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Abstract In a recent paper, Hod started a study on no scalar
hair theorem for asymptotically flat spherically symmetric
neutral horizonless reflecting compact stars. In fact, Hod’s
approach only rules out massive scalar fields. In the present
paper, for massless scalar fields outside neutral horizonless
reflecting compact stars, we provide a rigorous mathematical
proof on no hair theorem. We show that asymptotically flat
spherically symmetric neutral horizonless reflecting compact
stars cannot support exterior massless scalar field hairs.

1 Introduction

Recently, the first ever image of a black hole has been cap-
tured by a network of eight radio telescopes around the
world [1]. These discoveries open up hope to directly test
various black hole theories from astronomical aspects. One
remarkable property of classical black holes is the famous no
hair theorem [2–9]. If generically true, such no hair theorem
would signify that asymptotically flat black holes cannot sup-
port scalars, massive vectors and Abelian Higgs hairs in exte-
rior regions, for recent references see [10–25] and reviews
see [26,27]. It was believed that no hair behaviors are due to
the existence of one-way absorbing horizons.

However, it was recently found that no hair behavior also
appears in the background of horizonless reflecting compact
stars. In the asymptotically flat gravity, Hod firstly proved no
static scalar hair theorem for neutral horizonless reflecting
compact stars [28]. In the asymptotically dS gravity, it was
found that neutral horizonless reflecting compact stars cannot
support the existence of massive scalar, vector and tensor field
hairs [29]. When considering a charged background, large
reflecting shells can exclude static scalar field hairs [30–32].
Similarly, static scalar field hairs cannot exist outside charged
reflecting compact stars of large size [33–37]. With field-
curvature couplings, such no hair theorem could also hold in
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the horizonless gravity [38–40]. Moreover, we proved no hair
theorem for horizonless compact stars with other boundary
conditions [41–43].

As is well known, scalar field mass usually plays an
important role in the scalar hair formation. For massless
scalar fields ψ(r), no scalar hair theorem was investigated
in the background of horizonless compact stars [28], where
the relation ψ(rpeak)ψ ′′(rpeak) < 0 at the extremum point
r = rpeak is essential in Hod’s present proof. However, the
general characteristic relation at the extremum point should
be ψ(rpeak)ψ ′′(rpeak) � 0 and in fact, ψ ′′(rpeak) = 0
holds for some solutions. So Hod’s approach only ruled
out massless scalar fields with ψ ′′(rpeak) �= 0 and non-
trivial solutions with ψ ′′(rpeak) = 0 cannot be excluded.
Then it is of some importance to search for a mathemat-
ical proof on no hair theorem for massless scalar field
hairs.

In the following, we consider static massless scalar fields
in the background of asymptotically flat spherical neutral
horizonless reflecting compact stars. We provide a rigorous
mathematical proof on no hair theorem for massless scalar
fields. We summarize main results in the last section.

2 No massless scalar hair for horizonless reflecting
compact stars

We consider massless scalar fields outside asymptotically
flat horizonless compact stars. We define the radial coordi-
nate r = rs as the star radius. And the curved spherically
symmetric spacetime is described by line element [38,39]

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2θdφ2), (1)

where ν = ν(r) and λ = λ(r). Asymptotic flatness of the
spacetime requires infinity behaviors ν(r → ∞) � O(r−1)

and λ(r → ∞) � O(r−1).
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The Lagrange density with massless scalar fields mini-
mally coupled to gravity is given by

L = R − (∂αψ)2. (2)

Hereψ(r) is the scalar field and R is the scalar Ricci curvature
of the spacetime.

From the metric (1) and the action (2), we obtain the scalar
field equation

ψ ′′ +
(

2

r
+ ν′

2
− λ′

2

)
ψ ′ = 0. (3)

Around the infinity, the scalar field equation can be approx-
imated by

ψ ′′ + 2

r
ψ ′ = 0. (4)

It yields the infinity boundary behavior

ψ ∼ A + B

r
, (5)

where A and B are integral constants. The finite ADM mass
condition yields that the static scalar field must asymptoti-
cally approaches zero at the infinity. So we fix A = 0. Then
the scalar field satisfies the infinity boundary condition

ψ(r → ∞) = 0. (6)

At the star surface, we impose the reflecting boundary
condition

ψ(rs) = 0. (7)

According to relations ψ(rs) = 0 and ψ(r → ∞) = 0,
ψ(r) must possesses one extremum point rpeak , which is
between the star surface rs and the infinity. With the symme-
try ψ → −ψ of Eq. (3), it is enough for us to only consider
the case of positive local maximum value in the following.

Metric solutions were assumed to be real analytic in the
proof of the uniqueness of the Kerr solution [44–46]. A real
function is analytic if it can be locally expressed with Taylor
series. In this work, we also assume that the metric solutions
are real analytic. Then a positive constant δ exists and in the
range (rpeak −δ, rpeak +δ), metric solutions can be expanded
as

ν(r) =
∞∑
n=0

an(r − rpeak)
n, (8)

λ(r) =
∞∑
n=0

bn(r − rpeak)
n, (9)

where an = ν(n)(rpeak)
n! and bn = λ(n)(rpeak)

n! . Solutions ψ(r)
of Eq. (3) are real analytic according to Cauchy–Kowalevski
theorem, which states that solutions of differential equations
are real analytic when coefficients are real analytic [44–47].

In the same range (rpeak − δ, rpeak + δ), the scalar field can
be expressed as

ψ(r) =
∞∑
n=0

cn(r − rpeak)
n (10)

with cn = ψ(n)(rpeak)
n! , which can be obtained by putting (8)

and (9) into (3) and considering terms order by order.
Now we show that a nonzero cn (n � 1) should exist for

nontrivial solution ψ(r). Otherwise, ψ(r) is a constant in the
range (rpeak−δ, rpeak+δ). Then we can search for the largest
R where ψ(r) is a constant in the range (rpeak − δ, R]. Since
ψ(r) is real analytic, there is a constant δ̃ > 0 and in the
range (R − δ̃, R + δ̃), the scalar field can be expressed as

ψ(r) =
∞∑
n=0

dn(r − R)n . (11)

If we approach R from the left side, we find all coefficients
dn = 0 for n � 1 since ψ(r) is a constant in the range
(R− δ̃, R]. However, if we approach R from the right side, a
nonzero dn �= 0 with n � 1 should exist since ψ(r) is not a
constant in the range [R, R + δ̃). This contradiction leads to

the conclusion that a nonzero cn = ψ(n)(rpeak)
n! (n � 1) exists.

By considering leading terms of (10), we obtain following
conclusions.

(I) Firstly, there is ψ ′(rpeak) = 0. Otherwise, ψ(r) =
ψ(rpeak)+ψ ′(rpeak)(r −rpeak)+· · · and ψ(r) cannot
has extremum value at the point rpeak .

(II) In the case of ψ ′′(rpeak) �= 0, we will have ψ ′′(rpeak) <

0. Otherwise, ψ cannot has local maximum extremum
value at the point rpeak since ψ(r) = ψ(rpeak) +
ψ ′′(rpeak)

2 (r − rpeak)2 + · · · . In this work, we only con-
sider the case of positive local maximum value accord-
ing to the symmetry ψ → −ψ of Eq. (3).

(III) In the case of ψ ′′(rpeak) = 0, we will have ψ(3)(rpeak)
= 0. Otherwise, ψ cannot have local maximum
extremum value at the point rpeak since ψ(r) =
ψ(rpeak) + ψ ′′′(rpeak)

3 (r − rpeak)3 + · · · .
(IV) In the case of ψ ′′(rpeak) = 0 and ψ(4)(rpeak) �= 0, we

will have to impose ψ(4)(rpeak) < 0 to obtain a local
maximum extremum value for ψ at the point rpeak .
In this case, there is the relation ψ(r) = ψ(rpeak) +
ψ(4)(rpeak)

24 (r − rpeak)4 + · · · .

Following this analysis, we can obtain an even number N,
which satisfies

ψ ′ = 0, ψ ′′ = 0, ψ(3) = 0, ψ(4) = 0, . . . , ψ(N−1)

= 0, ψ(N ) < 0 for r = rpeak . (12)

At the extremum point r = rpeak , Eq. (3) yields relations
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We define a new function f (r) = 2
r + ν′

2 − λ′
2 . Then the

Eq. (3) can be expressed as

ψ ′′ + f ψ ′ = 0. (13)

As we stated, metric solutions are assumed to be real ana-
lytic, which is the same as cases in the proof of the unique-
ness of the Kerr solution [44–46]. According to Cauchy–
Kowalevski theorem, as we have shown, Eq. (3) pos-
sesses a locally real analytic solution ψ(r) around rpeak .
Since metric functions and ψ(r) are real analytic around
rpeak , both f ′(rpeak), f ′′(rpeak), f ′′′(rpeak), f (4)(rpeak), . . .
and ψ ′(rpeak), ψ ′′(rpeak), ψ ′′′(rpeak), ψ(4)(rpeak), . . . exist.
Taking the derivative of both sides of the Eq. (13), we get
the equation

(ψ ′′ + f ψ ′)′ = 0, (14)

which holds round rpeak . The relation (14) is equal to

ψ ′′′ + f ψ ′′ + f ′ψ ′ = 0. (15)

From (15), we obtain the equation

(ψ ′′′ + f ψ ′′ + f ′ψ ′)′ = 0. (16)

The relation (16) can be transformed into

ψ(4) + f ψ ′′′ + 2 f ′ψ ′′ + f ′′ψ ′ = 0. (17)

Along this line, we can obtain the following relation

ψ(N ) + f ψ(N−1) + (N − 2) f ′ψ(N−2)

+ · · · + (N − 2) f (N−3)ψ ′′ + f (N−2)ψ ′ = 0. (18)

At the extremum point, relations (12) are in contradiction
with the relation (18). Due to this contradiction, there is no
nontrivial scalar field solution of Eq. (3). We conclude that
asymptotically flat spherical neutral horizonless reflecting
compact stars cannot support exterior massless scalar field
hairs.

3 Conclusions

We studied no hair theorem for static massless scalar fields
outside the asymptotically flat spherically symmetric hori-
zonless reflecting compact stars. We obtained the character-
istic relations (12) at extremum points, which are in contra-
diction with the Eq. (18). That is to say there is no nontrivial
scalar field solution of Eq. (3). We concluded that asymptot-
ically flat spherically symmetric horizonless reflecting com-
pact stars cannot support the existence of exterior massless
scalar fields. In this work, we provided a rigorous mathemat-
ical proof on no hair theorem for massless scalar fields.
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