2dU )
(3)

and

κ∗ ≡ 1

�U

(
�U

MU

)dUV

. (4)

The strength of the coupling constant is determined by the
mass scale MU which replaces the Planck mass. The param-
eter �U is the energy scale at which occurs the dimensional
transmutation associated to the presence of the unparticles.
By assuming a static source, the analytical solution for the
spherically symmetric geometry is given by [16,17]

g−1
rr = −g00 = 1 − 2M

r

[
1 ±

(
Rs,v

r

)2dU−2
]

(5)

where

Rs,v =
[

	U
M2

Pl.κ
2
s,v

π2dU−1 �
2−2dU
U

] 1
2dU−2

;

	U = 	 ( dU − 1/2 ) 	 ( dU + 1/2 )

	 ( 2dU )
,
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ks,v are the coupling constants of the s, v unparticles with
gravity and MPl is the Planck mass. The plus signal is taken
for the scalar (tensor) unparticle case (Rs) and the minus one
for the vector case (Rv). These solutions have horizon curves
defined by g−1

rr = 0, and thus we get

M = rH
2

1

1 ± (
Rs,v/rH

)2dU−2 . (6)

In Refs. [16,17] two regimes are considered, namely,
the gravity dominated (GD) regime, which corresponds to
Rs,v � rH , and the ungravity dominated (UGD) regime, for
which rH � Rs,v . In the GD regime, for both cases, the mass
parameter reduces to the standard M = rH/2. However, in
the UGD regime the mass is given by

M ≈ ±1

2

r2dU−1
H

R2dU−2
s,v

. (7)

Therefore, for the vector case, the mass parameter becomes
negative in the UGD regime. In fact for the entire region
rH < Rv this parameter is negative. This fact lead the authors
of Ref. [16] to ignore this region. However, it is a known fact
that a negative mass parameter indicates black hole solution
with nontrivial topology [37]. This suggests that beyond the
fractalization of the horizon surface, the vector unparticle
can in fact contribute to changes in the black hole topology.
Since the UGD regime must be contained in a full quantum
gravity theory, it is expected that quantum fluctuations in the
geometry should enhance quantum fluctuations in the topol-
ogy [38].

2.1 Unparticles and quintessence in Kerr-like spacetimes

The static solution for an unparticle black hole is something
similar to the quintessence one [40], in which

(gqrr )
−1 = −gq00 = 1 − 2M

r
− α

r3ωq+1 ⇔ (gurr )
−1 = −gu00 = 1

−2M

r

[
1 ±

(
Rs,v

r

)2dU−2
]

(8)

whereα ≥ 0 andω is constrained, by cosmological evidences
associated with the accelerated expansion of the Universe, to
−1 ≤ ω ≤ −1/3 [40]. In fact the mapping between them
comes from the identification

3ω + 1 = 2dU − 1; α = ±2MR2dU−2
s,v . (9)

This suggests that unparticles could be a source of quintessen-
tial matter for astrophysical objects. Since ω has a range of
permitted values, the above relationship between ω and dU
implies that −1/2 ≤ dU ≤ 1/2. However, this is not allowed

since, by unitarity reasons, dU ≥ 1 for scalar (tensor) unparti-
cles and dU ≥ 3 for the vector ones [39]. Therefore, the static
black hole quintessence can not be described by unparticles.
Despite of this, the formal similarity of the above solutions
will guide us to generalize the unparticle black hole to the
case with rotation. We can construct the solution correspond-
ing to the rotating unparticle black hole. The standard pro-
cedure is to use the Newman-Janis algorithm. However we
can take a shortcut since, as said before, our static solution is
formally identical to the one with quintessence found in Ref.
[40]. By using the referred algorithm with the choice of dif-
ferent complexifications for the radial coordinate, solutions
for the rotating black hole surrounded by quintessence were
independently found by Ghosh [41] and Toshmatov et al.
[42]. The solutions in the Boyer-Lindquist coordinates are
given by

ds2 =
(

1 − 2Mr

�

)
dt2 − �


̃1,2
dr2 + 4Mar

�
sin2 θdt dφ

−� dθ2 − Ã1,2

�
dφ2,

(10)

where � = r2 + a2 cos2 θ and


̃1,2 = r2 + a2 − 2Mr − αF1−3ω
1,2 . (11)

and

Ã1,2 = (r2 + a2)2 − a2
̃1,2 sin2 θ (12)

The subscripts 1 (2) refers to the Ghosh (Toshmatov et al.)
solution and the functions F1,2 are given by

F1 = �
1
2 ; F2 = r. (13)

Now we apply our mapping (9) in order to obtain the
solution for the rotating unparticle black holes, which is given
by


̃U = r2 + a2 − 2Mr ± (2M)R2dU−2
sv F3−2dU

1,2 . (14)

From this metric we can obtain the mass parameter of the
black holes, which is obtained by imposing that 
̃ = 0 at the
horizon, rH . Thus, we obtain

2M = r2
H + a2

rH ± R2dU−2
sv F3−2dU

1,2

. (15)

Therefore, the mass parameter depends strongly on what
solutions will be taken into account, if that obtained by Ghosh
[41] or the one obtained by Toshmatov et al. [42].
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3 Casimir effect

In this section, using the metric given by Eq. (10), we will
obtain the vacuum energy of a scalar field enclosed in a rect-
angular cavity nearby the black hole under consideration.
The cavity we will consider is the region between two metal-
lic plates localized in a locally co-moving reference frame
which describes a circular orbit around the unparticle black
hole equator, with angular velocity �. Suppose that a frame
of Cartesian coordinates (x, y, z) is centered on one of these
plates such that the z axis is tangential to the path of the
circular orbit [36,43]. In this case, the spherical coordinates
centered on the source and the Cartesian axes of the orbiting
system are related by dy = dr , dz = rdφ′, and dx = −rdθ ,
where φ′ = φ − �t . Therefore, in the Cartesian frame, the
metric given by Eq. (10) can be written as

ds2 = C̃−2(�)dt2 − Ã1,2

r�
sin2θ(ω̃d − �)dtdz − �


̃1,2
dy2

−�

r2 dx
2 − Ã1,2

r2�
sin2θdz2, (16)

where

ω̃d = − gtφ
gφφ

= 2Mar

Ã1,2
(17)

is the spacetime dragging angular velocity and

C̃−2(�) = �
̃

Ã1,2

[
1 − Ã2

1,2


̃1,2�2
sin2θ(� − ω̃d)

2

]
. (18)

The Klein-Gordon equation which describes a scalar field
minimally coupled with gravity is

1√−g
∂μ

(√−ggμν∂ν

)
�(t, x, y, z) = 0. (19)

Using Eq. (19) and the metric given by Eq. (16), it is
possible to determine the quasinormal modes and the vac-
uum energy between the parallel plates, from which one
obtains the renormalized vacuum energy by following the
same approach described in [36]. It is given by the following
expression

〈εvac〉(ren)
1,2 =

− π2

1440L4
p

√
�

r2

[
1 − Ã2

1,2


̃1,2�2
sin2θ(� − ω̃d)

2

] 1
2

, (20)

in which the proper length L p is defined by

L p = C̃
sin θ

√

̃

r
L . (21)

In the ungravity regime, in which Rs,v/rH 
 1, one can
show that the system is unstable, since the Casimir energy
becomes an imaginary quantity, given by

〈εvac〉(ren)
un ≈ −i

π2

1440L4
p

√
r2
H + a2

r2�
a2� sin3 θ, (22)

where we considered Eq. (15). This result is the same for
both the scalar or vector unparticles, as well as for both the
prescriptions given by Ghosh [41] and Toshmatov et al. [42].
It is worth mention, as we will see in details, that in the
thermal Casimir effect there is no instability. On the other
hand, in the opposite regime, Rs,v/rH � 1, we reach the
result given in [36].

We may infer bounds on the characteristic distance Rs of
the scalar unparticle gravity from the precision of the mea-
surements of the Casimir effect performed on Earth surface,
with r = 6.3×106 m. The plates are considered orbiting the
Earth in the same direction and at a rate of its daily rotation
(� = 2π/86, 400 s−1). Such bounds on Rs can be computed
from Eq. (20) as a function of the relative error δε in those
measurements and they are given by

Rs � r

[
r3�2

GMδε(δε + 2)

] 1
2(dU−1)

, (23)

where we neglected terms which depend on the square of the
rotation parameter, a2, and up. The reason to assume this is
the fact that it is very tiny for Earth. The shadowed region
depicted in Fig. 1 shows us the parameter space (Rs ,dU ) of
the scalar ungravity by considering the current accuracy of
the Casimir effect measurements, around 1%. Notice that
the scale dimension should not differ much from unity since
such a fact would imply the improbable occurrence of the
ungravity regime.

On the other hand, based on Eq. (5), we can find the upper
bound on the energy scale of the unparticles, �U , as a func-
tion of the scale dimension, dU . The graph in Fig. 2 depicts
this, where we have taken the coupling constant as being
κs = 1.

It is interesting to compare this result with that one given
in [23], which considered the Casimir effect of scalar unpar-
ticles in the Minkowsky spacetime, with a relative error of the
current measurements as being δε = 30% and without depen-
dence on the coupling constant. We obtain for the ungravity
Casimir effect a very stronger bound.

3.1 Thermal corrections to the Casimir energy

Now, let us consider the system immersed in a thermal bath.
The Helmholtz free energy calculated in a finite volume V
is given by [28]
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Fig. 1 Lower bound on Rs , the characteristic length of the scalar unpar-
ticle sector, in meters, as a function of the scale dimension, dU , where
we considered the relative error in actual measurements of the Casimir
effect in the Earth gravitational field, as being of the order of δε = 1%.
The shadowed region embraces the possible values of dU and Rs

Fig. 2 Upper bound on �U , the energy scale of scalar unparticles, as a
function of the scale dimension, dU , where we have taken the coupling
constant κs = 1 and the other parameters as the ones previously given

F̃0 = E (ren)
0 + 
T F0 − O(T 2) − O(T 3) − V fbb (24)

where E (ren)
0 = Vp〈εvac〉(ren) is the vacuum energy and


T F0 = AkBT
∫∫

d2k
(2π)2

∑
n

log
(

1 − e
− ωn

kB T
)

, (25)

with A being the area between the plates and kB is the Boltz-
mann constant. The term fbb is calculated using the expres-
sion

fbb = kBT
∫∫∫

d3k
(2π)3 log

(
1 − e

− ω(k)
kB T

)
, (26)

where k is the modulus of the wave vectork. The termsO(T 2)

and O(T 3) are obtained by expanding the free energy. Defin-

ing the Helmholtz energy density by f̃0 = F̃0
Vp

and calculating
the internal energy density through the expression

u0(T )(ren) = −T 2 ∂

∂T

(
f̃0
T

)
, (27)

we find that the thermal corrections to the Casimir energy
density are given by

u0(T )(ren) = − C̃3(�, θ)π2(kBT )4

30

+
∞∑

n,s=1

[
n2π(kBT )

2sL3
p

+ nC̃(�, θ)(kBT 2)

s2L2
p

+ C̃(�, θ)(kBT )3

s3πL p

]
e
− nsπ

kB T C̃(�,θ)L p . (28)

In the high temperature limit, the internal energy density
is dominated by the black body subtraction (T 4) term. A
term proportional to T 3/LP was discarded since the thermal
internal energy does not depend on LP and then there is no
physical effects to consider. It is interesting to notice that
in the ungravity regime, the dominant term of the thermal
corrections to the Casimir energy, in the high temperature
limit, is given by

u0(T )
(ren)
1,2 ≈ −�3/2π2(kBT )4

30a3�3 sin3 θ
, (29)

without any change of signal independent of the unparticle to
be a scalar or vector, i.e., the Casimir thermal force between
the plates will always be repulsive, and independent also of
the prescriptions given by Ghosh [41] or Toshmatov et al.
[42]. Notice that in the ungravity regime the thermal Casimir
energy density at high temperatures is a real quantity, and
therefore there is no longer instability in the system.

In the low temperature limit, the subdominant term of the
thermal Casimir energy density, obtained by excluding the
black body contribution, in the ungravity regime will be given
by

u0(T )
(ren)
1,2 ≈ −

(
πkBT

2L3
p

)
exp

(
�1/2

kBTa� sin θL p

)
, (30)

for scalar (tensor) or vector unparticle black hole, irrespec-
tive of the solution considered, if the one obtained by Ghosh
or the other obtained by Toshmatov et al.. Once more, we
have obtained a real quantity, but in that regime the sys-
tem remains unstable, due to the contribution of the Casimir
energy density at zero temperature.

4 Concluding remarks

We have studied the contribution to the Casimir effect by
a massless scalar field in a cavity formed by ideal parallel
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plates orbiting a rotating distribution of vector or scalar (ten-
sor) unparticles, according to the Georgi formalism [5]. The
presence of these entities was considered in an axially sym-
metric Kerr-like solution of the Einstein equations obtained in
[20]. We taken into account the different technics of obtaining
rotating solutions via Ghosh [41] or Toshmatov et al. [42] pre-
scriptions, which depend on the characteristic length, Rs,v ,
and on the scale dimension, dU , both the parameters associ-
ated to the unparticle theory. It was made a transformation in
the Kerr-like metric in order to associate a Cartesian coordi-
nate system to the rectangular cavity. Thus, the computation
of the vacuum energy, including its regularization, was done
by following Sorge approach [36]. The obtained results show
that the Casimir energy density depends on those unparticle
parameters.

The analysis of the limit in which the characteristic
length is very large in comparison to the horizon radius—
the ungravity regime—was made, and we concluded that, at
zero temperature, the system is unstable since the Casimir
energy density becomes an imaginary quantity. The com-
puted Casimir energy density was then compared to the result
of the actual experiments realized with the Casimir effect, and
from this we have graphically pointed out a set of allowed
magnitudes for Rs and dU , as well as for �U and dU , in
the parameter space. In fact, the current measurements of the
Casimir effect point to a scale dimension slightly different
from unity, since otherwise we would live in a world in which
predominates the ungravity regime, which does not seem to
be the case. Furthermore, the proposed case of the plates on
the Earth offers stronger limits on unparticles than the one
registered in the Minkowsky spacetime according to [23].
Finally, thermal corrections to the Casimir energy density
were investigated and the ungravity limit again examined,
with the aforementioned instability disappearing at high tem-
peratures.
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