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Abstract In this paper, we implement principal component
analysis (PCA) to study the single particle distributions gen-
erated from thousands of VISH2 + 1 hydrodynamic simu-
lations with an aim to explore if a machine could directly
discover flow from the huge amount of data without explicit
instructions from human-beings. We found that the obtained
PCA eigenvectors are similar to but not identical with the
traditional Fourier bases. Correspondingly, the PCA defined
flow harmonics v′

n are also similar to the traditional vn for
n = 2 and 3, but largely deviated from the Fourier ones for
n ≥ 4. A further study on the symmetric cumulants and the
Pearson coefficients indicates that mode-coupling effects are
reduced for these flow harmonics defined by PCA.

1 Introduction

Collective flow is one of the most important observables
in relativistic heavy-ion collisions, which provides valuable
information on the initial state fluctuations, final state corre-
lations and the QGP properties. In the past decades, various
flow observables have been extensively measured in exper-
iments and studied in theory [1–6]. In general, these flow
observables are defined based on the Fourier decomposition.
For example, the integrated flow harmonics are defined as:

dN

dϕ
= 1

2π

∞∑

−∞
Vne

−inϕ

= 1

2π

(
1 + 2

∞∑

n=1

vncos(n(ϕ − Ψn))

) (1)

where Vn = vneinΨn is the nth order flow-vector, vn is the
n-th order flow harmonics and Ψn is the corresponding event
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plane angle. In general, the first coefficient, v1, is called the
directed flow, the second coefficient, v2, is called the ellip-
tic flow and the third coefficient v3, is called the triangular
flow. For n ≥ 3, vn is also referred as the higher order flow
harmonics.

In spite of the success of the flow measurements and the
hydrodynamic descriptions, one essential question is why
the Fourier expansion is a natural way to analyze the flow
data. In this paper, we will address these questions with
one of the machine learning techniques, called the principal
component analysis (PCA). In more details, we will inves-
tigate if a machine could directly discover flow from the
huge amount of data of the relativistic fluid systems without
explicit instructions from human beings.

PCA is one of the unsupervised algorithms of machine
learning [7] based on the Singular Value Decomposition
(SVD) that diagonalize a random matrix with two orthogonal
matrices. Compared with other deep learning algorithms, the
advantage of PCA lies in its simple and elegant mathematical
formulation, which is understandable and traceable to human
beings, and is able to reveal the main structure of data in a
quite transparent way.

Due to its strong power in data mining, PCA has been
implemented to various research area of physics [8–13]. In
molecular dynamics, PCA has been utilized to distinguish
break junction trajectories of single molecules [8], which is
time efficient and can transfer to a wide range of multivari-
ate data sets. In the field of quantum mechanics, the quan-
tum version of PCA was applied to study quantum coherence
among different copies of the system [9], which are exponen-
tially faster than any existing algorithm. In condensed matter
physics, PCA has been implemented to study the phase tran-
sition in Ising model [11], which found that eigenvectors of
PCA can aid in the definition of the order parameter, as well
as provide reasonable predictions for the critical temperature
without any prior knowledge. Besides, PCA is a widely used
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tool in engineering for model reduction to make computa-
tions more efficient [14].

In relativistic heavy-ion collisions, PCA has been imple-
mented to study the event-by-event flow fluctuations, using
the 2-particle correlations with the Fourier expansion [13,15–
18]. Compared with the traditional method, PCA explores
all the information contained in the 2-particle correlations,
which reveals the substructures in flow fluctuations [13,15,
16]. It was found that the leading components of PCA corre-
spond to the traditional flow harmonics and the sub-leading
components evaluate the breakdown of the flow factorization
at different pt or η bins. Besides, PCA has also been used to
study the non-linear mode coupling between different flow
harmonics [17], which helps to discover some hidden mode-
mixing patterns. Recently, the CMS Collaboration further
implemented PCA to analyze 2-particle correlation in Pb-
Pb collisions at

√
sNN = 2.76 TeV and p-Pb collisions at√

sNN = 5.02 TeV [18], showing the potential of largely
implementing such machine learning technique to realistic
data in relativistic heavy ion collisions.

These early PCA investigations on flow [13,15–18] are all
based on the preprocessed data with the Fourier expansion,
which still belong to the category of traditional flow analysis.
In this paper, we will directly apply PCA to study the single
particle distributions from hydrodynamic simulations with-
out any priori Fourier transformation. We aim to explore if
PCA could discover flow with its own bases.

This paper is organized as follows. Section 2 introduces
relativistic hydrodynamics, principal component analysis
(PCA) and the corresponding flow analysis. Section 3 shows
and discusses the flow results from PCA and compares them
with the ones from traditional Fourier expansion. Section 4
summarizes and concludes the paper.

2 Model and method

2.1 VISH2+1 hydrodynamics

In this paper, we implement VISH2+1 [19–22] to gen-
erate the final particle distributions for the PCA analysis.
VISH2+1 [19–22] is a 2+1-dimensional viscous hydro-
dynamic code to simulate the expansion of the QGP fire-
balls, which solves the transport equations for the energy–
momentum tenor Tμν and the second order Israel–Stewart
equations for the shear stress tensor πμν and bulk pressure
Π with an equation of state s95-PCE [23,24] as an input.
The initial profiles for VISH2+1 are provided by TRENTo,
a parameterized initial condition model that generates event-
by-event fluctuating entropy profiles with several tunable
parameters [24,25]. These parameters, together with the tem-
perature dependent specific shear viscosity and bulk viscos-
ity, hydrodynamic starting time (τ0 = 0.6 fm/c) and decou-

pling /switching temperature (Tsw = 148 MeV) have been
fixed through fitting all charged and identified particle yields,
the mean transverse momenta and the integrated flow har-
monics in 2.76 A TeV Pb+Pb collisions using the Bayesian
statistics [24], which also nicely described various flow data
at the LHC [26]. In practice, the transition from the hydrody-
namic fluid to the emitted hadrons on the freeze-out surface
is realized by a Monte-Carlo event generator iss based on
the Cooper–Fryer formula [27]:

dN

dypT dpT dϕ
=

∫

Σ

g

(2π)3 p
μd3σμ f (x, p) (2)

where f (x, p) is the distribution function of particles, g is
the degeneracy factor, and d3σμ is the volume element on
the freeze-out hypersurface.

For the following PCA analysis, as well as for the tradi-
tional flow analysis in comparison, we run the event-by-event
VISH2+1 simulations with 12000 fluctuating initial condi-
tions generated from TRENTo for 2.76 A TeV Pb–Pb col-
lisions at 0–10%,10–20%, 20–30%, 30–40%, 40–50% and
50–60% centrality bins. The default iss sampling for each
VISH2+1 simulation is 1000 events, which corresponds to
the main results presented in Sect. 3. In the appendix of this
paper, we also investigate the ability of PCA to distinguish
signal and noise. We thus implement 25, 100 and 500 iss
samplings for each VISH2+1 simulation for such investiga-
tion. Note that the default 1000 iss sampling used in this
paper has already dramatically suppressed the statistical fluc-
tuations from noises for the final hadron distributions.

With the final particle distributions obtained from hydro-
dynamic simulations, various flow observables can be calcu-
lated based on the traditional flow harmonics defined by the
Fourier decomposition in Eq. (1). In Sect. 3, the traditional
flow results will be served as the comparison to the PCA
results.

2.2 Principal component analysis (PCA)

Principal component analysis (PCA) is a statistical method
to analyze complicated data, which aims to transform a set
of correlated variables into various independent variables via
orthogonal transformations. These obtained main eigenvec-
tors, associated with large or unnegligible singular values,
are also called the principal components, which reveal the
most representative characteristics of the data. In practice,
PCA implements the singular value decomposition (SVD)
to a real matrix, which obtains a diagonal matrix with the
diagonal elements arranged in a descending order. There-
fore, one needs to first construct a related matrix before the
following PCA and SVD analysis. Since this paper focuses
on investigating the integrated flow with PCA, such final
state matrix Mf is constructed from the angular distribution
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of all charged hadrons dN/dϕ (|y| < 1.0) (obtained from
Eq. (2)) of N = 2000 independent events in each central-
ity bin, using VISH2+1 simulations with TRENTo initial
conditions. In more details, we divide the azimuthal angle
[−π, π ] into m = 50 bins and count the number of particles
in each bin. For the j th bin in event (i), the number of par-
ticles is denoted as dN/dφ

(i)
j , which is also the ith row and

jth column of the matrix Mf.1

Then, we apply SVD to the final state matrix Mf with the
size N × m (Here, N = 2000 and m = 50), which gives

Mf = X�Z = VZ (3)

where X and Z are two orthogonal matrices with the size of
N × N and m ×m, respectively. � is a diagonal matrix with
diagonal elements (singular values) arranged in the descend-
ing order σ1 > σ2 > σ3 · · · > 0.

With such matrix multiplication, the ith row of matrix
Mf , denoted as dN/dϕ(i), can be expressed by the linear
combination of the eigenvectors z j (the jth row of matrix Z)
with j = 1, 2, . . . ,m:

dN/dϕ(i) =
m∑

j=1

x (i)
j σ j z j =

m∑

j=1

ṽ
(i)
j z j

≈
k∑

j=1

ṽ
(i)
j z j (i) = 1, . . . , N (4)

where (i) = 1, 2, . . . , N , represents the index of the event,
z j are a set of orthogonal vectors such that zTi z j = δi j , m is

the number of angular bins of the inputting events. ṽ(i)
j is the

corresponding coefficient of z j for the ith event.2 In the spirit
of PCA, one only focuses on the most important components,
so there is a cut at the indices k in the last approximation of
Eq. (4). In Sect. 3, we will show that k = 12 is a proper
truncation for the integrated flow analysis, and the shape of
the bases or eigenvectors z j ( j = 1, . . . , k) is similar to but
not identical with the Fourier transformation bases cos(nϕ)

and sin(nϕ) (n = 1, . . . , 6) used in the traditional method.
Correspondingly, ṽ

(i)
j ( j = 1, . . . , k) is identified as the real

or imaginary part of the flow harmonics for event (i), and
the singular values σ j are associated with the corresponding
event averaged flow harmonics at different orders. For more
details, please also refer to Sect. 3.

1 In practice, we normalize the event vector in Mf to get rid of the
multiplicity fluctuations.
2 Note that this paper focuses on investigating whether machine could
discover flow from the single particle distributions of hydrodynamics.
For more realistic implementation to experimental data, one should
perform the PCA analysis for the two-particle correlations with self-
correlation and non-flow effects eliminated, which we would like to
leave it to future study.

3 Results

In this section, we implement PCA to analyze the single par-
ticle distributions dN/dϕ from hydrodynamics simulations
in Pb+Pb collisions at

√
sNN = 2.76 A TeV. Firstly, we focus

on the singular values, eigenvectors as well as the associated
coefficients of PCA and explore if such unsupervised learn-
ing could discover flow with its own bases.

In practice, we run 2000 event-by-event VISH2+1 hydro-
dynamic simulations with TRENTo initial conditions to gen-
erate the dN/dϕ distributions for 10–20% Pb + Pb collisions
at

√
sNN = 2.76 A TeV. With these dN/dϕ distributions, we

construct the final state matrix Mf and then implement SVD
to Mf as described in Sect. 2. Figure 1 shows these obtained
first 12 eigenvectors z j ( j = 1, 2, . . . , 12) and the first 20
singular values σ j ( j = 1, 2, . . . , 20) of PCA, arranged
by the descending order of magnitude.3 As introduced in
Sect. 2, these eigenvectors contain the most representative
information on correlations among final particles. Figure 1
shows that the 1st and 2nd eigenvectors from PCA are simi-
lar to the Fourier decomposition bases sin(2ϕ) and cos(2ϕ),
and the 3rd and 4th components are similar to sin(3ϕ) and
cos(3ϕ), etc. Meanwhile, Fig. 1b shows that singular values
σ j ( j = 1, 2, . . . , 12) are arranged in pairs. These results
indicate that each pair of the singular values may associate
with the real and imaginary parts of the event averaged flow
vectors at different orders. Therefore, we define the event
averaged flow harmonics of PCA with these paired singular
values, as outlined in the the second column of Table 1. The
values of these PCA flow at different order are compared with
the traditional flow harmonics from the Fourier expansion in
Table 1, which are close, but not exactly the same values for
n ≤ 6.

As explained in Sect. 2, one could also read the event-
by-event flow harmonics from the results of PCA. In more
details, such PCA flow harmonics for event (i) is associated
with these coefficients ṽ

(i)
j , j = 1 . . . k in Eq. (4). Therefore,

we define the event-by-event flow harmonics v′
n with magni-

tudes projected onto PCA bases, similar to the event averaged

ones defined in Table 1. For example, v′
2 =

√
m
2

√
ṽ2

1 + ṽ2
2

and v′
3 =

√
m
2

√
ṽ2

3 + ṽ2
4 (m = 50), etc. Fig. 2 compares

v′
n from PCA and vn from the traditional Fourier expansion

at different orders. For the event-by-event elliptic flow v2

and v′
2 and triangular flow v3 and v′

3, the definitions from
PCA and that from Fourier expansion are highly agree with
each other, which mostly fall on the diagonal lines. For these
higher order flow harmonics with n ≥ 4, these PCA results
are largely deviated from the traditional Fourier ones. We also

3 Each eigenvector is automatically normalized with ||z j ||22 =∑m
i=1(z j )

2
i = 1 (m = 50), due to the orthogonality of the eigenvector

matrix Z.
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(a) (b)

Fig. 1 a The first 12 eigenvectors z j ( j = 1, 2, . . . , 12) and b the first 20 singular values σ j ( j = 1, 2, . . . , 20), after applying PCA to the final
state matrix Mf . The matrix Mf is constructed from 2000 dN/dϕ distributions, generated from the event-by-event VISH2+1 simulations with
TRENTo initial conditions for 10–20% Pb + Pb collisions at

√
sNN = 2.76 A TeV

Table 1 Event averaged flow harmonics v′
n from PCA and vn from the

Fourier expansion, for VISH2+1 simulated Pb+Pb collisions at 10–
20% centrality

n v′
n (PCA) v′

n × 102 vn × 102

2
√

m
2

√
σ 2

1 + σ 2
2 6.03 6.08

3
√

m
2

√
σ 2

3 + σ 2
4 2.57 2.53

4
√

m
2

√
σ 2

5 + σ 2
6 1.21 1.25

5
√

m
2

√
σ 2

9 + σ 2
10 0.57 0.66

6
√

m
2

√
σ 2

11 + σ 2
12 0.26 0.37

noticed that the first two PCA eigenvector z1 and z2 for v′
2

are similar to but not identical with the Fourier bases sin(2ϕ)

and cos(2ϕ) with n = 2, which contain the contributions
from sin(4ϕ) and cos(4ϕ). Similarly, the PCA eigenvectors
z3 and z4 also contain the contributions from other Fourier
bases. Such mode mixing in the PCA eigenvectors leads to
the large deviations between v4 and v′

4, as well as between
v5 and v′

5, etc.
To evaluate the correlations between different PCA flow

harmonics v′
m and v′

n , we calculate the symmetric cumulants
as once defined for traditional flow harmonics [28–30]:

SCv ′(m, n) =
〈
v′2
mv′2

n

〉
−

〈
v′2
m

〉 〈
v′2
n

〉
. (5)

Correspondingly, the traditional symmetric cumulants SCv

(m, n) just replace v′
m and v′

n with vm and vn from the Fourier
expansion.

Figure 3 compares the symmetric cumulants SCv ′(m, n)

from PCA and SCv ′(m, n) from Fourier expansion, for
the event-by-event VISH2+1 simulations in 2.76 A TeV
Pb+Pb collisions at various centrality bins. One finds that,
except for SCv(2, 3), almost all PCA symmetric cumulants
SCv ′(m, n) reduce significantly compared to the traditional
ones. Although v′

4 from PCA largely deviated from the tradi-
tional v4 from the Fourier expansion, the obtained SCv ′(2, 4)

shows a significant suppression, which contradicts to the long
believed idea that the nonlinear hydrodynamics evolution
strongly couples v2

2 to v4, leading to an obvious positive cor-
relations between v2 and v4 obtained from Fourier expansion.
Similarly, the non-linear mode coupling between v′

2 and v′
5,

v′
3 and v′

5 and v′
3 and v′

4 for these PCA defined flow harmonics
also decrease, which results in the reduced symmetric cumu-
lants SCv ′(2, 5), SCv ′(3, 5) and SCv ′(3, 4) correspondingly.

To evaluate the correlations between the initial and final
state fluctuations, we use the Pearson coefficients r(v′

n, εm)

and r(vn, εm) to characterize the linearity between the PCA
flow harmonics v′

n and the initial eccentricities εm , as defined
as the following:

Fig. 2 A comparison between the event-by-event flow harmonics v′
n from PCA and vn from the Fourier expansion, for VISH2+1 simulated Pb+Pb

collisions at 10–20% centrality
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Fig. 3 Symmetric Cumulants SCv ′(m, n) from PCA and SCv ′(m, n) from the Fourier expansion, for VISH2+1 simulated Pb+Pb collisions at
various centralities

Fig. 4 The Pearson coefficient r(v′
n, ε

′
m) from PCA and r(vn, εm) from Fourier expansion, for VISH2+1 simulated Pb + Pb collisions at various

centralities

r(v′
n, εm) = 〈v′

nεm〉 − 〈v′
n〉〈εm〉√

(v′
n − 〈v′

n〉)2(εm − 〈εm〉)2
(6)

Here, εm is the traditional eccentricities defined by Eq. (A.1).
In Appendix A, we will demonstrate that, with a properly
chosen smoothing procedure, the event-by-event eccentrici-
ties ε′

m from PCA is highly similar to εm from the traditional
method. We thus use εm in the Pearson coefficient definition
r(v′

n, εm) for PCA. Meanwhile, we can also calculate the
Pearson coefficient r(vn, εm) for the traditional flow with
Fourier expansion, which just replaces the flow harmonics

v′
n in Eq. (6) by vn . According to the definition, the Pearson

coefficient falls in the range [−1, 1], with r > 0 implying a
positive correlation, and r < 0 implying a negative correla-
tion.

Figure 4 plots the Pearson coefficients r(v′
n, εm) from

PCA and r(vn, εm) from the Fourier expansion, forVISH2+1
simulated Pb+Pb collisions at various centralities. With these
Pearson coefficients, we focus on evaluating if the PCA
defined flow harmonics reduce or increase the correlations
with the corresponding initial eccentricities. As shown in
Fig. 3, the event-by-event flow harmonics v′

2 or v′
3 from PCA
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are approximately equal to the Fourier ones v2 or v3. As a
result, these Pearson coefficients involved with these two flow
harmonics r(v′

2, εm) and r(v′
3, εm) are almost overlap with

the Fourier ones r(v2, εm) and r(v3, εm) as shown by these
upper panels in the first two rows. Meanwhile, these diago-
nal Pearson coefficients r(v′

2, ε2) or r(v2, ε2) and r(v′
3, ε3)

or r(v3, ε3) are much larger than other ones, which confirms
the early conclusion that the elliptic flow and triangular flow
are mainly influenced by the initial eccentricity ε2 and ε3

with the approximate linear relationship v2 ∼ ε2 (v′
2 ∼ ε2)

and v3 ∼ ε3 (v′
3 ∼ ε3) [31,32].

Although v′
4 from PCA is largely deviated from the tra-

ditional v4 in Fig. 3, such PCA definition largely enhances
correlations between ε4, and also largely reduces the correla-
tions between ε2. For example, at 20-30% centrality, the Pear-
son coefficients r(v4, ε4) is only 70% of the r(v′

4, ε4), while
r(v4, ε2) is 200% larger than r(v′

4, ε2). Traditionally, it is
generally believed that v4 is largely influenced by ε2

2 through
the non-linear evolution of hydrodynamics and the Cooper–
Frye freeze-out procedure. Our PCA analysis showed that
such mode mixing could be deduced through a redefined
PCA bases. Meanwhile, such PCA defined bases also signif-
icantly reduce the mode mixing for other higher order flow
harmonics such as between v′

5 and ε2, v′
5 and ε3, etc.

4 Conclusions

In this paper, we implemented Principal Components Anal-
ysis (PCA) to study the single particle distributions of thou-
sands of events generated from VISH2+1 hydrodynamic
simulations. Compared with the early PCA investigations
on flow that imposed the Fourier transformation in the input
data [13,15–18], we focused on analyzing the raw data of
hydrodynamics and exploring if a machine could directly
discover flow from the huge amount of data without explicit
instructions from human-beings. We found that the PCA
eigenvectors are similar to but not identical with the tradi-
tional Fourier basis. Correspondingly, the obtained flow har-
monics v′

n from PCA are also similar to the traditional vn
for n = 2 and 3, but largely deviate from the Fourier ones
for n ≥ 4. With these PCA flow harmonics, we found that,
except for SCv ′(2, 3), almost all other symmetric cumulants
SCv ′(m, n) from PCA decrease significantly compared to
the traditional SCv(m, n). Meanwhile, some certain Pearson
coefficients r(v′

n, εm) that evaluate the linearity between the
PCA flow harmonics and the initial eccentricities are obvi-
ously enhanced (especially for n ≥ 4), together with an cor-
responding reduction of the off-diagonal elements.

These results indicate that PCA has the ability to discover
flow with its own basis, which also reduce the related mode
coupling effects, when compared with traditional flow anal-
ysis based on the Fourier expansion. We emphasis that these

eigenvectors from PCA are modeled to be orthogonal and
uncorrelated to each other. As a result, most of the symmetric
cumulants SCv ′(m, n) from PCA that evaluate the correla-
tions between different flow harmonics are naturally reduced
compared with the traditional ones. Besides, the PCA flow
harmonics v′

n presents an enhanced linear relationship to
the corresponding eccentricities εn , especially for n = 4.
These results seem contradictory to the long believed idea
that hydrodynamics evolution are highly non-linear, which
leads to strong mode-coupling between different flow har-
monics. Our PCA investigation has shown that such mode
coupling effects could be reduced with new-defined bases
for the flow analysis. With such finding, the non-linearity of
the hot QGP systems created in heavy ion collisions should
be re-evaluated, which we would like to further explore it
with such PCA method in the near future.
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Appendix A: PCA for initial profiles with smoothing pro-
cedure

In this appendix, we focus on analyzing the initial state fluc-
tuations using the PCA method. Traditionally, the initial state
fluctuations are evaluated by the eccentricity coefficients εn
at different order, which are defined as [31]:

εne
inΦn = −

∫
r dr dϕ rn einϕ s(r, ϕ)∫
r dr dϕ rn s(r, ϕ)

, (A.1)

where Φn is the participant plan angle, s(r, ϕ) is the initial
entropy density and ϕ is the azimuthal angle in the transverse
plane [31].

For the PCA analysis, we first construct the initial state
matrixMi, using the azimuthal angle distribution of the initial
entropy dS/dϕ which is defined by
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Fig. 5 A comparison between the event-by-event eccentricites ε′
n from PCA and εn from the traditional definition (A1), for TRENTo initial

conditions at 10-20% centrality. In the corresponding panels, we also write the values of event averaged eccentricites ε′
n from PCA and εn from the

traditional definition

dS

dϕ
=

∫
r2drs(r, ϕ) (A.2)

obtained from 2000 event-by-event TRENTo initial condi-
tions. A direct PCA analysis shows that more than 100 eigen-
vectors are needed to capture the rich structures of the ini-
tial state fluctuations. In contrast, 12 PCA eigenvectors are
enough to describe the final state ones since the hydrody-
namic evolution tends to smear out inhomogeneity of the
evolving systems. In order to connect and compare these PCA
singular values from the initial and final states, we implement
a smoothing procedure for the initial profiles before the PCA
analysis.

In more details, we apply a circular convolution with to
the initial density profile dS/dϕ, which is written as:

(
dS

dϕ

)

smooth
=

∫ π

−π

K (ϕ′, ϕ)
dS

dϕ′ dϕ′ (A.3)

Here, K (ϕ′, ϕ) is the convolution kernel, which is taken a

gaussian form K (ϕ′, ϕ) = 1√
2πa

e
− (ϕ′−ϕ)2

2a2 . Here, we fine tune
the radius a to ensure the the same decaying rate for the PCA
singular values from the initial profiles and final profiles. The
obtained optimized value for a is 0.251 rad.

With such smoothing procedure, we reconstruct the ini-
tial state matrix Mi with 2000 event-by-event ( dSdϕ

)smooth

distributions from TRENTo for each selected centralities.
As the case for the flow analysis in Sects. 2.2B and 3, the
implementation of SVD and PCA to the initial state matrix,
Mi = Ŷ�̂Ẑ = ÊẐ, gives the singular value σ̂ j , eigenvec-

tors ẑ j and the corresponding eccentricity coefficients ε̂
(i)
j ,

( j = 1, . . . k̂) such that

dS/dϕ(i) =
m∑

j=1

y(i)
j σ̂ j ẑ j =

m∑

j=1

ε̂
(i)
j ẑ j

≈
k∑

j=1

ε̂
(i)
j ẑ j (i) = 1, . . . , N (A.4)

We find that the PCA eigenvectors ẑ j of the initial states are
highly similar to traditional Fourier bases cos(2ϕ), sin(2ϕ),

cos(3ϕ), sin(3ϕ), etc. Meanwhile, we could associate the
singular value σ̂ j to the event averaged initial eccentricities
of PCA, ε̄′

n , at different orders and connect the coefficients

ε̂
(i)
j , ( j = 1, . . . k̂) to the real or imaginary part of the PCA

event-by-event initial eccentricities ε′
n(n = 1, . . . k̂/2) as the

case for flow.4

Figure 5 compares the event-by-event eccentricites ε′
n

from PCA and εn from the traditional definition (A.1) for the
TRENTo initial conditions at 10–20% centrality. It shows,
with a properly chosen smoothing procedure of the initial
conditions, ε′

n and εn agree with each other well till n = 6
. Meanwhile, the event averaged eccentricites ε′

n from PCA
and εn from (A.1) also fit each other very well, which is
much better than ones for flow shown in Table 1 and Fig. 2.
Therefore, for the investigation of initial state and final state
correlations, we only use the traditional εm to define the Pear-
son coefficient r(v′

n, εm), and r(vn, εm) for both PCA and
traditional flow in Sect. 3.

Appendix B: Signal and noise distinguishment from PCA

In the event-by-event VISH2+1 simulations, both initial
state fluctuations and statistical fluctuations from the iss
particle sampling during the Cooper–Fryer freeze-out influ-
ence the emissions and distributions of final particles. It is
generally believed that the hydrodynamic evolution trans-
late the initial state fluctuations into final state correlations,
which directly relate to flow signals. Meanwhile, the statisti-
cal fluctuations during Cooper–Fryer freeze-out with a finite
number of particle emission introduce statistical noise for the
flow definition in each event. As a result, flow harmonics from
traditional Fourier expansion are generally analyzed with an
event average of millions of events. For the event-by-event
flow analysis, one implements the standard Bayesian unfold-

4 Here, ε̄′
2=

√
m
2

√
σ̂ 2

3 + σ̂ 2
4 , ε̄′

3=
√

m
2

√
σ̂ 2

5 + σ̂ 2
6 , ε̄′

4=
√

m
2

√
σ̂ 2

7 + σ̂ 2
8 , etc.

with m = 50 the number of bins. For event-by-event definition of
ε′
n(n = 1, . . . k̂/2), we could simply replace σ̂ j with ε̂ j ( j = 1, . . . k̂),

correspondingly.
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Fig. 6 The first 20 singular values of PCA σ j ( j = 1, 2, . . . , 20) for
the final state matrixes Mf with different weighted signal and noise.
Such matrix Mf are constructed with the dN/dϕ distributions from
2000 event-by-event VISH2+1 simulations with 25, 100 and 500 iss
samplings

ing procedure to suppress effects from the finite multiplicites
and non-flow [33].

In this appendix, we further explore the ability of PCA
to distinguish the signal and noise. With such purpose,
we implement 25, 100 and 500 iss samplings for each
VISH2+1 simulation to generate the dN/dϕ distributions of
final particles and the related final state matrixesMf with dif-
ferent weighted signal and noise. Then, we implement PCA
to analyze these matrixes. As shown in Fig. 6, the distribu-
tion of the PCA singular values is changed with the num-
ber of iss samplings. For these systems with large statis-
tical fluctuations, for example with 25 iss samplings, the
singular values σ j at large j tend to have a long and high
tail. For these systems with reduced statistical fluctuations
with more iss samplings, the height of the tail is largely
decreased. Meanwhile, we noticed that these eigenvectors
with an index j smaller than a certain “magic number”(12 in
this case) is signal-like which has a basis similar to the Fourier
one, while these eigenvectors with larger j behave so ran-
domly and chaotically, that we associate these eigenvectors
with the noise patterns of the systems. Besides, we check
the height of these PCA tails and found the ratios among
these heights for different iss samplings approximately sat-
isfy 1√

25
: 1√

100
: 1√

500
, such relation is known as the Law

of Large Numbers for statistical noise. With more number of
samplings, the height of the tail would further decrease. In
the main part of this paper, we thus set the iss samplings for
eachVISH2+1 simulation to 1000, which largely suppresses

the noise effects from the statistical fluctuations and makes
PCA analysis focus on studying flow signal itself.
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