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Abstract Spinor fields are written in polar form so as to
compute their tensorial connection, an object that contains
the same information of the connection but which is also
proven to be areal tensor. From this, one can still compute the
Riemann curvature, encoding the information about gravity.
But even in absence of gravity, when the Riemann curvature
vanishes, it may still be possible that the tensorial connection
remains different from zero, and thih can have effects on mat-
ter. This is shown with examples in the two known integrable
cases: the hydrogen atom and the harmonic oscillator. The
fact that a spinor can feel effects due to sourceless actions is
already known in electrodynamics as the Aharonov—Bohm
phenomenon. A parallel between the electrodynamics case
and the situation encountered here will be drawn. Some ideas
about relativistic effects and their role for general treatments
of quantum field theories are also underlined.

1 Introduction

Quantum field theory (QFT) is one of the most impressive
successes of contemporary science. From the standard model
of particle physics to condensed matter theory, this frame-
work works remarkably well and delivers high-precision
predictions. The mathematical foundations of QFT however
remain quite confusing. Some of the best known problems
are the following (see [1]): all calculations are performed
by expanding fields in plane waves, which are not square
integrable (and do not really exist as physical objects); in
this expansion the coefficients are interpreted as creation
and annihilation operators, lacking a precise definition [2];
and the calculations rely on the so-called interaction picture,
which is in tension with the concept of a Lorentz-covariant
field theory [3]. For all those reasons, it is clearly mean-
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ingful to consider a more general framework than ordinary
QFT. This is the setting used in this work. As QFT works
extremely well in all know situations, possible new results
will obviously arise only in subtle cases.

As it is well known, Dirac spinor fields can be classified
using the so-called Lounesto classification according to two
classes: singular spinor fields are those subject to the condi-
tions i Yy =0 and ¥ ¢ =0 while regular spinor fields are all
those for which the two above conditions do not identically
hold [4-10]. For the regular spinor fields, it is possible to per-
form what is known as the polar decomposition of the Dirac
spinor field [11]: this is the way in which it can be written
in the Madelung form, that is with all the complex quantities
expressed as a real module times a unitary complex exponen-
tial (21) while respecting the transformation properties of a
1/2-spin spinor field. In this form, the 8 real components of
spinors are re-arranged so as to show the physical informa-
tion: of these 8 components in fact, 3 are shown to be the
spatial directions of the velocity, 3 are the spatial directions
of the spin, 1 is the usual expression of the module, and a
last 1 is a phase shift between left-handed and right-handed
chiral parts of the spinor. This exhibits a possible an intern
dynamics, not taken into account in QFT. New effects can be
associated with this phase.

Details about the spinor field equations in this form can
be found in [12]. By implementing the Madelung form, so
as to write every spinorial component as a module times a
unitary exponential, and using the Gordon decompositions,
S0 as to respect covariance, it is possible to convert the Dirac
spinor field equation into a pair of coupled and non-linear
vector field equations which are equivalent to the Dirac one.

These field equations determine the dynamics and the
structure of the degrees of freedom of the spinor field in
terms of two quantities collectively called the tensorial con-
nection. They are built in terms of the connection but are also
proven to be real tensors [13]. In [14], we eventually proved
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that with the tensorial connection it is possible to calculate
the Riemann tensor, which represents the space-time curva-
ture thus deciphering the information about the gravitational
field.

In absence of gravitation the space-time curvature van-
ishes, and the Riemann tensor becomes zero identically. In
this case, just as the connection, the tensorial connection
may still be different from zero, but just like any tensor,
if the tensorial connection happens to be non-zero then it
will remain such in any system of reference: if this were to
happen, we would be in presence of an object which, on the
one hand, would represent a potential having a non-trivial
structure, while on the other hand, it would have a vanishing
strength.

This circumstance is the sourceless case, that is when the
gravitational impact of the considered matter is identically
zero (the Riemann tensor vanishes, so the Ricci tensor van-
ishes, which means that the energy density is not large enough
to source gravity). Nevertheless, an influence on matter can
still arise if the tensorial connection is not identically equal
to zero.

As far-fetched as this situation may look, we will show
that it is indeed what might happen in two notable examples,
given by the two integrable cases known: the hydrogen atom
and the harmonic oscillator.

These two examples, both from some remarkable physi-
cal potentials, and both exact solutions, should convince the
skeptical reader of the fact that the structure of the wave func-
tion of a relativistic quantum matter distribution is in fact due
to the non-vanishing tensorial connection even when it has
no space-time curvature.

One should also keep in mind that a similar situation is
already known. In the same way in which a relativistic quan-
tum matter distribution can be affected by a non-vanishing
connection, even when it has no space-time curvature, it can
also be affected by some non-zero potential even when it
has no gauge curvature. This is the Aharonov—Bohm effect,
which happens when wave functions display a phase-shift
due to potentials even in regions where they give rise to no
electrodynamic forces. Thus, in a way, we may say that what
we are going to present consists in exhibiting the effects on
matter of a gravitational Aharonov—Bohm effect.

This effect for gravity seems to be richer than for electro-
dynamics as in this case the full wave function, and not only
its phase, can be modified. A comparative analysis of the two
Aharonov—Bohm effects will be given.

As a bonus, we will show how it could be possible to
obtain, in analogy to the Born rule for the discretization of
electrodynamic degrees of freedom, a kind of Born rule for
the discretization of gravitational degrees of freedom.

Some comments regarding the non-relativistic limit will
eventually be sketched in one final section.
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2 Polar spinors
2.1 Kinematic quantities

We will consider the Clifford matrices y¢ from which
[ya,yb] =4, and 2i0 4p = Egpegm Y defining the o
and 7 matrices (this latter is what is usually called y> or y 5
with a sign ambiguity that has to be fixed by convention).

As known, Clifford matrices account for a total of 16 lin-
early independent generaotrs for the space of 4 x 4 complex
matrices, given by

I y* o mn, yon (1)
and it is possible to prove that they verify
Yi¥ Yk =Yilljk — Y jnik + Yinij +iijrgmy? (2)

which is a spinorial matrix identity (notice that this identity
shows the pseudo-scalar character of the & matrix).

Given the spinor field v, its complex conjugate spinor
field ¥ is defined in such a way that bi-linear quantities

2 =2%cry (3)

M =2iy ey )
with

St=yyiny ©)

Ut=yy'y 6)
as well as

O=iyry )

o=y ®)
are all real tensors, and it is possible to prove that they verify

1 ..
$h=_ Eg”b’f M;; o)
1 ..

M”hzisah” % (10)
together with

Map®—Zap©® = U S jrap (11)

Map©+ 0y ®=UjoSp) (12)

alongside to

MU' =0OSg (13)

iU =®S; (14)

M S'=0U; (15)

TSt =dU (16)
and also
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% abMah:_%EabZ“”ﬂbz—@z an

M =260 (18)
and

UU" =—8,5= 0% +° (19)

UyS® =0 (20

called Fierz re-arrangement identities.

These identities are important because in the general case
of regular spinors, for which iymy # 0 or Y # 0, we
can use (19) to see that the U¢ vector is time-like. Three
boosts can therefore be used to remove its spatial components
and two rotations can be used to rotate S¢ along the third
axis, while the third one eliminates the general phase. When
these operations are performed, the most general spinor field
compatible with those restrictions is

1
v =pe 2P S (1) Q1)
0

in chiral representation. The matrix S is a generic complex
Lorentz transformation, 8 called Yvon-Takabayashi angle
and represents the phase shift between right-handed and left-
handed chiral parts of the spinor while ¢ is the module.
The full spinor field is then said to be in polar form [11].
In this polar form, the two antisymmetric tensors reduce
to

% =2¢%(cos ful“s"! —sin ﬁujsksjkab) (22)
M =2¢*(cos Bu jsie’* +-sin Bul?sPT) (23)

with the two vectors

S =2¢2s¢ (24)

U®=2¢u" (25)
and the two scalars

©=2¢"sin B (26)

d=2¢>cos B (27)

in terms of the Yvon-Takabayashi angle and module.
All Fierz identities trivialize except for

uqu® =—s,54=1 (28)

ugs®=0 (29)

which show that the velocity and the spin are constrained,
so that in general they amout to three components each. The
most general spinor therefore possesses four components,
or eight real components, given by the three real compo-
nents of the velocity and the three real components of the

spin, which can always be boosted or rotated away, plus the
Yvon-Takabayashi angle and module, whose scalar charac-
ter makes them impossible to be removed with a choice of
frame. The latter are therefore the only two real degrees of
freedom of the spinor field.

From the metric, we define the symmetric connection as
usual with A, from which, with the tetrads, we define the
spin connection Q2 =&, E5 (A9 —&7 0, 51’;). With the gauge
potential, we then define the spinor connection

1
Q, = EQZbaab—HqAMH (30)

needed to define

V=09 +R.¢ GD

which is the spinorial covariant derivative.

Writing spinor fields in polar form does not only allow
us to distill the spinor components into the real degrees of
freedom, but it also provides the definition of the S matrix,
which verifies

1 L
$9,871 =i0,21+50,6,0" (32)

where A is a generic complex phase and ¢;; = —0;; are the
six parameters of the Lorentz group. It is then possible to
define

Bueij—QimzRim (33)
our—qA, =Py, 34)

which can be proven to be real tensors. The spin connection
2;j,, carries information about gravity and coordinate sys-
tems while the derivative d,,0;; carries information about the
coordinate system, and therefore R;;, carries information
about gravity and coordinate systems. However, while inde-
pendently non-tensorial quantities, their combination makes
the non-tensorial spurious terms cancel, and the result is
that R;;, is a real tensor. This is the reason why it is called
tensorial connection. Similarly, g A, contains information
about electrodynamics and gauge phases while d,A about
gauge phases. While independently they are not gauge invari-
ant, their combination P, is a real gauge-invariant vec-
tor. This is why it is called gauge-invariant vector momen-
tum. Due to their analogy, we will collectively call them
tensorial connections, for simplicity [13]. One can show
that

: 1 ..
Vuy= (Vu ln¢]l—%V#,Bn—iPM]I—ERima”) v (35)
from which
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Vusi=Rjiys’ (36)
Vi =Rji,u! (37)

which are valid as general geometric identities.
2.2 Dynamical equations

The commutator of spinorial covariant derivatives can be
used to define

R, =02 ;,-0,Q; +Q o -, 38
Fuy=0,A,— A, (39)

which are the space-time and gauge curvatures.
It is straightforward to prove that

. . ) . i -
le;wZ_(V,Mleu_VUleu"_leuRju_leiju) (40)
qFuw=—(V,P,—V,P,) (41)

showing that the Riemann tensor can be written in terms
of the tensorial connection while the Maxwell tensor can
be written in terms of the gauge-invariant vector momen-
tum. The tensorial connection and the gauge-invariant vec-
tor momentum are therefore the potentials of the gravita-
tional and electrodynamic fields [14]. However, in absence
of gravity or electrodynamics, when the curvatures vanish
identically, differently from the connection and the gauge
potential, which can always be vanished with a choice of
frame or gauge, there is no way to vanish the tensorial con-
nection and the gauge-invariant vector momentum, if they do
not vanish identically already.

For the matter field, the dynamics is defined in terms of
the Dirac spinor field equation

YtV W +iowF,o" Y —my =0 (42)

in which the w term is an additional potential describing the
coupling of the dipole moment of the spinor to an external
field, which will be used to represent the potential of the
harmonic oscillator later in this work.

It is now possible to substitute (35) into (42) to write the
Dirac spinor field equation in polar form. We then proceed
to the Gordon decomposition by multiplying on the left with
U, Uy, Yo Yrm and Yy so to get 16 scalar equations,
and then we split into real and imaginary parts getting 32 real
scalar equations. Of these 32 real equations, we must expect
that 8 taken together will be equivalent to the 8 real compo-
nents of the Dirac equation (42). These 8 equations are those
obtained by selecting the imaginary part of the contraction
with y¢ and the real part of the contraction with with y“m:
multiplying the first by cos 8 and the second by sin 8 and
adding them and multiplying the first by sin 8 and the second
by cos 8 and substracting them produces the diagonalization
that leads to

@ Springer

—2wF,,u" sin B—weyupne FPu’ cos B

1
+§8ﬂawRaw—2Plu[lsﬂ] 43)

+VB+2s,mcos =0

2wF,u” cos B—weupno FPMu’ sin B
—i—Rﬁa—ZPpu”s“aM,W (44)
+2s,msin B+V, In¢? =0

which can be proven, in return, to derive the polar form of
the Dirac spinor field equation. This proves the equivalence
between (44, 45) and (42) itself. So the four spinorial field
equations, which are eight real field equations, can be con-
verted into one vector field equation and one axial-vector
field equation, specifying the first-order derivatives of the
module and of the Yvon-Takabayashi angle, determining the
dynamics of the real degrees of freedom [12].

3 Application to two systems

The theory developed so far is general, but applications can
also be studied so as to better understand what are the prop-
erties of the tensorial connections: our goal is to see what
happens in the sourceless case, that is in situations where the
energy density is not large enough to be a source of gravita-
tion. We can assume that there is no gravity, a flat space-time,
and an indentically vanishing Riemann tensor (40). The ten-
sorial connection can however still be different from zero. In
this case we would have some non-trivial potential with no
strength.

To prove that such a non-vanishing tensorial connection
can have an effect on a relativistic quantum matter distribu-
tion, we consider explicit examples. To make our examples
stronger, we will choose exact solutions of integrable poten-
tials: one is given by the Coulomb potential, leading to the
description of the hydrogen atom; and the other is given by
the elastic potential, leading to the description of the har-
monic oscillator.

Both cases are interesting because they account for all
integrable potentials known in physics. In the following we
start by reviewing the case of the hydrogen atom as it was
treated in [14]. Then we consider the harmonic oscillator in
three-dimensional case as presented in [15].

The harmonic oscillator has not yet been studied in the
polar form, and thus we will present it with more details.

3.1 Non-trivial integrable cases
3.1.1 The hydrogen atom model

The case of the hydrogen atom is very widely known and can
be found in common textbooks.
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The interaction is given in terms of the Coulomb poten-
tial, that is the temporal component of the gauge potential
vector

qA;=—a/r 45)

where « = g2 is the fine-structure constant given in units in
which it is the square of the electric charge.

Looking for solutions in stationary form id;y¥ = Ey and
with the choice of spherical coordinates

rsin 6 cos ¢
7=\ rsinfsing (46)
rcosf

the Dirac spinor equations are written according to

i 0 G-L
| - -2z — =0 47
r2 (—a-ro L 0 )W my (47)
where
i sinpdg F+icot B cos oy F
LF = | —icosdgF+icotfsingiyF (48)

—id,F

for any function F, given in terms of the elevation and
azimuthal angles. This form is well suited to study all cases
where a separation of variables is possible.

We will focus on the ground-state, the 1S orbital.

In this case, defining the constant ' =+/1 — o as well as
the function A(0)=1/y/1—a?|sin 0|2 of the elevation angle
alone, it is possible to see that the energy is given by E =mI"
and the spinor

1+
; 0
_ 1 r-1,—amr _,—iEt
w_«/HFr ¢ ¢ ioccosO “49)
i sinfe'?

is an exact solution of (47) with (48). To see this, one can
insert (49) into and (48) and (47) and check directly.

This is the standard treatment, but equations (47, 48) are
just the Dirac spinor equations (42) for w = 0 written in
spherical coordinates

gn=1 (50)
grr=—1 (51)
800 = —r? (52)
Spp=—1>|sin0? (53)
with connection
1
0
Ap, = - (54)
ANpy=—r (55)

1
NG =~ (56)
— ; 2
Ap,,=—r|sin6| (57)
A$9 =cotd (58)
0 _ )
Ay, =—cotf|sinf| (59)

in the case in which the tetrad vectors are chosen to be

=1 (60)
el=sinfcosg e*=sinfsing e>=cosh (61)
eé:r cos 6 cos ¢ eé:r cos 0 sin ¢ egz—r sin 0 (62)
e; =—rsinfsing eé =rsinf cosg (63)
and

eh=1 (64)
el=sinfcosg ej=sinOsing e5=cosH (65)

1
e?:—cos@cosq) egz—cosesimp e?:——sin@ (66)

r r - r

1
@ ; @

- sin = 0s 67
‘i 7 sinf ne- e rsinf ¢ (67)

as the choice for which the spin connection vanishes.
Nevertheless, another specific choice is possible. It con-
sists in taking the tetrad vectors as

=N e’=—asinfA (68)
el =TsindA e} =cosfA (69)
ed=rcos0A ej=—TrsinfA (70)
e)=—ar|sinf’A e;=rsinfA (71)
and

eh=A éi=asinfdA (72)
e1=TsinfA e5=cosbA (73)
g 1 s T

elz;coseA e3=—7sm9A (74)
o ¢ @ 1

==A = A 75
€0 r €2 rsin 6@ 75

which means that we are in the system of reference where
the spinor field is in polar form.
We have then that

B =—arctan (% cos 9) (76)
and
p=r""lem 1/A (77)

for the Yvon-Takabayashi angle and module.
Then we can compute

R0 =—arsiné cos 0| AJ* (78)
Rrgg=—r(1-T|A[*) (79)
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Rrpp=—rlsin6|? (80)

Rgyy=—r*sin6 cosd (81)
and

Pr=E+oa/r (82)

P,=—1/2 (83)

as it is well known for the momentum.

One can check that the pair of equations (44, 45) is satis-
fied, as expected since (42) is equivalent to (44, 45).

For more details on the hydrogen atom we refer to [14].

3.1.2 The harmonic oscillator model

The case of the harmonic oscillator is also well known
although its relativistic treatment is not so thoroughly inves-
tigated. In the following we will refer to [15].

The interactions are given in terms of a coupling between
the dipole moment of the spinor and an external field, like
the one given in (42):

Fv=v,x,—v,xy (84)

with v, a time-like vector and x,, the position vector. In the
case we intend to study, the time-like vector will be chosen
in the configuration in which only its temporal component
remains and is normalized to unity.

We still look for solutions in the stationary form and in
spherical coordinates, where (42) is given by

df)x/f—nup:o (85)

and as it is easy to see, this form is well suited for a sep-
aration of variables. However, we shall not implement this
separation because it is known that this property does not
hold for the harmonic oscillator, in the general case, when
no non-relativistic limit is taken.

As before, we focus only on the ground-state.

Defining the constant a = (E —m) /2w together with the
function A(r, 0) = /r*+a*+2r2a2 cos (26) of the radial
coordinate and elevation angle, one can see that the energy
is given by E2=m?+6w with the spinor given by

@ Springer

rcoso

rsinfe'?

w — Ke—%a)rze—l‘El (86)

—ia
0
as an exact solution of (85) for any constant K.

Equations (85) are the Dirac spinor equations (42) with
no electric charge and written in spherical coordinates in the
case in which the tetrad vectors are chosen as before.

And as before, another possibility is to Lorentz transform
everything so to get the polar form. To this purpose, one first
needs to implement a rotation along the third axis so as to
perform a shift of ¢ /2 giving

rcosf

lwrze—i(Et—%) r 51.119

Y=Ke 2 (87)

—la

0

in standard representation. With this solution we can calcu-
late all bi-linear spinor quantities

O=K2e " (r2 - a?) (88)
_ 2 —wr?

d=K~e (2ar cos 9) (89)

U0= K27 (12 — a?) (90)

U? =K%~ (2ar sin ) 1)

S'= K2~ (212 sin (260)) (92)

S =K2e" (2 cos (20) + a?) (93)

and with U! = U3 = 5§ = §2 =0 identically. In order to force
U?=5"=0 too, the only transformations of interest remain
the boost along the second axis and the rotation around the
second axis, given by

cosh& 0 sinh& 0

0O 1 0 O
B.= sinh& 0 cosh& 0 S
0 0 0 1
and
1 0 0 O
0 cosx Osiny
B=1o 0" 1 0 ©3)
0 —sin x O cos x
in terms of the rapidity
—2ar sin 0
tanhé = ———— 96
= (2200 -
and the angle
. —rZsin(20) o7
amy=(———"7-—""—
=2 cos(20) + a2

precisely because these are the rapidity and angle in terms of
which B» and R» vanish U? and S! identically, respectively.
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This would mean that we have boosted into the rest frame
and rotated the spin along the third axis, and therefore that
we have written the spinor in polar form, which reads

V2
0

y=pe S| (98)
0

in standard representation. Here =B, ! R, ! Ry ! with

2 0

B =arctan <%> (99)
r2—a

and

p=Ke 29" JA)2 (100)

for the Yvon-Takabayashi angle and module.

The same rapidity and angle, but for the real representation
of Lorentz transformations, would boost and rotate tetrads so
as to write them according to

=2+a*)A™" 2=—2arsinfA~! (101)
1 o 2 2\ 4-1 3_ 2, 2\ 4-1
e,=—sinf(r"—a")A e, =cosO(r +a)A (102)
ed=rcos0(r’+a®)A™! e}=rsin0(r?—a®)A7! (103)
e)==2ar’sin 0P A" e} =rsin0(*+a®)A""  (104)
and
=?+aHA™! eh=2arsinfA™! (105)
(106)

eh=

e =—sinf(r*—a?)A™!  ef=cosO(r’*+at) A
1 1

¢l ==cosO(r*+aH A" f=—sin0(*—a*)A™! (107)
r r

1
e =2aA"! ey = ——(r*aHA™!

108
rsin @ (108)

and in terms of which it is now possible to calculate R;j,
with (33) getting

Riyo =—2ar?sin@ cos 0 (r* +a*)A~> (109)
Rego =—2r[r>+a® cos (26)]A~> (110)
Rigr =2arlsin 0> (r* —a*)A~2 (111)
Ryo, =—2a’r?sin (20) A2 (112)
Rygp=—rlsin 0> (113)
Rgpy=—r*sin6 cos b (114)
while we also have
P,=E (115)
P,=—1/2 (116)

as it is again well known for the momentum.

One can see that the pair of equations (44, 45) is satisfied,
as expected since (42) is equivalent to (44, 45).

With the case of the harmonic oscillator completed it is
now possible to compare the two physical examples.

3.2 The comparison in parallel
3.2.1 Bi-linear invariant quantities

In order to make the comparison meaningful, it is easier to
consider quantities that are free of any superfluous informa-
tion. For this reason, we focus on scalars, since they are the
only quantities that can be invariant while still being non-
trivial. To make the comparison easy to read, in the follow-
ing, we express the considered quantities for the hydrogen
atom first and for the harmonic oscillator just below.
To begin, the Yvon-Takabayashi angles are

B =arctan (—% cos 9) (117)
2 0
B =arctan <%) (118)
and the modules are
p=r""lemm /A (119)
p=Ke 29" JA)2 (120)

where some information already becomes visible: for instance,
the Yvon-Takabayashi angle must be an odd function of cos 6
because of its pseudo-scalar character, and we see no radial
dependence in the Yvon-Takabayashi angle in concomitance
with the separability of variables of the module in the case
of the hydrogen atom, while no such feature exists for the
harmonic oscillator.

This is obvious from the fact that whenever the separability
of variables is demanded, the module must be a product of
the form ¢ = R(r)Y (0) while at the same time the Yvon-
Takabayashi angle must be a sum of the form 8 = S(r)+Z(0)
since it is the argument of an exponential function. Because
under parity the Yvon-Takabayashi angle flips its sign, we
then must have § =0 necessarily.

It should however be noticed that when the separation of
variable does not hold, as for the harmonic oscillator, the
radial dependence can carry surprises: for instance, it is easy
to see that at r = a the Yvon-Takabayashi angle is equal to
47 /2. This defines the boundary between the regions where
cos B is positive and regions where it is negative. Because
of this, the sphere of radius a is the limit through which the
scalar density ¢ changes sign.

The five scalars coming from the squares of the tensorial
connections are given by

: 1
Ry R === [@=T 2%+ cot 6] (121)
r
i 2 2 2 1 :
RaCCR“’i=4(a —2r )A_ - m (122)
1 i 1
ZR,-ij”b‘sp’/kspabcz—r—2a2|cos9|2A4 (123)
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1 .,

ZRiijabcé?pljkgpabc = _4a2A_2 (124)

ERiij” =r_2|:a [cosO7A"—(1-T"A%) T sin0?

(125)
2

LR RIE—a(a?— 2y a2 | L (126)

2 J rSiH9

1 .. 1

Equq Rijie?* = = cos 0 A*(2—T A?) (127)
r

1 ..

Equq Rijke”* =8ar cos§ A2 (128)

1 . 2

gRiieRpg 701 = e cosdAR1-T A% (129)

1 ..

—RijcR,, “e/P" =8ar cos HA~2 (130)

4

and something interesting is also emerging here: while in the
large-r regime, in both cases, all scalars tend to zero, in the
small-r region, for the hydrogen atom all scalars behave as
1/r* whereas for the harmonic oscillator only RS.R¢' and
RijxR* behave as 1/r2. As it is expected, both pseudo-
scalars tend to zero with a linear behaviour in the radial
coordinate but R;jxR¢ePiike .. ~ —16/a® and the fact
that some scalar tends to a non-vanishing constant looks a
very astonishing circumstance.

This is a consequence of the fact that for the hydrogen
atom all scalars must have the same radial behavior to ensure
dimensional consistency while for the harmonic oscillator the
constant a has the dimension of a length and can therefore
be substituted to the radial coordinate in some expressions.
Nevertheless, for cases in which there is a natural constant
with the dimension of a length, we do not think that it is
possible to guess the actual radial behavior. There is in fact
no a priori difference between the three scalars and still one
of them has a radial behavior that is very different from the
one of the others.

3.2.2 Energy density tensor components

Albeit scalars are the invariants of the theory, it might also
be instructive to see what happens for a non-scalar quantity.
Even if we are considering situations where the energy is
not large enough to be a relevant source for the gravitational
field, it can still be different from zero and as such, it may
contain some interesting information.

The energy density tensor which is the source term of the
Einstein field equations is given, in polar form, according to

1 .
Tya =20° (san,B/Z—i—uqPa—}—Zsk,'qukR” a) (131)
and it results in
T =2¢>A(E+a/r) (132)

@ Springer

T, =2¢* A" (P +a>E (133)
Trp=—¢*A(1—T)[sin 0| (134)
Trp=—2¢>A""r?|sin 6| (135)
T, =0 (136)
T, =2¢>A"a (137)
Tos =¢* Aar (138)
Ty =2¢> A" 'ar? (139)
Ty =—2¢> Aar|sin6|*(E+a/r) (140)
Ty =—4¢> A" ar?|sin 6’ E (141)
Ty =¢* Aar|sin 0| (142)
Tpy=24>A" ar?|sing? (143)

in which an obvious lack of symmetry can be noticed in
the fact that in the case of the hydrogen atom there is no
radial-radial component is once again a consequence of the
separability of variables.

It is possible to compute the traces, which give

T =2¢>AE
T=2¢>A"'(r*E—a*m)

(144)
(145)

and exhibit an interesting property: while for the hydrogen
atom the large-r and small-r behaviors are the same, for the
harmonic oscillator the large-r behavior is T =2¢> E but the
small-r behavior becomes T = —2¢*m flipping the sign of
the scalar trace of the energy density.

So the sphere of radius a+/m/E defines the limit through
which the scalar trace of the energy density 7 changes from
positive values to negative values. Because the trace is such
that T =.% + myry with . the Langragian functional, we
may think at the energy trace as what encodes information
about the total energy.

4 The tensorial connections

In the first section we have seen that R;j; and P, have the
character of connections while being true tensors: R;ji is
the tensorial connection in a strict sense since it is directly
related to the Lorentz transformation while P, is called the
gauge-invariant vector momentum to highlight its relation to
the gauge transformations. Although the concept of a tenso-
rial connection seems a contradiction, because connections
can be vanished with a choice of frame whereas tensors can-
not, this should not appear as something drastically new: the
orbital angular momentum can be vanished when calculated
in specific points but the spin cannot. The tensorial connec-
tion and the spin share this property of being truly covariant.

However, tensorial connections still behave as connec-
tions in their lacking of couplings to sources. In fact, the
components of R;;; and P, might well be different from zero
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but their curvatures are vanishing if, respectively, no gravity
or no electrodynamic phenomenon is present.

Situations where some physical effects can be ascribed to
potentials that are present (as non-zero connections) despite
having no strength (since they have zero curvature) is some-
thing that may be strange for R; jx but for P, is that we already
know as Aharonov—Bohm effect.

For P, the technicalities can be worked out by taking
expression (34) and integrating it as
/(PM—FqAM)dx“:/ 8M)de"=/ dr=A\ (146)

Y Y 4
along the trajectory y, and where the last term is just the dif-
ference of phase between the starting and the ending points.
Similarly, from (33) we get

/(Riju-FQijM)dxM:f aueijdxl‘:/deijzAQ,-j (147)
14 Y Y

in total analogy with the case above. Recall that Lorentz
indices designate quantities that are tensor under a (local)
Lorentz transformation but scalar under coordinate transfor-
mations. The integral is therefore well-defined.

When the spinor is in polar form, (36, 37) reduce to

Vusi=R3iy (148)

Vuui =R0i/L (149)

showing that the dynamics of the velocity vector or of the
spin axial-vector is determined only by those components of
R;j, for which the first index is equal to either zero or three.
The antisymmetry in the first two indices implies that any
of the first two indices has to be either zero or three, so that
R12, never appears. This makes this component somehow
analogous to the momentum since P, never appears in the
dynamics of the velocity vector and of the spin axial-vector
in the first place.

This is in line with the fact that for a spinor that is an eigen-
state of the spin, that is for rotations around the third axis, as
the one in the polar form, rotations around the third axis have
the same effect than gauge shifts: in fact, a suitable rotation
around the third axis generates a component of R, which
is related by Rz, = —2P, to the momentum generated by
an equivalent gauge shift.

If the trajectory is a close circuit, A6 is just a whole turn
times an integer

%(Pu—kun)dx“:bm (150)

Y

and analogously for A6, we have

?g (Ri2p+Q12,)dxH =—4mn (151)
Y

where n is usually called winding number.

4.1 Discretizing the connection

If we consider the free cases, requiring the electromagnetic
field to vanish means that

f Pudxt=2mn (152)
14

while requiring the gravitational field to vanish means that it
is always possible to find a frame where

lezﬂdxﬂz—m (153)
14

as it is clear because of the formal analogy. Whereas the
former is clearly the Born rule for discretizing momenta
in closed orbits, the latter should be regarded as the Born
rule for discretizing some components of the connection in
closed orbits. Such an occurrence brings about an important
point in the discussion around the quantization of gravita-
tional degrees of freedom, because the tensorial connection
is precisely where the geometrical information is encoded.
The process of discretization is entirely independent on the
structure of the tensorial connection.

Much in the same way in which tensorial connections can
be discrete in the free case, the same might happen even
if gravity were present. In this case the quantization would
happen on the gravitational degrees of freedom. We do not
claim that this approach solves the long standing problem of
quantum gravity. It might however give some hints about the
fundamentally quantum nature of some geometrical degrees
of freedom.

4.2 Aharonov-Bohm Effects
If the gauge-invariant vector momentum and the tensorial

connection happen to vanish, and we choose a close circuit
to be the boundary of a given surface y =95, then

q?g A-dX=27n (154)

s

and analogously

f Qp-d¥i=—dnn (155)
aS

in which we accounted for the spatial parts only. Using the
Stokes theorem we obtain

q// rotA-dS=2mn (156)

S

and analogously

/f rotQ-dS=—4mn (157)
S
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where we now have fluxes on the left-hand side. While the
former is recognized to be the condition giving rise to the
Aharonov—Bohm effect, the latter should be interpreted as
the condition giving rise to the gravitational analogous of
the Aharonov—-Bohm effect. This would not only entail the
quantization of the electromagnetic as well as of the grav-
itational fluxes, as discussed above. But it also means that
there can be a phase-shift in the wave function of the matter
field due to the electromagnetic as well as to the gravitational
potentials even in regions with neither electromagnetic nor
gravitational forces.
In fact, writing (21) in the form

Y= SWpol

where v is the spinor in full polar form, we have that

(158)

S=e¢ it 200" (159)
in terms of one phase-shift of abelian type in A and another
of non-abelian type in 012 which, according to the above
(156, 157), can be present even in regions where no electro-
dynamic or gravity are present. However, electrodynamics or
gravity must be present in nearby regions so to let the fluxes
be non-zero at least somewhere.

The analogy of the two types of Aharonov—Bohm effect,
electrodynamic and gravitational, can be appreciated in its
full extent in the fact that in (159) both abelian gauge phase
and third-axis rotation angle have identical impact on the
structure of the spinor field matter distribution.

Nevertheless, it is important to stress that the usual elec-
trodynamic Aharonov—Bohm effect parallels only one of the
six vector potentials describing the gravitational Aharonov—
Bohm effect, and therefore the latter is inevitably richer in
potential physical applications.

5 Special approximations

As concluding remarks, we would like to investigate what
happens in the case of specific limits. A first approximation
is the one for which the two coupling constants are small:
in such a case, the above solution for the hydrogen atom
automatically reduces to the non-relativistic solution for the
considered system. Instead, the solution for the harmonic
oscillator has a ~ % which reduces to the non-relativistic
solution only in the case of large masses. In fact, even if the
mass is large, it would still be possible to consider radial dis-
tances small enough, and the non-relativistic approximation
still fails.

In fact, quite generally, for the harmonic oscillator we
can always find regions where relativistic effects cannot be
suppressed. To see this, just consider the scalar quantity cos
and the energy trace T'. The first changes sign on the sphere
of radius a and the second changes sign on the sphere of

@ Springer

radius as/m/E with a > a\/m/E since w is positive. For
small values of w, we can expand the energy and write it
according to

2
T ~24? <m cos fp 22 ) (160)

Am

which isolates the kinetic energy m cos 8 from the potential
energy 3wr?A~!/m. The kinetic energy becomes negative
across the sphere of radius a+/m/E and it becomes negative
and large enough so to overcome the positive potential and
make the total energy negative as well across the sphere of
radius a > a/m/E. Apart from this shift due to the poten-
tial, the reason for which both the energy and the modu-
lus become negative is the same, that is the fact that cos 8
becomes negative. As cos § — —1 then 8 — & which means
that left-handed and right-handed chiral parts are in maximal
phase opposition with respect to one another. The deep inter-
pretation of such unusual new effects is still to be understood
but, at the heuristic levels, calculation of observables are in
principle possible.

Because the Yvon-Takabayashi angle is what describes
the differences between the two chiral parts even in the rest
frame, it can be interpreted as what describes the internal
dynamics of spinor fields. Thus, close to the center of the
matter distribution, where 8 tends to its maximal value, there
appears a region where the internal dynamics is dominant.
This is the region where relativistic effects can never be sup-
pressed, as we argued above.

Such an internal dynamics is confined within a sphere
whose radius can be evaluated, for small values of w, to be
approximately one fourth of the Compton wavelength.

From the viewpoint of ordinary QFT, this is a strange
occurrence as the scalar density & is always assumed to be
strictly positive in QFT. This implies that the harmonic oscil-
lator has solutions which, as fields, cannot be quantized, or
at least not with usual methods.

We will not deal, however, with second quantization.

6 Conclusion

In this work, we have shown that when the spinor fields
are written in polar form, it becomes possible to define a
pair of objects that contain the very same information of
the space-time connection and the gauge potential but which
are covariant under Lorentz and phase transformations: they
are called tensorial connection and the gauge-invariant vec-
tor momentum. We have discussed that they are generally
non-zero even when they have neither space-time curvature
nor gauge curvature: this means that they can have effects
even when sourceless. Although this may look surprising,
we have shown that it consistently happens in specific cases,
such as the Coulomb and elastic potentials. A final compari-
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son between the hydrogen atom and the harmonic oscillator
was also performed, in particular for the scalars and for the
energy density tensor.

The fact that there could be non-trivial effects even when
considering sourceless actions is not new, since a phase shift
can occur in what is known as the Aharonov—Bohm effect.
We have shown that such a phenomenon occurs not only
for the gauge-invariant vector momentum but also for the
tensorial connection. To highlight this, we have built a par-
allel between the two cases. We have also underlined that
as the Aharonov—Bohm effect can entail information about
the quantization of electromagnetic fluxes, the gravitational
version of the Aharonov—-Bohm effect may encode informa-
tion about the quantization of at least some of gravitational
fluxes.

We have concluded with comments on non-relativistic
limits, and in particular we have underlined the fact that for
the harmonic oscillator it is not possible to get non-relativistic
approximations in regions that are too close to the center of
the matter distribution because these are the regions where
the internal dynamics is dominant.

The fact that for the harmonic oscillator, both the energy
and the modulus may become negative seems to lead to some
conceptual problems in the perspective of QFT, since several
results of QFT are based on assumptions that we show not to
be fulfilled in general. For example, some hypotheses of spin-
statistic theorems, like the positivity of energy and norms,
should be questioned when harmonic oscillations are taken
into account. Nevertheless, while critical in QFT, these fea-
tures of the harmonic oscillator are a consequence of exact
solutions in presence of elastic potentials within the Dirac
equation, and so there does not seem to be much room for
improvement.

The only possibility could be that the problems come from
the elastic potential, but the elastic potential is just a dipole
coupling to an external tensor field, like the one that occurs
in presence of radiative processes.

We leave such considerations, and possible experimental
signatures, for a future work.
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